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Abstract: The centrosome of mammalian cells is in constant movement and its motion plays a part in
cell differentiation and cell division. The purpose of this study was to establish the involvement of
the TUBG meshwork in centrosomal motility. In live cells, we used a monomeric red-fluorescence-
protein-tagged centrin 2 gene and a green-fluorescence-protein-tagged TUBG1 gene for labeling the
centrosome and the TUBG1 meshwork, respectively. We found that centrosome movements occurred
in cellular sites rich in GTPase TUBG1 and single-guide RNA mediated a reduction in the expression
of TUBG1, altering the motility pattern of centrosomes. We propose that the TUBG1 meshwork
enables the centrosomes to move by providing them with an interacting platform that mediates
positional changes. These findings uncover a novel regulatory mechanism that controls the behavior
of centrosomes.
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1. Introduction

A centrosome is an independent membraneless organelle in animal cells [1]. It is
composed of two microtubule-based barrel-shaped centrioles, which are surrounded by a
network of proteins referred to as the pericentriolar matrix (PCM). In proliferating cells,
the centrosome self-replicates simultaneously with the DNA and an interplay between
centrosomes, and the mitotic spindle executes the segregation of offspring chromatids
during mitosis [2]. In addition, the centrosome is a site that regulates the nucleation of
actin and microtubules, and inherited centrioles can act as the basal body of flagella and
cilia [1–5].

During interphase, the position of the centrosome changes in the cytoplasm [6,7],
and its motion plays a role in cell differentiation and mitosis [6,8–10]. During DNA-
replication, the cytosolic PCM shuttles between nuclear active origins of replication, which
facilitates the transport of cytosolic proteins to the nuclear compartment [7]. In a cell-free
assay, actin and microtubules were shown to limit the position of centrosomes [11]. In
Dictyostelium and in primate epithelia kidney cells’ interphase, the central position of the
centrosome is balanced with respect to forces generated by interactions with dynein, the
radial microtubule array, and the cell cortex [12,13]. The basal bodies of multi-ciliated
epithelia contain myosin II, which is needed for basal body migration [14]. During G2,
myosin II and actin filaments supports the separation of the two centrosomes prior to
segregation of the replicated genome [15]. The development of the brain in mice is affected
by nuclear and centrosome movements, and dysfunctional centrosomes deplete neural stem
cells causing microcephaly (reduce brain size) [16,17]. Budding yeast monitors nuclear and
cytoplasmic division via the localization of the GTPase Tem1 to the spindle pole body. Once
the spindle pole body migrates to the neck, Tem1 is brought into contact with Lte1, which
in turn activates Tem1 to execute mitotic exit [18]. In mammalian cells, the completion of
cell division occurs after one of the centrosomes transiently moves to the growing furrow,
and the absence of centrosomes affects cytokinesis [8]. Hence, centrosome movements may
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integrate spatial and temporal cues in proliferating cells, but our knowledge is limited
regarding the proteins affecting centrosome movements.

Centrosomes are rich in a member of the tubulin superfamily of GTPases, i.e., gamma-
tubulin (TUBG) [19]. In mammals, TUBG1 is a ubiquitously expressed protein that is
considered essential [20–23], whereas TUBG2 is expressed in the brain and during em-
bryonic development [20]. TUBG occurs in the centrosome, cytosol, nucleus, and mito-
chondria [23–26]. The disruption of the centrosomes or decreased levels of TUBG lead
to G1 arrest [7,25,27,28]. The polarity, dynamics, and positioning of the mitotic spindle
depend on the presence of TUBG-containing microtubule-nucleating complexes, named
the TUBG ring complex (γTURC), at the PCM [29]. In the present study, we assess the
involvement of TUBG1 in the spatiotemporal localization of the centrosome. We find that
centrosome movements occur in TUBG-rich areas, and reduced TUBG protein levels affect
centrosome movements.

2. Results
2.1. The Centrosomes, γ-Strings, γ-Tubules, and the Nuclear Envelope Interact

The self-polymerizing capacity of TUBG creates a cellular meshwork consisting of
TUBG threads and fibers called γ-strings and γ-tubules, respectively. Within the PCM,
previous work has demonstrated that TUBG–pericentrin complexes form strings [30].
During nuclear assembly, γ-strings serve as a supporting scaffold for the formation of
the nuclear compartment [26] and provide mitochondria with a cytoskeletal element that
gives form to the mitochondrial network [23]. γTURCs, together with the centrosomal
protein pericentrin, form γ-tubules [22], which have been shown to be most abundant
in non-dividing cells (Figure 1) and have been suggested to act as a storage depot for
cytosolic TUBG [22]. Confocal microscopy analysis of Z-stack images of whole fixed cells
immunofluorescence-labeled with an anti-TUBG antibody show that endogenous γ-tubules,
nucleus, and centrosomes are often in close vicinity to each other (Figure 1). γ-tubules can
emanate from centrosomes (Figure 1a–c) or be positioned on the side (Figure 1a,b). These
TUBG-rich components are often in direct contact with the nuclear envelope (Figure 1c)
and can pass through the nucleus (Figure 1d), forming a spatio-temporal nuclear scaffold.
These data confirm a direct interaction between TUBG-rich components and the TUBG-pool
associated with the nuclear membrane [31,32].
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Figure 1. γ-Strings (dashed lines), γ-tubules (arrowheads), and centrosomes (arrows) are connected 
with the nuclear envelope. (a–c) MCF10A (a) and U2OS (b,c) cells were fixed, and endogenous 
TUBG was immunostained with an anti-TUBG antibody (mouse T6557; rabbit T3320); nuclei were 
detected with Hoechst, as indicated. Scale bars: 10 μm or as indicated. (a–d) Z-stacks show maxi-
mum-intensity projections of sequential images ((a) 30, (b–d) 21) that were collected at 0.2 μm inter-
vals. The white box indicates the area magnified in the insets. (c,d) The sequential image series are 
from inset 3 in (b) and show chosen cropped Z-frames or maximum-intensity projections of 

Figure 1. γ-Strings (dashed lines), γ-tubules (arrowheads), and centrosomes (arrows) are connected
with the nuclear envelope. (a–c) MCF10A (a) and U2OS (b,c) cells were fixed, and endogenous TUBG
was immunostained with an anti-TUBG antibody (mouse T6557; rabbit T3320); nuclei were detected
with Hoechst, as indicated. Scale bars: 10 µm or as indicated. (a–d) Z-stacks show maximum-intensity
projections of sequential images ((a) 30, (b–d) 21) that were collected at 0.2 µm intervals. The white
box indicates the area magnified in the insets. (c,d) The sequential image series are from inset 3 in (b)
and show chosen cropped Z-frames or maximum-intensity projections of sequential images of the
interaction of γ-strings, γ-tubules, and centrosomes with the inner nuclear envelope marker lamin B
(LMNB). (d) The cropped image stack (white box) of γ-strings, γ-tubules, and the centrosome were
visualized in a 3D surface image with the 3D viewer plugin of ImageJ [33]. The 3D surface image
obtained was rotated according to the indicated angle and the direction of the black arrow.
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2.2. Centrosome Moves in γ-String- and γ-Tubule-Rich Areas

A γ-tubule is a polar structure of variable length and mutations that affect the GTPase
domain of TUBG impair its formation [22]. The analysis of γ-tubule formation has shown
that γ-tubules nucleate on TUBG foci and on the nuclear envelope and have a low regrowth
rate [22]. In contrast, γ-strings are non-polar structures formed from TUBG aggregates that
are folded into γ-strings by the chaperone TCP-1 (CCT) [34].

To better understand the interactions among γ-tubules, centrosomes, and the nu-
clear envelope, we monitored live U2OS cells that stably expressed TUBG short hairpin
RNA (shRNA; decreased the endogenous TUBG pool by ~40–50%) and co-expressed a
C-tagged TUBG1 green fluorescence protein (GFP) shRNA-resistant gene (which compen-
sates the TUBG shRNA-mediated reduction of TUBG; Figure 2a) by recording Z-stack
images in a time-lapse series for capturing complete U2OS-shTUBG-GFP-TUBG cells.
Fluorescence images show that the interphase centrosome can move along γ-tubules
and often moves in close proximity to and around the nuclear envelope (Figure 2b and
Supplementary Video S1) [35]. As γ-tubules, the PCM, and the nuclear envelope are TUBG-
rich structures; this suggests that TUBG might facilitate the movements of a centrosome.
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GFP-TUBG were analyzed via Western blot (WB) with an anti-GFP (recognized GFP-TUBG), anti-
TUBG (recognized endogenous TUBG), and anti-actin (loading control) antibodies, as indicated (n 
= 3). The number above the blot indicates the level of endogenous TUBG relative to control. (b) The 
differential interference contrast (DIC)/fluorescence images present one lapse of a time-lapse Z-stack 
sequential series of U2OS-shTUBG-GFP-TUBG cells. Z-stacks show confocal images (maximum-in-
tensity projection of 10 sequential images per time-point) that were collected at 1 μm intervals to 
enable the monitoring of the movements of the centrosome (yellow arrows) and its interactions with 
γ-tubules (yellow arrowheads) and the nuclear envelope (white arrowheads and dashed yellow 
borderlines). Scale bars: 10 μm. Related to Supplementary Video S1. 

Figure 2. Centrosome moves in TUBG-rich areas in living cells. (a,b) U2OS and U2OS cells stably
co-expressing TUBG shRNA (shTUBG) and a TUBG1 green fluorescence protein shRNA-resistant
gene (GFP-TUBG; U2OS-shTUBG-GFP-TUBG). (a) Total lysates from U2OS and U2OS-shTUBG-GFP-
TUBG were analyzed via Western blot (WB) with an anti-GFP (recognized GFP-TUBG), anti-TUBG
(recognized endogenous TUBG), and anti-actin (loading control) antibodies, as indicated (n = 3).
The number above the blot indicates the level of endogenous TUBG relative to control. (b) The
differential interference contrast (DIC)/fluorescence images present one lapse of a time-lapse Z-stack
sequential series of U2OS-shTUBG-GFP-TUBG cells. Z-stacks show confocal images (maximum-
intensity projection of 10 sequential images per time-point) that were collected at 1 µm intervals
to enable the monitoring of the movements of the centrosome (yellow arrows) and its interactions
with γ-tubules (yellow arrowheads) and the nuclear envelope (white arrowheads and dashed yellow
borderlines). Scale bars: 10 µm. Related to Supplementary Video S1.
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2.3. Visualizing Centrosomes in Live Cells

At the G1–S transition, a centrosome is composed of two centrioles and, adjacent to
each centriole, a procentriole forms, which is the start of the formation of two centrosomes
(Figure 3). At G2–M, the two centrosomes separate and the newly formed centrioles
mature (Figure 3a).
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Figure 3. Monomeric red-fluorescence-protein-tagged (RFP)-centrin 2 labels centrosomes in live cells.
(a,b) Each image presents one lapse of a Z-stack time-lapse series (maximum-intensity projection
of 10 sequential images per time-point) of U2OS cells stably co-expressing TUBG shRNA and a
TUBG1 green fluorescence protein shRNA-resistant gene (GFP-TUBG) together with RFP-centrin 2
(to visualize the location of endogenous centrioles in a living cell; U2OS-shTUBG-GFP-TUBG-RFP-
centrin 2). Confocal images were collected at 1 µm intervals to determine the cellular position of
centrosomes and centrioles (yellow arrows). The magnified areas in the insets (yellow boxes) show
at least one centrosome containing two centrioles. Yellow arrowheads show γ-strings emanating
from centrosomes. Scale bars: 10 µm. (a) Schematic representation depicting cells with two and
four centrioles in G1- and G2-phase, respectively. (b) Each image presents one lapse of a Z-stack
time-lapse series of U2OS-shTUBG-GFP-TUBG-RFP-centrin 2. Related to Supplementary Video S2.
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To monitor the centrosome movements in live U2OS cells, we expressed the centri-
ole marker centrin 2 gene N-tagged with a monomeric red fluorescence protein (RFP) in
U2OS-shTUBG-GFP-TUBG cells (Figure 3; U2OS-shTUBG-GFP-TUBG-centrin 2) [8,36,37].
In living cells stably expressing the RFP-centrin 2 gene, we found that the resulting recombi-
nant RFP-centrin 2 protein localized to the interphase centrosomes, in which two RFP-dots
(centrioles) could be detected (Figure 3a). The monitoring of centrosome movements
with a combination of time-lapse (every 150 s during 125 min) and Z-stack confocal mi-
croscopy further confirmed that the RFP-centrin 2-labeled centrioles followed the move-
ments of the GFP-TUBG-labeled centrosomes during interphase, demonstrating that the
location of RFP-centrin 2 can be used as a centrosomal marker in living cells (Figure 3b and
Supplementary Video S2).

2.4. TUBG1 Knockdown Affects Centrosome Movements

Since γ-strings are often observed to emanate from a centrosome as it moves, and
TUBG-rich elements are often in the vicinity of centrosomes (Figures 2 and 3), we gene-
edited the TUBG1 gene using a single-guide (sg) RNA (green fluorescence protein (GFP)-
tagged Cas9-CRISPR) targeting the TUBG1 gene in U2OS cells (U2OS-sgTUBG) to deter-
mine whether TUBG affects centrosome motility. After four days of sgTUBG expression,
the mean reduction in TUBG expression in U2OS-sgTUBG was ~40%, but this reduction
was not homogeneous throughout the cell (Figure 4a). The immunofluorescence analysis of
U2OS-sgTUBG cells shows a clear accumulation of TUBG in the nucleus (Figure 4a). Note
that an sgRNA-induced reduction of TUBG is cytotoxic when TUBG protein levels drop be-
low 50% [23]. Thereafter, we co-expressed the centriole marker RFP-centrin 2 and sgTUBG
in U2OS cells (U2OS-sgTUBG-centrin 2; Figure 4b and Supplementary Video S3) [8,23,36].
After four days of co-expression, we monitored spatial and temporal changes in the po-
sition of centrosomes over 125 min using a combination of time-lapse (every 150 s) and
Z-stack confocal microscopy. We then fixed the cells and subsequently immunostained
them with an anti-TUBG antibody to confirm the colocalization of centrosomes with RFP-
centrin 2-labeled centrioles. In the time-lapse images of living U2OS-sgTUBG-centrin 2 cells,
the motility of the RFP-centrin 2-labeled centrioles was reduced in comparison to U2OS-
shTUBG-GFP-TUBG-centrin 2 cells (Figure 4c). The centrioles of U2OS-sgTUBG-centrin
2 cells are often located on the cytosolic side of the nuclear envelope. Their changes in
position are modest and follow the movements of the nuclear envelope, without adopting a
clear direction (Figure 4c). Overall, the data presented here demonstrate that reduced levels
of TUBG impair the motility of centrioles, showing that the TUBG meshwork is necessary
for the mobility of the centrosomes.
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Figure 4. The cellular levels of TUBG1 regulate centrosome movements. (a) The confocal images
are maximum-intensity Z-stack projections of 11 sequential image series that were collected at
0.6 µm intervals to determine the level of TUBG expression of whole fixed U2OS (control) or U2OS
cells expressing a single-guide (sg) RNA (green-fluorescence-protein-tagged Cas9-CRISPR (GFP-
Cas9); green, yellow dashed line) for four days targeting the TUBG1 gene (sgTUBG; U2OS-sgTUBG).
Samples were immunostained with an anti-TUBG antibody that originated in rabbit (TUBG T3320).
Within the samples, quantification of TUBG was performed with ImageJ software by comparing
immunofluorescently labeled TUBG1 in cells expressing GFP-Cas9 with non-expressing cells (control;
n = 3). The white and yellow numbers in the image indicate the level of endogenous TUBG relative to
control in the whole U2OS-sgTUBG cell, and the relative cytosolic and nuclear protein levels within
the U2OS-sgTUBG cell, respectively. The yellow borderline marks the position of the nucleus. (b) The
differential interference contrast (DIC)/fluorescence images present one lapse of a time-lapse Z-stack
(maximum-intensity projection of 10 frames per time-point at 1.0 µm intervals) series of GFP-Cas9
expressing U2OS-sgTUBG cells that co-expressed RFP-Centrin 2 (U2OS-sgTUBG-Centrin 2; to visualize
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the location of endogenous centrioles (yellow arrows) in living U2OS-sgTUBG cells). The magnified
areas in the insets (yellow boxes) show two RFP-centrin 2-labeled centrioles close to the nuclear
envelope (yellow borderlines). Scale bars: 10 µm. Cell populations were viewed over a 125 min
(50 frame) period before fixation and subsequent immunostaining with an anti-TUBG antibody to
confirm the colocalization of RFP-centrin 2-labeled centrioles with the centrosome (yellow boxes).
Related to Supplementary Video S3. (c) Images are the maximum-intensity Z-stack projection of the
50 recorded time-lapse images from the U2OS-shTUBG-GFP-TUBG-centrin 2 (GFP-TUBG) and the
U2OS-sgTUBG-Centrin 2 (sgTUBG) cells shown in Figure 3b and in b, respectively. Quantification
of centriole movements was performed with ImageJ software via comparison of the changes in
centriole position in U2OS-shTUBG-GFP-TUBG-centrin 2 and U2OS-sgTUBG-Centrin 2 cells. The
green lines are the recorded positions of the centrioles at 150 s intervals tracked with the TrackMate
plugin [38]. The graph represents the recorded max distance that the centrioles have moved during
the analyzed period (U2OS-shTUBG-GFP-TUBG-centrin 2 n = 102 cells; U2OS-sgTUBG-Centrin 2,
n = 29 cells; mean ± sd; ** p < 0.01). Statistical analysis was performed using a two-way analysis of
variance (ANOVA).

3. Discussion

Centrosomes are considered to be signaling and organizing centers that nucleate
cytoskeletal elements such as microtubules, actin, vimentin, and γ-tubules [3–5,39]. Their
motility is described to be mandatory for the performance of cellular duties [6–10,18,40].
Myosin II, dynein, microtubules, and actin are various proteins whose activities in previous
studies have been connected to the positioning and motility of centrosomes [11,12,14,15].

TUBG is an important component of centrosomes that has been shown to be required
for their function, structure, and replication [22,23,29,37,41,42]. Also, as shown in the 3D
surface images presented in Figure 1d, there is a spatial relationship between the centro-
somes, γ-strings, γ-tubules, and lamina structures, which provides a direct bridge at the
nuclear envelope between the cytoplasm and the nucleus [7,26,31,32]. In addition, TUBG
has also been reported to associate with the Golgi, the mitochondria, and the endoplasmic
reticulum [23,43,44]. The presence of γ-strings in the membranes of mitochondria and the
nucleus may provide a platform that could contribute to centrosome motility [23,26]. Ac-
cordingly, in live cells, centrosomes move close to the nuclear envelope and along γ-tubules,
which are two TUBG-rich elements, and impaired expression of TUBG limits centrosome
movements. A noteworthy finding is that the depletion of TUBG in cells is only partial, and
the highest concentration of TUBG is found in the nucleus, next to which the centrosome
lies. Altogether, these data are in accordance with the assumption that the TUBG meshwork
works as a supporting platform.

There are many possible scenarios regarding how TUBG may facilitate the movements
of a centrosome. One is the microtubule- and actin-nucleating capacity of TUBG as part of
the γTURCs. The decreased protein levels of TUBG will most likely decrease the de novo
formation of microtubules and actin fibers, which would also limit the microtubule- and
actin-dependent functions of dynein and myosin II, respectively, resulting in a decrease
in centrosome motility [11,12,14,15]. Similarly, possible motor proteins associated with
γ-tubules may also promote changes in the positioning of centrosomes [22]. Another
plausible scenario is the lateral interactions among the nuclear and the centrosomal γ-string
boundaries and γ-tubules [26,30,32]. The formation of TUBG–TUBG bridges between
structures may provide a sliding scaffold necessary for centrosome movements. Finally,
γ-strings are non-polar structures, implying that γ-strings coming from the centrosome may
connect the centrosome to the substratum and thus the concentration of TUBG facilitates
and guides the direction of the movement. A finding supporting the latter statement is the
lack of direction of the centrosomes upon impaired expression of TUBG1.

Nevertheless, the mechanisms and additional molecules that enable the TUBG-mediated
motility of centrosomes require further analysis. Our findings demonstrate that the TUBG
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meshwork controls the changes in position of the centrosomes and identify TUBG as an
important regulator of centrosome movements.

4. Materials and Methods
4.1. Reagents and cDNA

The following antibodies and reagents were used: anti-GFP (1:500, mouse sc-53882),
Lamin B1 (1:1500); β-actin (1:5000, from Santa Cruz Biotechnology, Dallas, TX, USA); anti-
TUBG (1:1000, rabbit T3320 and mouse T6557, from Sigma-Aldrich, St. Louis, MO, USA);
donkey anti-mouse, rabbit, or goat conjugated to Cy3 (1:1600); Alexa488 (1:800) or Alexa647
(1:400) (Jackson ImmunoResearch, Cambridge, UK); and GFP-centrin 2, which was a gift
from M. Bornens [8]. All other reagents were obtained from Sigma-Aldrich.

Human TUBG shRNA, pEGFP-sh-resistant TUBG1, pSG5-mRFP, and pSpCas9 (BB)-
2A-GFP TUBG1 sgRNA were prepared as previously described [22,25,37]. The CETN2
gene 2 was amplified via PCR and subcloned into the EcoRI/BamHI sites of pSG5-
mRFP using the following oligonucleotides: 5′GCGGAATTCATGGCCTCCAAC3′ and
3′GCGGGATCCTTAATAGAGGCTGG-5′.

4.2. Cell Culture, Transfection, and Western Blot Analysis

Human osteosarcoma U2OS cells and mammary gland epithelia MCF10A were cul-
tured as previously reported [37,45]. The preparation of stably or transient transfected
U2OS cells is described elsewhere [45]. The resulting cell lines were routinely tested for the
presence of mycoplasma.

U2OS cells were examined on day 4 or for the indicated period of time after transfection
with sgRNA [45,46].

Total lysates from cells were prepared and Western blot analyses were performed as
described elsewhere [25,37,47].

4.3. Fluorescent Imaging Microscopy and Microtubule Regrowth Assay

The cell culture and fixation techniques used are described elsewhere [48]. All images
were captured in a Zeiss LSM 700 Axio Observer microscope (ZEISS, Oberkochen, Germany)
with a Plan-Apochromat × 63 NA 1.40 oil immersion objective. All images were subjected
to rolling-ball background subtraction [49]. Time-lapse images were captured every 2.5 or
5 min for 125 or 300 min, and 10 sequential images were collected at 1 µm intervals.

A maximum-intensity projection of the sequential Z-stacks was analyzed with the
TrackMate plugin [38]. In short, a sliding paraboloid method was applied to subtract the
background of the image series before tracking. A DoG detector with auto-thresholding
and a Simple LAP tracker were the settings used. The 3D viewer plugin (Fiji) was used to
generate 3D surface images using default settings [33].
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