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Abstract: Glaucoma is a leading cause of irreversible blindness worldwide. While intraocular pressure
(IOP) presents a major risk factor, the underlying pathophysiology still remains largely unclear. The
correlation between vascular abnormalities and glaucoma has been deliberated for decades. Evidence
for a role played by vascular factors in the pathogenesis of glaucomatous neurodegeneration has
already been postulated. In addition, the fact that glaucoma causes both structural and functional
changes to retinal blood vessels has been described. This review aims to investigate the published
evidence concerning the relationship between vascular abnormalities and glaucoma, and to provide
an overview of the “chicken or egg” dilemma in glaucoma. In this study, several biomarkers
of glaucoma progression from a vascular perspective, including endothelin-1 (ET-1), nitric oxide,
vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs), were identified
and subsequently assessed for their potential as pharmacological intervention targets.

Keywords: glaucoma; vascular abnormalities; vascular biomarkers; neurodegeneration;
intraocular pressure

1. Introduction

Glaucoma is characterized by the progressive death of retinal ganglion cells (RGCs)
and consequential functional impairments of the visual field [1]. However, despite exten-
sive research efforts, the precise pathogenesis of glaucoma remains inadequately under-
stood. While elevated IOP has traditionally been recognized as the primary risk factor
in glaucoma development, it is crucial to acknowledge that a significant proportion of
patients experience disease progression despite successful normalization of IOP through
therapeutic interventions [2].

There is a growing body of compelling evidence supporting the notion that vascular
abnormalities, encompassing both vascular factors and systemic hemodynamics, play a
substantial role in the complex etiology of glaucoma. The vascular theory in glaucomatous
neurodegeneration postulates that diminished perfusion pressure, impaired vascular au-
toregulation, and disrupted neurovascular coupling serve as the underlying mechanisms.
These factors collectively contribute to the progressive degeneration of the optic nerve and
retinal ganglion cells in glaucoma [3,4].
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Regarding hemodynamics, a notable association between glaucoma and systemic
cardiovascular diseases, such as diabetes mellitus (DM) [5–7], high blood pressure (BP) [8,9],
low BP [10], and nocturnal dipping [11] has been documented, suggesting an elevated
incidence of glaucoma in affected individuals. These observations highlight the potential
influence of hemodynamic factors on glaucoma development and progression [12,13].
Abnormal vascular function can also influence the secretion and drainage of aqueous
humor (AH), thus affecting IOP regulation [14]. The elevated IOP resulting from vascular
abnormalities can induce compression of RGCs and their axons, as well as diminished
ocular blood supply. Consequently, these factors contribute to the pathogenesis and
progression of glaucoma [15].

Retinal vascular dysfunction has been reported secondary to glaucoma, indicative of a
bidirectional relationship between glaucoma and retinal vascular pathology [16]. These
secondary manifestations of glaucoma include a reduction in retinal vascular diameter [17],
decreased retinal vascular density [18], alterations in retinal vascular molecules [19], im-
paired autoregulation, arteriolar dysfunction within the retina [16], and even occurrences
of retinal vein occlusion [17,20]. However, the answer to the question of whether vascular
abnormalities drive glaucoma progression or if glaucoma serves as the instigator of vascular
abnormalities remains elusive. In this comprehensive review, we investigate published
evidence and provide a succinct summary of the vascular factors that potentially contribute
to the pathogenesis of glaucoma. Additionally, we explore ocular vascular abnormalities
that arise as a consequence of glaucoma. Furthermore, our analysis aims to identify po-
tential vascular biomarkers that can serve as indicators for the progression and prognosis
of glaucoma and the role of these biomarkers in refining current management strategies
for glaucoma.

2. The Anatomy of Blood Supply in the Retina

The retina is a highly metabolically active tissue that requires a constant supply of
nutrients and oxygen to function properly. The blood supply of the outer retina and inner
retina comes from different circulatory pathways: the central retinal artery (CRA) and the
choroidal circulation, respectively. This is summarized in Figure 1. The CRA is a branch
of the ophthalmic artery, which arises from the internal carotid artery. The artery enters
the eye through the optic nerve and travels through the center of the optic nerve to reach
the retina. The CRA then divides into multiple smaller branches that supply blood to the
inner retina, which includes the ganglion cells, inner plexiform layer, and inner nuclear
layer [17,21]. The choroidal circulation is a network of blood vessels that lies between the
retina and the sclera, the outermost layer of the eye. Blood from the choroidal circulation
enters the retina through the outer retinal vessels and then flows towards the inner retina.
The choroidal circulation supplies the outer retina, including the photoreceptors and the
retinal pigment epithelium [22]. The high oxygen demands of the retina and the relatively
sparse nature of the retinal vasculature are believed to be responsible for the particular
vulnerability of the retina to vascular disease [22,23]. This indicates that neurons in
the inner retina, such as RGCs, are susceptible to limited retinal inner blood supply
in retinal diseases such as glaucoma and diabetic retinopathy [22,24]. Animal studies
have demonstrated that bilateral occlusion of the common carotid arteries, leading
to retinal hypoperfusion, causes a significant reduction in RGC density in rats due
to apoptosis [25,26]. Clinical studies have also revealed a strong correlation between
impaired ocular blood flow and glaucoma severity, particularly in patients with reduced
perfusion in the optic nerve head (ONH) [27–29]. Such findings suggest that RGCs are
particularly susceptible to reduced ocular blood flow.
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Figure 1. Anatomical depiction of the retinal blood supply.

3. The Role of Vascular Abnormalities in Glaucomatous Neurodegeneration

The vascular theory of glaucomatous neurodegeneration suggests that reduced per-
fusion pressure, faulty vascular autoregulation, and loss of neurovascular coupling play
important roles in the relationship between vascular abnormalities and glaucomatous
neurodegeneration [30,31]. In terms of hemodynamics, an increased incidence of glaucoma
has been observed in patients with systemic cardiovascular diseases, such as DM [5,6]
and high BP [8,9]. This observation underscores the potential impact of hemodynamic
factors on the onset and advancement of glaucoma. Abnormal vascular function can also
influence the secretion and drainage of aqueous humor, consequently increasing IOP and
contributing to the pathogenesis and progression of glaucoma [14]. In this section, we
provide a detailed discussion of these factors, elucidating their significance in the context
of glaucoma. Additionally, we offer a comprehensive summary of the biomarkers that have
been associated with glaucoma.

3.1. Ocular Perfusion Pressure and Its Role in Glaucomatous Neurodegeneration

The ocular perfusion pressure (OPP) refers to the pressure necessary to propel blood
through the intraocular vasculature and represents the blood flow and oxygen supplying
ONH [32]. Thus, it has long been proposed that a decrease in OPP may increase the
vulnerability of the optic disc, leading to an increased risk of glaucoma development or
progression [33–36]. In the Barbados Eye Study, individuals with low mean OPP exhibited a
risk ratio of 2.6 for incident open-angle glaucoma (OAG) over a 9-year follow-up period [37].
The Singapore Malay Eye Study and the Los Angeles Latino Eye Study revealed a direct
relationship between decreased OPP and increased prevalence of OAG [36,38]. The actual
OPP should be determined by the difference between arterial pressure at the entrance to
the eye and venous pressure at the exit of the eye. Since currently available methods cannot
directly measure such pressures, OPP has been estimated by the difference between arterial
pressure measured in the arm and IOP [33]. As a crucial modifiable part of OPP, systemic
hemodynamics are supposed to play a role in the pathology and treatment of glaucoma,
and this is further discussed in Section 3.4.

3.2. Vascular Autoregulation and Its Role in Glaucomatous Neurodegeneration

Vascular autoregulation, commonly known as vasoreactivity, represents the intrinsic
capacity of the vascular system to adapt to varying physiological conditions and meet
diverse metabolic demands by maintaining stable and sufficient blood flow [30,39]. A
recent study suggested that the lower autoregulation limit is quite close to physiological
OPP values [40]. This means that healthy optic nerves are prone to hypoperfusion with
small fluctuations in BP or IOP. In pathological conditions [41], such as DM [42] and hyper-
cholesterolemia [43], autoregulation in the ONH can be disrupted. In a study centered on
autoregulation of the retrobulbar hemodynamics [44], it was observed that the unaltered
flow velocities in the short posterior ciliary artery (SPCA) of healthy individuals, as a
response to postural changes, suggest a strict autoregulatory control. However, in contrast,



Int. J. Mol. Sci. 2023, 24, 13211 4 of 15

patients with normal-tension glaucoma (NTG) and primary open-angle glaucoma (POAG)
demonstrated an insufficient compensatory response to postural changes. The authors
of the study suggest that compromised autoregulatory control may represent another
contributing factor in the pathogenesis of glaucomatous neurodegeneration. In fact, the dis-
ruption of vascular autoregulation in ONH has been reported to play a role in the etiology
and progression of glaucoma for decades [30,45–47].

3.3. Neurovascular Coupling and Its Role in Glaucomatous Neurodegeneration

The central nervous system exhibits highly coordinated coupling between neuronal
activity and blood flow. When there is a surge in neuronal activity, it triggers an increase
in blood flow to the corresponding area, which is referred to as neurovascular coupling
(NVC) [48]. NVC response has been demonstrated in the ONH blood flow and neuronal
activity of RGCs with experiments investigating hemodynamic responses to flicker-light
stimulation [49,50]. The NVC response in individuals with glaucoma is impaired [51], as the
vasodilation response of the retina induced by flickering light [52] and the vasoconstrictive
response to hyperoxia are attenuated [53]. Ischemia/hypoxia/perfusion instability may
influence the astrocytes in the ONH and/or mitochondria of RGC axons, resulting in
neurotoxic effects on RGCs [54–56].

3.4. Systematic Hemodynamics and Its Role in Glaucomatous Neurodegeneration

The role of systemic hemodynamics in glaucoma pathogenesis has been widely investi-
gated. A “U-shaped” effect of BP on retinal function and structure has been revealed [8,57].
On the one hand, clinical studies have demonstrated that individuals with hypertension
(HTN) [8,9] have a higher risk of developing glaucoma, with neural damage being more
severe in glaucoma patients with HTN than those with normal BP [58]. Meanwhile, the
treatment of HTN with beta-blockers can decrease the risk of glaucoma [59]. On the other
hand, systemic hypotension and nocturnal dipping have also been associated with an
increased risk of glaucoma [60]. The association between BP and neural deficits was shown
to be mediated by decreased blood flow, increased vascular resistance, or lack of autoregu-
latory reserve [10,57,61]. Therefore, BP management in patients with concurrent systemic
HTN and glaucoma is important. It is imperative to avoid excessive nocturnal BP dipping
and to monitor potential retinal neuronal damage due to nocturnal hypotension induced
by these treatments [11,60]. The recent TIME trial showed that the time of administra-
tion (morning or evening) for antihypertensive medication does not affect cardiovascular
outcomes [62]. This suggests more flexibility in tailoring treatments for patients with
concomitant glaucoma and HTN.

Apart from BP, it also has been reported that individuals with DM have a higher
incidence of developing glaucoma [63]. Additionally, animal models have demonstrated
that DM can trigger the degradation of RGCs [64,65]. One proposed mechanism is that
DM [66,67] leads to a reduction in retinal blood flow, subsequently inducing retinal is-
chemia and hypoxia, and therefore RGC degeneration. In addition to exerting an influence
upon systemic hemodynamics, DM can precipitate the onset of glaucoma through the
elevation of IOP, a topic that is further discussed in Section 3.5. We summarize the system-
atic hemodynamic diseases contributing to reduced retinal blood flow and ganglion cell
degeneration in Figure 2.

3.5. The Role of Vascular Abnormalities in Regulating IOP

IOP is the dynamic equilibrium between the production and drainage of AH [14,68].
The ciliary body in the posterior chamber secretes AH [69], which is primarily drained
through the trabecular meshwork (TM) and collector canals before exiting into the episcleral
veins and cavernous sinus [69]. Elevated IOP represents a significant etiological factor
contributing to the onset and progression of glaucoma, while vascular abnormalities also
precipitate elevated IOP, thereby fostering the pathogenesis of glaucoma [4,70].
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Figure 2. The proposed mechanism of systematic hemodynamic diseases in reducing retinal blood
flow (DM: diabetes mellitus; HTN: systematic hypertension; ET-1: endothelin-1; OPP: ocular perfu-
sion pressure; RGCs: retinal ganglion cells).

It has been demonstrated that different vascular diseases are related to increased IOP.
For instance, the pericyte loss of retinal blood vessels is a recognized marker of diabetic
retinopathy (DR), which provokes capillary occlusion and overexpressed VEGF [70], po-
tentially leading to neovascular glaucoma (NVG) [4,71,72]. In high-glucose conditions,
the synthesis of extracellular matrix components including fibronectin is significantly in-
creased, resulting in increased AH outflow resistance in TM, thus elevating IOP [73]. In
addition, DM is considered to increase optic nerve head susceptibility to additional stress
such as elevated IOP [7,74,75]. Arterial hypertension is another vascular disease that can
increase IOP by elevating BP in the ciliary capillaries, leading to increased secretion of
AH [76,77]. High BP can also raise episcleral venous pressure (EVP), which can increase
resistance to AH drainage and further contribute to increased IOP [78,79]. Another vas-
cular abnormality that can lead to increased IOP is hyperlipidemia. Studies have shown
that hyperlipidemic patients are at an increased risk of glaucoma, potentially due to the
increased viscosity of blood lipid levels, which in turn increases EVP [80,81]. Evidence sup-
porting this hypothesis includes a lower incidence of glaucoma among patients receiving
anti-hyperlipidemia therapy [82,83], as well as an increase in AH outflow facility observed
in cultured porcine eyes treated with statins [84].

Sturge–Weber syndrome (SWS) is a rare, non-inherited neurovascular disorder char-
acterized by abnormal vasculature in the brain, skin, and eye [85]. Glaucoma in SWS is
another indication of elevated IOP caused by vascular abnormalities [86]. In glaucomatous
eyes due to SWS, higher EVP was observed and thought to be the underlying pathophysio-
logical mechanism of glaucoma [87,88]. Gonioscopy examination revealed reflux of blood
in the Schlemm’s canal and episcleral hemangiomas, suggesting that Schlemm’s canal may
be a component of hemangioma. Arteriovenous shunts in episcleral hemangioma may be
the cause of elevated EVP, which consequently elevates IOP [88].

Carotid–cavernous fistulas (CCFs) are acquired vascular abnormalities with flow be-
tween the cavernous sinus and branches of either the external or internal carotid artery [89].
Elevated IOP and secondary glaucoma are common in CCFs [90]. Increased IOP in CCFs
can be attributed to abnormal vascular shunts allowing carotid blood flow into cavernous
fistulas, causing elevated pressure in the cavernous sinus and hindering the venous blood
outflow from retinal and choroidal circulation, leading to anterior chamber (AC) shallowing
and increased IOP [90–92]. Additionally, CCFs can result in neovascular glaucoma due to
retinal hypoperfusion and ischemia [90,93,94]. While some cases of elevated EVP are due
to identifiable etiologies, others are characterized as idiopathic elevated episcleral venous
pressure (IEEVP) presenting with engorged episcleral veins, raised IOP, and/or glaucoma-
tous visual field changes [94–97]. The elevated IOP due to vascular abnormities can cause
compression of RGCs and their axons, as well as reduced ocular blood supply, leading to
the development of glaucoma [15]. We summarize the different vascular abnormalities
resulting in increased IOP in Figure 3.
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Figure 3. The possible roles of different vascular abnormalities in increasing IOP (DM: diabetes
mellitus; CCFs: carotid-cavernous fistulas; SWS: Sturge–Weber syndrome; IEEVP: idiopathic elevated
episcleral venous pressure; BP: blood pressure; TM: trabecular meshwork; AH: aqueous humor;
EVP: episcleral venous pressure; IOP: intraocular pressure).

3.6. Biomarkers Associated with Ocular Blood Flow in Glaucoma

ET-1, a key regulator of vascular autoregulation [98,99], has been found to be over-
expressed in the retina of diabetic individuals [98,100], and increased expression of ET-1
has also been observed in the plasma of patients with high BP [101,102]. Overexpression
of ET-1 may therefore play a role in the impaired autoregulation of retinal vessels. Fur-
thermore, increased ET-1 expression is a biomarker that has been implicated in retinal
vascular dysfunction, which is another potential mechanism contributing to reduced retinal
blood flow [103,104]. This hypothesis is supported by the finding that an ET-1 blocker can
increase retinal blood flow [105]. Clinical studies have reported that glaucoma patients
have higher levels of plasma ET-1 compared to healthy controls [106], and those with
deteriorating visual fields have higher plasma ET-1 levels than those with normal visual
fields [107]. Animal experiments have also shown that chronic administration of low doses
of ET-1 in primates and rabbits can cause glaucomatous changes [108,109]. Thus, ET-1
may serve as a useful biomarker for predicting glaucoma progression or as a target for
pharmacological intervention.

An imbalance between the vasoconstrictor ET-1 and the vasodilator nitric oxide has
been observed in glaucoma, leading to endothelial dysfunction and decreased ocular blood
flow [30]. Nitric oxide is a molecule that dilates blood vessels and is thought to be involved
in the regulation of ocular blood flow in glaucoma [110]. Several studies have shown that
the availability of nitric oxide is reduced in glaucoma [110,111], leading to a shift in the
balance between vasoconstriction and vasodilation and resulting in decreased blood flow in
the optic nerve head [111]. Collectively, ET-1 and nitric oxide could be reliable biomarkers
in predicting glaucoma progression and/or targeting pharmacological intervention from a
vascular perspective.

3.7. Biomarkers Associated with Aqueous Humor Outflow or Trabecular Meshwork Function

VEGF is a primary factor contributing to vascular permeability and plays a pivotal role
in the process of neovascularization [112]. In the context of NVG, an excessive quantity of
VEGF is observed entering the AC through the posterior pole, leading to the development
of neovascularization and fibrovascular membranes over the TM. This process results in
the obstruction of the AH outflow through the TM, leading to elevated IOP, which can
potentially lead to glaucomatous optic neuropathy [112].

Nitric oxide is generated by neuronal nitric oxide synthase and endothelial nitric oxide
synthase in a Ca2+/calmodulin-dependent manner, which is essential for maintaining IOP
homeostasis [113]. Neuronal nitric oxide synthase is predominantly expressed in ciliary
processes and nerve endings, with high expression in the anterior segment of the eye, such
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as ciliary muscle, trabecular meshwork, Schlemm’s canal, and collecting channels [113,114].
These structures are crucial in regulating AH dynamics and IOP homeostasis in both physio-
logical and pathological conditions [113]. Ocular hypertensive patients have reduced nitric
oxide formation compared to healthy individuals, and exogenous nitric oxide administra-
tion has been shown to lower IOP in these patients [114]. Polymorphisms in endothelial
nitric oxide synthase are associated with a higher risk of glaucoma [115]. Studies with en-
dothelial nitric-oxide-synthase-deficient mice [116] or animals with impaired ganglion cell
activity [117,118] show that these animals have higher IOP than their wild-type littermates,
further demonstrating the importance of nitric oxide signaling in regulating IOP.

MMPs are enzymes that play a role in the breakdown of extracellular matrix proteins,
and are thought to contribute to the IOP change in glaucoma [119]. The TM generates
the main AH outflow resistance and its extracellular matrix is constantly remodeled by
MMPs [120]. The activity of MMPs has been found to be positively correlated with the AH
outflow rate. Specifically, increasing MMP activity has been shown to elevate the outflow
rate, while inhibiting MMP activity leads to a decrease in the outflow rate [121]. A recent
study conducted using a porcine model has reported similar results, demonstrating that
reduced activity of MMP-2 and -9 is associated with elevated IOP [122].

Together, the biomolecules VEGF, nitric oxide, and MMPs hold promise as po-
tential biomarkers for predicting the progression of glaucoma and as targets for
pharmacologic intervention.

4. Glaucoma Can Also Be the Instigator of Retinal Vascular Abnormalities

Retinal vascular dysfunction has been observed as a secondary manifestation both
in individuals diagnosed with glaucoma and animal models employed to study the
disease, suggesting that glaucoma may also serve as the instigator of retinal vascular
abnormalities [16]. These secondary manifestations encompass various alterations, such as
a notable reduction in retinal vascular diameter [17], decreased retinal vascular density [18],
disturbances in retinal vascular molecules [19], impaired autoregulation of blood flow,
dysfunction of retinal arterioles [16], and instances of retinal vein occlusion [17,20]. In this
section, we aim to provide a comprehensive and in-depth discussion of the aforementioned
alterations observed in both glaucoma patients and animal models used for studying
the disease.

4.1. Reduced Retinal Vascular Diameter in Glaucoma

A study conducted on individuals with early normal-tension glaucoma demonstrated
that there were no significant differences in retinal arterial diameters compared to normal
controls. This finding suggests that the narrowing of retinal arterioles observed in glaucoma
patients is a consequence of the disease rather than being its underlying cause [123]. Further
research conducted on adult Sprague Dawley rats involved the experimental elevation of
IOP by cauterizing three episcleral veins. The findings from this study demonstrated a
significant reduction in both vessel caliber and area within the glaucomatous optic nerves
of the experimental rats [17]. In another glaucoma model, utilizing elevated IOP in Brown
Norway rats through a vascular loop, an acute elevation of IOP caused a decrease in total
retinal blood flow and average retinal blood vessel size [124]. One proposed mechanism
underlying glaucomatous conditions suggests that the impaired RGCs necessitate a re-
duced blood supply, subsequently triggering retinal arteriolar constriction through the
process of autoregulation [120,125–128]. This mechanism appears plausible, since reti-
nal vascular constriction is observed not only in glaucoma but also in other optic nerve
damage diseases [127,129–132].

4.2. Reduced Retinal Vascular Density in Glaucoma

In a case-control study, it was discovered that individuals afflicted with unilateral
acute primary angle closure glaucoma (PACG) demonstrated a significant reduction in
peripapillary retinal vessel density within affected eyes, as compared to contralateral
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unaffected eyes [18]. The notable decrease in vessel density was found to be significantly
associated with visual field loss, thinning of the retinal nerve fiber layer, and ganglion cell
complex in eyes affected by PACG. This association suggests that the loss of retinal vessel
density is closely related to the presence and progression of glaucoma [18]. A series of case
reports revealed that the reduction in IOP can lead to a re-increase in peripapillary capillary
density in the retinal nerve fiber layer in ocular hypertensive and glaucomatous eyes [18].
Likewise, a prospective study demonstrated that trabeculectomy led to an improvement in
peripapillary capillaries’ microvasculature observed through optical coherence tomography
angiography in POAG patients [133]. However, this improvement proved incomplete as
other studies showed that peripapillary retinal vessel density in resolved acute PACG eyes
was still lower than the unaffected fellow eyes [18,134]. In a study conducted on C57BL/6J
mice, transient elevated IOP was induced by injecting sodium hyaluronate into the AC.
This manipulation resulted in a significant reduction in the number of capillary branches
observed in both the superficial and intermediate vascular plexus of the retina [135].
The reduction in retinal capillaries observed in glaucomatous rats follows a similar pattern,
with a more pronounced impact on capillary density in the inner layers of the retina
in response to elevated IOP [136]. This phenomenon may provide an explanation for
the observed decline in RGCs and thinning of the retinal nerve fiber layer during the
progression of glaucoma.

4.3. Altered Retinal Vascular Molecules in the Retinas of Murine Models of Glaucoma

In experiments conducted on cultivated mouse retinas subjected to elevated intracham-
ber pressure, it was observed that the expression of tight adherens junction proteins, such as
zonula occludens 1 (ZO-1), occludin, and the adherens junction protein VE-cadherin in reti-
nal vessels, underwent alterations [19]. These findings strongly indicate that the integrity
of the blood–retina barrier was compromised under conditions of elevated pressure [19].
In vivo and in vitro studies have demonstrated the expression of ß-III-tubulin, a neuron-
specific biomarker, in both pericytes and endothelial cells in response to elevated IOP and
intrachamber pressure, respectively [137]. This regulation of neuron-specific ß-III-tubulin
is believed to be associated with retinal vascular remodeling under elevated IOP. Notably,
the expression of ß-III-tubulin has also been observed during the remodeling of mesenteric
vessels in rats, further supporting its involvement in vascular remodeling processes [138].
Furthermore, ß-III-tubulin is involved in oxidative stress [139], which can induce vascular
endothelial dysfunction and impair the autoregulation of retinal arterioles [16].

4.4. Impaired Autoregulation and Arteriolar Dysfunction in the Retina of a Murine Model
of Glaucoma

In a mouse model of glaucoma induced by unilateral cauterization of three episcleral
veins [16,140], elevated IOP was observed to lead to impaired autoregulation and vascular
dysfunction of retinal arterioles. This means that the ability of the retinal arterioles to regu-
late blood flow and maintain proper vascular function was compromised. [16]. The exact
underlying mechanism for this phenomenon is believed to involve heightened oxidative
stress and inflammation within the retina [16].

4.5. Glaucoma Is a Risk Factor for Retinal Vascular Occlusions

Multiple studies have reported a notable association between glaucoma, specifically
open-angle glaucoma, and an increased incidence of retinal vascular occlusions [141,142].
In a comprehensive Korean nationwide population-based retrospective study, it was
observed that individuals diagnosed with open-angle glaucoma exhibited a signifi-
cantly elevated incidence of retinal vascular occlusions when compared to the general
population [20]. A retrospective case-control study conducted by Schwaber et al. (2018)
[143] found that glaucoma was a risk factor for incident retinal vascular occlusions with an
odds ratio of 6.19 (p < 0.001). However, some studies did not find this association [144,145].
A meta-analysis by Yin et al. (2019) [146] reported that glaucoma is a risk factor for retinal
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vascular occlusions with an odds ratio of 4.01. Subgroup analysis within the study indicated
that glaucoma was significantly associated with various types of retinal vascular occlusions,
including central retinal vein occlusion, branch retinal vein occlusion, and hemiretinal
vein occlusion. Furthermore, the analysis of glaucoma subgroups revealed an association
between open-angle glaucoma and central retinal vein occlusion, as well as between PACG
and central retinal vein occlusion. However, there was no significant association observed
between PACG and branch retinal vein occlusion. We have summarized the different
vascular abnormalities resulting from glaucoma in Figure 4.

Figure 4. Different vascular abnormalities resulting from glaucoma.

5. Conclusions

The introduction of the vascular theory, as well as the hemodynamics surrounding
it, has spurred a growing body of scientific investigations aimed at unraveling the intri-
cate relationship between vascular abnormalities and the underlying pathophysiology of
glaucoma. It has become increasingly apparent that vascular abnormalities are closely
associated with the observed neurodegeneration in glaucoma. However, it is important
to recognize that glaucoma itself can initiate retinal vascular abnormalities. Nevertheless,
given the multifactorial nature of glaucoma, it is acknowledged that vascular abnormal-
ities represent just one of many contributing factors to the neurodegenerative processes
observed in this disease. In addition to determining the causality between vascular ab-
normalities and glaucoma, longitudinal studies are necessary to disentangle the temporal
association between loss of neural structure and loss of vascularization.
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CCFs Carotid–cavernous fistulas
CRA Central retinal artery
DM Diabetes mellitus
DR Diabetic retinopathy
ET-1 Endothelin-1
EVP Episcleral venous pressure
HTN Hypertension
IEEVP Idiopathic elevated episcleral venous pressure
IOP Intraocular pressure
MMPs Matrix metalloproteinases
NVC Neurovascular coupling
NVG Neovascular glaucoma
OCTA Optical coherence tomography angiography
ONH Optic nerve head
OPP Ocular perfusion pressure
PACG Primary angle closure glaucoma
POAG Primary open-angle glaucoma
RGCs Retinal ganglion cells
SPCA Short posterior ciliary artery
SWS Sturge–Weber syndrome
TM Trabecular meshwork
VEGF Vascular endothelial growth factor
ZO-1 Zonula occludens 1
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