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Abstract: Glioblastoma (GBM) is the most common primary brain malignancy in adults. Despite
multimodal treatment that involves maximal safe resection, concurrent chemoradiotherapy, and
tumour treatment for supratentorial lesions, the prognosis remains poor. The current median overall
survival is only <2 years, and the 5-year survival is only 7.2%. Thioredoxin domain-containing
protein 11 (TXNDC11), also known as EF-hand binding protein 1, was reported as an endoplasmic
reticulum stress-induced protein. The present study aimed to elucidate the prognostic role of
TXNDC11 in GBM. We evaluated the clinical parameters and TXNDC11 scores in gliomas from
hospitals. Additionally, proliferation, invasion, migration assays, apoptosis, and temozolomide
(TMZ)-sensitivity assays of GBM cells were conducted to evaluate the effects of short interfering
RNA (siRNA) on these processes. In addition, these cells were subjected to Western blotting to detect
the expression levels of N-cadherin, E-cadherin, and Cyclin D1. High levels of TXNDC11 protein
expression were significantly associated with World Health Organization (WHO) high-grade tumour
classification and poor prognosis. Multivariate analysis revealed that in addition to the WHO grade,
TXNDC11 protein expression was also an independent prognostic factor of glioma. In addition,
TXNDC11 silencing inhibited proliferation, migration, and invasion and led to apoptosis of GBM cells.
However, over-expression of TXNDC11 enhanced proliferation, migration, and invasion. Further,
TXNDC11 knockdown downregulated N-cadherin and cyclin D1 expression and upregulated E-
cadherin expression in GBM cells. Knock-in TXNDC11 return these. Finally, in vivo, orthotopic
xenotransplantation of TXNDC11-silenced GBM cells into nude rats promoted slower tumour growth
and prolonged survival time. TXNDC11 is a potential oncogene in GBMs and may be an emerging
therapeutic target.

Keywords: GBM; TXNDC11; prognosis; TMZ-sensitivity

1. Introduction

Glioblastoma (GBM) is a devastating and intractable type of brain cancer. It is the
most common malignant central nervous system (CNS) tumour, with a prevalence of
3.23 per 100,000 people and a 5-year survival rate of only 7.2% in the United States [1]. Even
with current multimodal treatment that involves maximal safe surgery, radiotherapy, and
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chemotherapy, the median survival is still less than 2 years [2,3]. Prior histopathological
classification alone is no longer valid because some specimens do not show typical features,
and various features can coexist within one tumour. Further, the method of categorisation
is not precisely correlated with tumour behaviour. In the 2016 World Health Organization
(WHO) classification, molecular profiles are integrated into brain tumour diagnoses owing
to their prognostic significance [4]. Approximately 91% of all GBMs classified as isocitrate
dehydrogenase (IDH) wild-type GBMs have a median survival of 1.2 years. In contrast, the
median survival of 9% of IDH mutant GBMs is 3.6 years [5]. Given the different biological
characteristics of IDH mutations, it has been suggested that GBM should be separated from
both wild-type IDH and H3.3 G34 wild-type diffuse astrocytic glioma [6,7]. Moreover, rapid
epigenetic and genetic discoveries have advanced our understanding of the molecular
pathogenesis of GBMs. The Cancer Genome Atlas (TCGA) has summarised genomic
expression data and classifies GBMs into three distinct transcriptional subtypes: classical,
mesenchymal, and proneural. However, as these subtypes can vary within the same
tumour, change over time, and differ in their microenvironments, their clinical significance
remains unclear [8,9]. Both high inter-tumour and intra-tumour heterogeneity contribute
to the therapeutic failure of GBMs. As such, extensive efforts have been made to identify
predictive biomarkers that could also be new feasible therapeutic targets to improve the
outcomes of GBMs [10].

Thioredoxin domain-containing protein 11 (TXNDC11), also known as EF-hand-
binding protein 1 (EFP1), was first identified in 2005 as an interaction partner of the
hydrogen peroxide-generating enzyme dual oxidase 1 in the thyroid [11]. This study aimed
to establish that TXNDC11 is an oncogene in GBMs.

2. Results
2.1. High TXNDC11 Expression Is Associated with Worse Prognosis

Among the 86 patients who underwent glioma underwent surgery at Kaohsiung
Medical University Chung-Ho Memorial Hospital, 64 and 22 were aged ≤60 years and
>60 years, respectively. Twenty patients had low-grade gliomas (WHO grade II), while
66 had high-grade gliomas (WHO grades III-IV). The distribution of patients with high
and low TXNDC11 expression according to the IHC staining results is shown in Figure 1A.
There were no significant differences in age (p = 1), sex (p = 1), tumour size (p = 0.789), or
Karnofsky Performance Score (KPS) (p = 0.771) between the patients with high and low
TXNDC11 expression. However, patients with high TXNDC11 expression had significantly
shorter survival (p < 0.001) (Figure 1B). In addition, these patients showed a predominance
of high-grade gliomas (p < 0.001) (Table 1). Multivariate analysis showed that both the
WHO grade and TXNDC11 expression were independent prognostic factors (Table 2).
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Table 1. Expression of TXNDC11 correlated with clinicopathological parameters in gliomas.

TXNDC11 Expression p Value

Low High

Age 1
<60 64 (74.4%) 14 (16.3%) 50 (58.1%)
≥60 22 (25.6%) 4 (4.7%) 18 (20.9%)

Gender 1
Male 48 (55.8%) 10 (11.6%) 38 (44.2%)

Female 38 (44.2%) 8 (9.3%) 30 (34.9%)
WHO grade <0.001

II 20 (23.3%) 12 (14.0%) 8 (9.3%)
III/IV 66 (76.7%) 6 (7.0%) 60 (69.8%)

Tumour Size 0.789
<3 cm 54 (62.8%) 12 (14.0%) 42 (48.8%)
≥3 cm 32 (37.2%) 6 (7.0%) 26 (30.2%)

KPS 0.771
<70 61 (70.9%) 12 (14.0%) 49 (57.0%)
≥70 25 (29.1%) 6 (7.0%) 19 (22.1%)

Table 2. Univariate and multivariate Cox regression analyses of prognostic indicators in patients
with gliomas.

Univariate Multivariate

HR (95% CI) p HR (95% CI) p

Age 0.755 (0.419–1.360) 0.349
Gender 0.880 (0.534–1.451) 0.616

WHO grade 0.316 (0.160–0.624) 0.01 0.452 (0.220–0.930) 0.031
Tumour size 1.295 (0.757–2.217) 0.345

Radiotherapy 1.183 (0.714–1.959) 0.514
TMZ 0.987 (0.599–1.626) 0.958
KPS 1.387 (0.798–2.408) 0.236

TXNDC11 0.248 (0.117–0.524) <0.001 0.334 (0.153–0.729) 0.006

2.2. TXNDC11 Knockdown Inhibits GBM Proliferation and Increases Temozolomide
(TMZ) Sensitivity

Real-time PCR showed that the mRNA levels of TXNDC11 in GBM cells such as
GBM8401, U87, U87 IDH-1 mt, G5T, DBTRG-05MG, M059K, and A172 cells were generally
higher than those in normal glial cells (Figure 2). Due to the notably elevated expression
levels of TXNDC11 observed in GBM cells, particularly in GBM8401 and U87 cells, these
two cell lines were selected for further investigation in subsequent experiments. siRNA
knockdown of TXNDC11 resulted in a significantly decreased proliferation of GBM cells in
GBM8401 (Figure 3A) and U87 cells (Figure 3B). However, knock-in TXNDC11 plasmid
resulted in a significantly increased proliferation of GBM cells in GBM8401 (Figure 3C) and
U87 cells (Figure 3D). TMZ effectively inhibited the growth of GBM cells. Knockdown of
TXNDC11 expression resulted in decreased viability of GBM8401cells (Figure 4A) and U87
cells (Figure 4B). On the contrary, knock-in TXNDC11 plasmid could potentially enhance
resistance to TMZ in GBM8401cells (Figure 4C) and U87 cells (Figure 4D).
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Figure 3. Effect of TXNDC11 on viability of GBM cells. (A) After transfection with TXNDC11 siRNA,
cell viability is detected by MTT assay in GBM8401 cells at 24, 48, and 72 h. (B) After transfection
with TXNDC11 siRNA, cell viability is detected by MTT assay in U87-MG cells at 24, 48, and 72 h.
(C) After transfection with TXNDC11 plasmid, cell viability is detected by MTT assay in GBM8401
cells at 24, 48, and 72 h. (D) After transfection with TXNDC11 plasmid, cell viability is detected by
MTT assay in U87-MG cells at 24, 48, and 72 h. *** p < 0.001 compared between control group and
si-TXNDC11#1 group. ### p < 0.001 compared between control group and si-TXNDC11#2 group.
$ p < 0.05 and $$$ p < 0.001 compared between control group and Ov-TXNDC11 group.



Int. J. Mol. Sci. 2023, 24, 13367 5 of 14

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 14 
 

 

(C) After transfection with TXNDC11 plasmid, cell viability is detected by MTT assay in GBM8401 
cells at 24, 48, and 72 h. (D) After transfection with TXNDC11 plasmid, cell viability is detected by 
MTT assay in U87-MG cells at 24, 48, and 72 h. *** p < 0.001 compared between control group and 
si-TXNDC11#1 group. ### p < 0.001 compared between control group and si-TXNDC11#2 group. $ 
p < 0.05 and $$$ p < 0.001 compared between control group and Ov-TXNDC11 group. 

 
Figure 4. Effect of combination of siRNA knock-down or plasmid knock-in of TXNDC11 and TMZ 
treatment on viability of GBM cells. (A) After siRNA transfection, GBM8401 cells are seeded in 24 
wells and treated with different doses of TMZ. At 72 h, cell viability is determined using the MTT 
assay. (B) After siRNA transfection, U87-MG cells are seeded in 24 wells and treated with different 
doses of TMZ. At 72 h, cell viability is determined using the MTT assay. (C) After plasmid transfec-
tion, GBM8401 cells are seeded in 24 wells and treated with different doses of TMZ. At 72 h, cell 
viability is determined using the MTT assay. (D) After plasmid transfection, U87-MG cells are 
seeded in 24 wells and treated with different doses of TMZ. At 72 h, cell viability is determined using 
the MTT assay. * p < 0.05 compared between control group and si-TXNDC11#1 group. # p < 0.001 
compared between control group and si-TXNDC11#2 group. $$ p < 0.01 and $$$ p < 0.001 compared 
between control group and Ov-TXNDC11 group. 

2.3. TXNDC11 Facilitates Migration and Invasion and Downregulates Apoptosis of GBM Cells 
In light of exploring the diverse impacts of TXNDC11, it is important to note that our 

study aimed to comprehensively understand its role in glioma cell behaviours. For this 
purpose, the wound healing assay was used to detect migration ability. In GBM8401 cells, 
both si-TXNDC11 #1 and #2 markedly inhibited the migratory capability at 16, 20, and 24 
h (Figure 5A). In U87 cells, both si-TXNDC11 #1 and #2 markedly inhibited the migratory 
capability at 12 and 24 h (Figure 5B). However, over-expression of TXNDC11 through 
transfection with TXNDC11 plasmid significantly enhanced the migratory capability 
GBM8401 (Figure 5C) and U87 (Figure 5D). These results of the wound healing assays 
indicated that the protein expression of TXNDC11 affects the migration capability in GBM 
cells. On the other hand, the Transwell assay was used to detect invasion ability. Transwell 
assays revealed a significant attenuation in the invasive capacity of GBM8401 (Figure 6A) 
and U87 (Figure 6B) cells following the knockdown of TXNDC11. Knock-in TXNDC11 
plasmid resulted in a significantly increased invasion ability in GBM8401 (Figure 6C) and 

Figure 4. Effect of combination of siRNA knock-down or plasmid knock-in of TXNDC11 and TMZ
treatment on viability of GBM cells. (A) After siRNA transfection, GBM8401 cells are seeded in
24 wells and treated with different doses of TMZ. At 72 h, cell viability is determined using the
MTT assay. (B) After siRNA transfection, U87-MG cells are seeded in 24 wells and treated with
different doses of TMZ. At 72 h, cell viability is determined using the MTT assay. (C) After plasmid
transfection, GBM8401 cells are seeded in 24 wells and treated with different doses of TMZ. At 72 h,
cell viability is determined using the MTT assay. (D) After plasmid transfection, U87-MG cells are
seeded in 24 wells and treated with different doses of TMZ. At 72 h, cell viability is determined using
the MTT assay. * p < 0.05 compared between control group and si-TXNDC11#1 group. # p < 0.001
compared between control group and si-TXNDC11#2 group. $$ p < 0.01 and $$$ p < 0.001 compared
between control group and Ov-TXNDC11 group.

2.3. TXNDC11 Facilitates Migration and Invasion and Downregulates Apoptosis of GBM Cells

In light of exploring the diverse impacts of TXNDC11, it is important to note that
our study aimed to comprehensively understand its role in glioma cell behaviours. For
this purpose, the wound healing assay was used to detect migration ability. In GBM8401
cells, both si-TXNDC11 #1 and #2 markedly inhibited the migratory capability at 16, 20,
and 24 h (Figure 5A). In U87 cells, both si-TXNDC11 #1 and #2 markedly inhibited the
migratory capability at 12 and 24 h (Figure 5B). However, over-expression of TXNDC11
through transfection with TXNDC11 plasmid significantly enhanced the migratory capabil-
ity GBM8401 (Figure 5C) and U87 (Figure 5D). These results of the wound healing assays
indicated that the protein expression of TXNDC11 affects the migration capability in GBM
cells. On the other hand, the Transwell assay was used to detect invasion ability. Transwell
assays revealed a significant attenuation in the invasive capacity of GBM8401 (Figure 6A)
and U87 (Figure 6B) cells following the knockdown of TXNDC11. Knock-in TXNDC11
plasmid resulted in a significantly increased invasion ability in GBM8401 (Figure 6C) and
U87 cells (Figure 6D). In addition, Annexin V staining was used to detect the percentage of
apoptosis following flow cytometry. The results of Annexin V staining showed that the
percentage of apoptosis was individually 0.32 ± 0.09, 14.39 ± 1.27, and 14.31 ± 0.92 in
negative control, si-TXNDC11#1, and si-TXNDC11#2 group in GBM8401 cells (Figure 7A).
In U87 cells, the percentage of apoptosis was individually 0.19 ± 0.02, 19.06 ± 2.30, and
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22.88 ± 1.47 in negative control, si-TXNDC11#1, and si-TXNDC11#2 group (Figure 7B). The
result supported the finding that depletion of TXNDC11 resulted in increased apoptosis of
GBM cells.
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Figure 5. Wound healing analysis for the effect of siRNA knock-down or plasmid knock-in of
TXNDC11 on migration ability of GBM cells at 0, 8, 12, and 24 h. (A,B) Wound healing analysis
of GBM8401 and U87MG cells transfected with TXNDC11 siRNA. (C,D) Wound healing analysis
of GBM8401 and U87MG cells transfected with TXNDC11 plasmid. ** p < 0.01 and *** p < 0.001
compared between control group and si-TXNDC11#1 group. ## p < 0.01 and ### p < 0.001 compared
between control group and si-TXNDC11#2 group. $$ p < 0.01 and $$$ p < 0.001 compared between
control group and Ov-TXNDC11 group.
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Figure 6. Effect of siRNA knockdown of TXNDC11 on invasion ability of GBM cells at 24 h.
(A,B) Transwell invasion analysis of GBM8401 and U87MG cells transfected with TXNDC11 siRNA.
(C,D) Transwell invasion analysis of GBM8401 and U87MG cells transfected with TXNDC11 plasmid.
(100×) *** p < 0.001 compared between control group and si-TXNDC11#1 group. ### p < 0.001
compared between control group and si-TXNDC11#2 group. $ p < 0.05 and $$ p < 0.01 compared
between control group and Ov-TXNDC11 group.
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2.4. TXNDC11 Promotes Epithelial-Mesenchymal Transition and Affects Cell Cycle of GBM Cells

Western blotting of epithelial–mesenchymal transition (EMT)-related markers under
different TXNDC11 expression levels showed that TXNDC11 knockdown in GBM8401 and
U87 cells upregulated the expression of E-cadherin but downregulated the expression of
N-cadherin (Figure 8). Therefore, we speculated that TXNDC11 may induce EMT in GBM
cells. In addition, cyclin D1 expression was decreased under siRNA inhibition of TXNDC11
(Figure 8). Notably, the overexpression of TXNDC11 through the knock-in plasmid led to a
distinct shift in EMT-related markers in GBM8401 and U87 cells. Specifically, the levels of
E-cadherin, an epithelial marker, were downregulated, while N-cadherin, a mesenchymal
marker, experienced upregulation (Figure 8). Furthermore, the impact of the knock-in
TXNDC11 plasmid extended beyond EMT-related markers. A noteworthy outcome was the
observed increase in cyclin D1 expression (Figure 8), signifying a potential acceleration of
cell cycle progression and proliferation. The introduction of a knock-in TXNDC11 plasmid
can distinctly reverse these phenomena, and this study sheds light on the intricate interplay
between TXNDC11 and critical cellular processes.
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Figure 8. Mechanism of TXNDC11 in GBM cells. Western blot analysis of the protein expression
of E-cadherin, N-cadherin, and cyclin D1 with (A) TXNDC11 siRNA or (B) TXNDC11 plasmid in
GBM8401 cells and U87MG cells.

2.5. TXNDC11 Knockdown Attenuated the Growth of GBM Cells In Vivo

The animal model used to examine the in vivo functions of TXNDC11 is shown in
Figure 9A. The fluorescence intensity of mice injected with knockdown TXNDC11 cells
was significantly lower than that of mice in the control group on days 14 (p < 0.01) and 21
(p < 0.001) (Figure 9B). The survival time of the TXNDC11 knockdown group was sig-
nificantly longer than that of the control group (25.50 + 0.812 days vs. 20.75 + 0.978
days, p = 0.006) (Figure 9C). This indicates that TXNDC11 plays an important role in the
regulation of tumour growth in vivo.
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*** p < 0.001 compared between control group.

3. Discussion

Glioblastoma accounts for 14.5% of all CNS tumours and 57.7% of all gliomas and is
the most common primary brain malignancy in adults. The incidence of GBM increases
with age, with the highest rate among those aged 75–84 years. Older age, female sex,
white race, and non-Hispanic ethnicity are associated with poor survival [1]. The initial
treatment is a maximally safe resection. Although more advanced surgery helps prolong
survival [12], it is challenging to take function-preserving and ill-defined tumour margins
into account. Even with multimodal treatment, the median overall survival of GBMs
ranges from 14.6 months to 16.7 months, and the progression-free survival ranges from
6.2 months to 7.5 months [13]. TMZ is one of the most important chemotherapeutic agents
used to treat high-grade gliomas. However, its therapeutic effect is affected by DNA
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repair systems, especially the expression of O6-methylguanine-DNA methyltransferase.
Accordingly, almost half of the patients have a poor response to TMZ treatment, and some
ultimately develop drug resistance [14–16]. Almost all GBM patients experience recurrence.
Unfortunately, no effective second-line treatment to prolong overall survival has been
developed to date [17,18]. There has been extensive effort to develop targeted therapies and
immunotherapies, but most studies are still in Phase I or II, and the small minority of phase
III trials have not made a breakthrough [19,20]. Therefore, it is essential to understand the
pathogenesis of GBMs and identify the potential oncogenes.

The TXNDC family, a regulator of the redox status at distinct cellular locations, in-
cludes 17 members [21]. Several studies have investigated their role in cancer progression.
For example, the expressions of TXNDC2, TXNDC3, and TXNDC6 have a significance in
both testicular and systemic diffuse large B-cell lymphoma [22]. TXNDC5 is involved in
protein folding and chaperone activity and is abnormally expressed in many cancers, such
as non-small cell lung cancer, prostate cancer, gastric adenocarcinoma, colon cancer, and
hepatocellular carcinoma [23]. Meanwhile, TXNDC9 promotes the progression of hepa-
tocellular carcinoma and prostate cancer [24,25] and regulates apoptosis and autophagy
in glioma and colorectal cancer [26,27]. TXNDC12 enhances EMT in liver cancer [28].
TXNDC17 is involved in chemotherapy resistance of ovarian cancer [29].

TXNDC11 can act as a disulfide reductase involved in endoplasmic reticulum-associated
degradation [30]. Moreover, TXNDC11 is upregulated during endoplasmic reticulum
stress and may trigger Par-4-mediated apoptosis [31]. The current study evaluated glioma
patients treated in our institution between 2010 and 2020 and found that high TXNDC11
expression was associated with advanced-grade glioma. This result supported the assertion
that TXNDC11 is potentially associated with malignancy. TXNDC11 is an intracellular
redox protein that is linked to cellular stress and protein folding processes. Overexpression
of TXNDC11 in certain contexts might lead to increased oxidative stress within cells,
potentially triggering malignant behaviours such as proliferation, invasion, and metastasis.
In fact, low TXNDC11 expression was associated with longer survival. Multivariate analysis
revealed that TXNDC11 expression was an independent prognostic factor for gliomas.
Consistent findings were observed in the study from Peng, P et al. [32]. In their study,
TXNDC11 expression was association with age, gender, WHO grade, histological type,
IDH1 mutation, 1p19q-codeletion-status, and overall survival time. Our in vitro study also
showed that siRNA knockdown of TXNDC11 resulted in a marked inhibition of GBM cell
growth and a more sensitive response to TMZ therapy. Furthermore, the invasion and
migration of GBM cells were reduced when TXNDC11 expression was suppressed. On the
contrary, TXNDC11 overexpression has been associated with potentially opposite effects,
contributing to increased oxidative stress within cells, which could potentially trigger
malignant behaviours such as proliferation, invasion, and metastasis.

EMT occurs during embryogenesis, tissue regeneration, and wound healing and is
involved in tumour metastatic expansion, cancer stem cell differentiation, and treatment
resistance [33,34]. E-cadherin often acts as a tumour suppressor. The loss of its expression
promotes EMT and facilitates invasion and metastasis [35]. In this study, TXNDC11 knock-
down led to increased E-cadherin expression and reduced N-cadherin expression. This
supports the conclusion that TXNDC11 induces EMT in GBM cells. Annexin V staining
and flow cytometry showed that apoptosis was increased when TXNDC11 expression was
downregulated. Additionally, TXNDC11 knockdown attenuated the expression of cyclin
D1, an essential regulator of the G1 to S phase transition in the cell cycle. In many cancers,
the overactivation of CCDN1 drives cell proliferation [36]. These data support the role of
TXNDC11 in cell cycle regulation in GBMs. Unfortunately, the sample size, consisting of
86 patients, could potentially introduce statistical biases and limitations to the generaliz-
ability of the findings. Additionally, one significant limitation pertains to the absence of
clinical data documenting whether surgeries were complete resections or not, along with
the lack of postoperative CT imaging confirmation of any residual tumour presence. This
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discrepancy between cellular results and clinical outcomes might result from these missing
details.

In summary, high TXNDC11 expression is associated with high-grade glioma and
poor prognosis. Further, TXNDC11 expression is an independent prognostic factor for
gliomas. TXNDC11 knockdown inhibits the proliferation, invasion, migration and EMT of
GBM cells and promotes apoptosis. Furthermore, a significant dimension emerges from
the study, revealing that overexpression of TXNDC11 can indeed reverse these observed
effects. These results suggest that TXNDC11 is a potential oncogene in GBMs and may be
an emerging therapeutic target.

4. Materials and Methods
4.1. Sample and Preparation

This study was approved by the Institutional Review Board of Kaohsiung Medical
University Hospital (KMUH-IRB-20210186) and was conducted according to the tenets of
the Declaration of Helsinki.

A total of 146 patients who underwent surgical treatment for GBM at the Kaohsiung
Medical University Chung-Ho Memorial Hospital between 2010 and 2020 were evaluated.
Among them, 60 patients with incomplete medical records or low-quality pathological
results were excluded. Finally, 86 patients were evaluated.

4.2. Tumour Immunohistochemistry

Tissues collected from each patient were fixed in formalin, embedded in paraffin, and
cut into 3-µm sections. To retrieve antigens for immunohistochemical (IHC) staining, the
samples were de-paraffinised, rehydrated, and autoclaved at 121 ◦C for 5 min in pH 6.0
citrate buffer. Subsequently, the sections were incubated with 3% hydrogen peroxide at
room temperature for 10 min to block endogenous peroxidase activity. After washing
with Tris buffer solution (TBS), the sections were incubated with the primary antibod-
ies at 4 ◦C. The specimens were then washed with TBS and incubated with secondary
antibodies for 30 min at room temperature. Finally, the specimens were incubated with
3,3-diaminobenzidine for 5 min, followed by Mayer’s haematoxylin counterstaining for
1 min. Immunohistochemically stained sections were evaluated based on the intensity of
staining and the proportion of positively stained tumour tissue. The staining intensity
was graded as 0 (zero, no staining), 1 (weak staining), 2 (moderate staining), or 3 (strong
staining). If the extent of the stained tumour was zero, the section was scored as 0, whereas
<10%, 10–50%, and >50% corresponded to 1, 2, and 3, respectively. The final index was
generated by multiplying these two independent parameters (ranging from 0 to 9), and
the cutoff value was 4. A final index of ≥4 indicated high expression, whereas an index of
<4 indicated low expression [37].

4.3. Cell Lines and Cell Culture

All the cells were incubated in 5% CO2 at 37 ◦C. SVGp12, U87MG, GBM8401, GBM8901,
DBTRG-05MG, G5T/VGH, and M059K were obtained from the Bioresource Collection and
Research Center (BCRC), whereas A172 was obtained from the American Type Culture Col-
lection. GBM8401, GBM8901, and DBTRG-05MG cells were cultured in 90% Roswell Park
Memorial Institute medium supplemented with 10% foetal bovine serum (FBS). SVGp12
and U87MG cell lines were cultured in minimum essential medium containing 10% FBS.
The G5T and A172 cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% FBS. M059K cells were grown in DMEM-F12 supplemented with
10% FBS. The SVGp12 cell line was isolated from normal glial cells and was used as a
normal control.

4.4. Real-Time PCR

Total RNA was extracted using the PureLinkTM RNA Mini Kit, and its concentration
was quantified using the Quant-iTTM RiboGreenTM RNA Assay Kit. Real-time polymerase
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chain reaction (PCR) was performed as denaturation at 95 ◦C for 3 min and then 50 cycles
of 95 ◦C for 5 s and 60 ◦C for 30 s. The PCR primer sequences were TXNDC11 forward
primer: 5′-CAAGC AACGT TGTTT AACTA-3′ and reverse primer: 5′-CGTAA CGAAT
AGTTA AACAAC-3′, and GAPDH forward primer: 5′-GGT CAC CAG GGC TGC TTT
TA-3′ and reverse primers: 5′-GGA TCT CGC TCC TGG AAG ATG-3′.

4.5. Cell Proliferation Assay

The cells were seeded into a 24-well plate at 30,000 cells per well and incubated in 5%
CO2 at 37 ◦C for 24 h. After 24, 48, and 72 h of co-culture with or without small interferon
RNA (siRNA), cell populations were counted using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay.

4.6. Migration Assay In Vitro

Cell migration was assessed using a wound-healing assay (ibidi; 80209). Each well
contained 70 µL cell culture medium (5 × 105 cells/mL) and was cultured at 37 ◦C with or
without siRNA nonsense siRNA. The healing conditions were observed under an optical
microscope at 0, 16, 20, and 24 h.

4.7. Cell Invasion Assay In Vitro

The cell invasion assay was performed using a Transwell (CORNING; COR3452)
invasion assay kit. There were 5 × 105 cells per insert. The lower chamber was filled with
2 mL of medium with or without siRNA or nonsense siRNA. Cells that remained on the
upper surface were removed after 24 h of incubation. Those invading the Transwell to the
bottom of the insert were fixed with methanol, stained with crystal violet, and counted in
six selected high-power fields under a microscope.

4.8. Transfection

For siRNA transfection, 1000 cells were seeded onto a 6-well plate and incubated
at 37 ◦C overnight. We then transfected 5 µm siRNA with DharmaFECTTM transfection
reagent following the manufacturer’s protocol. The sequence for TXNDC11 siRNA#1
was GCAUAGAAUGCAGCAAUUU[dT][dT], and the sequence for #2 was GCAUGU-
UGCAGGACCAUAA[dT][dT]. After transfection with siRNA, the cells were cultured for
3 days before use.

4.9. Western Blotting

After lysis with lysis buffer, 20 µg of protein per sample was loaded onto a lane of
a sodium dodecyl sulphate-polyacrylamide gel for electrophoresis. The proteins were
electrotransferred to polyvinylidene fluoride membranes. The transferred membrane was
treated with blocking buffer and incubated with primary antibodies (E-cadherin [20874-
1-AP; Proteintech, Chicago, IL, USA)], N-cadherin [22018-1-AP; Proteintech, Chicago, IL,
USA], Cyclin D1 [60186-1-lg; Proteintech, Chicago, IL, USA], β actin [MAB1501R; Millipore,
Burlington, VT, USA]) for 2 h at room temperature. Secondary antibodies (goat anti-
rabbit [AP132P; Millipore, Burlington, VT, USA] and goat anti-mouse [AP124P; Millipore,
Burlington, VT, USA]) were then added, and the cells were incubated for 90 min at room
temperature. An enhanced chemiluminescence solution (205–14,621; Revvity, Burlington,
VT, USA) was used to detect specific bands using a MINICHEMI (Thermo) system.

4.10. Apoptosis Analysis

By using a Muse® Cell Cycle Kit, GBM8401 and U87 cells were fixed with cold 70%
ethanol for 72 h at −20 ◦C. Then, the Muse® Cell Cycle reagent was added, and the results
were analysed using a Guava® Muse® Cell Analyser. For apoptosis analysis, 100 µL Muse ®

Annexin V and Dead Cell reagent was mixed with 100 µL (105 cells/mL) of cells at room
temperature, and the results were analysed 20 min later.
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4.11. Animal Model

All animal experiments were approved by the Committee of Institutional Animal
Research of Kaohsiung Medical University (IACUC 111011). All applicable international,
national, and/or institutional guidelines for the care and use of animals were followed.

GBM8401 cells including fluorescent (1 × 105 cells/10 µL) were implanted intracra-
nially in the striatum of immunodeficient mice from LASCO Laboratory Animal Center
(Taipei, Taiwan). All mice were housed under a constant temperature (24 ◦C) and regular
light/dark cycles (12 h/12 h), with free access to a standard diet. The control group
was injected with GBM8401 cells (n = 12), and the knockdown TXNDC11 group was in-
jected with knockdown TXNDC11 GBM8401 cells (n = 12). Mice were anaesthetised with
isoflurane, and fluorescence was detected using the Xenogen IVISR Spectrum Noninvasive
Quantitative Molecular Imaging System (J&H; IVIS Lumina LT 2D) at 7, 14, and 21 days
after injection with GBM cells.

4.12. Statistical Analysis

TXNDC11 expression in GBM cells was analysed by IHC staining and assessed using
the Chi-square test. Overall survival was evaluated using the Kaplan–Meier method. Uni-
variate and multivariate Cox regression models were used to understand the relationships
between the different variables. All statistical analyses were performed using SPSS version
24.0. p < 0.05 was considered statistically significant.
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