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Abstract: Esterases are hydrolases that catalyze the hydrolysis of esters into the corresponding acids
and alcohols. The development of fluorescent probes for detecting esterases is of great importance
due to their wide spectrum of biological and industrial applications. These probes can provide a
rapid and sensitive method for detecting the presence and activity of esterases in various samples,
including biological fluids, food products, and environmental samples. Fluorescent probes can also
be used for monitoring the effects of drugs and environmental toxins on esterase activity, as well as
to study the functions and mechanisms of these enzymes in several biological systems. Additionally,
fluorescent probes can be designed to selectively target specific types of esterases, such as those found
in pathogenic bacteria or cancer cells. In this review, we summarize the recent fluorescent probes
described for the visualization of cell viability and some applications for in vivo imaging. On the
other hand, positron emission tomography (PET) is a nuclear-based molecular imaging modality
of great value for studying the activity of enzymes in vivo. We provide some examples of PET
probes for imaging acetylcholinesterases and butyrylcholinesterases in the brain, which are valuable
tools for diagnosing dementia and monitoring the effects of anticholinergic drugs on the central
nervous system.

Keywords: positron emission tomography (PET); fluorescent probes; esterases; carboxiesterases;
acetylcholinesterases; butyrylcholinesterases; neurodegenerative diseases; cancer

1. Introduction

Several vital physiological processes in living organisms are regulated by enzymes,
which act as highly efficient biocatalysts. Enzymes are classified into six major classes
based on the type of reaction that they catalyze: oxidoreductases, transferases, hydrolases,
lyases, isomerases, and ligases [1]. Among these, esterases, a type of serine hydrolase,
hold significant importance and find wide applications in biotechnology, pharmaceuticals,
environmental sciences, and various industrial fields [2]. In the human body, esterases
are predominantly expressed in organs and tissues that have barrier functions, such as
the lungs, small intestine, liver, kidney, skin, and even the brain [3,4]. These enzymes
catalyze biotransformations by hydrolyzing ester-containing compounds, leading to the
formation of the corresponding acids and alcohols. They play essential roles in regulating
metabolism, gene expression, signal transmission and transduction modulation, detox-
ification of xenobiotics, and bioactivation of prodrugs [5,6]. Dysregulation of esterase
homeostasis is associated with various pathological conditions, including cancer, obesity,
Wolman disease, or neurodegenerative disorders [7–9].

Monitoring the activity of these enzymes has gained significant importance in the
scientific community due to its potential to provide crucial physiological information and
contribute to the early and accurate diagnosis of numerous diseases [10–12]. This task has
been facilitated by the development of new imaging non-invasive in vivo visualization
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approaches [13] with broad applicability, operating at various levels including molecular,
cellular, organ, and even whole organism [13,14].

Well-established imaging strategies encompass a range of techniques, including non-
radioactive methods such as optical fluorescence as well as radioactive PET methods,
which are the most widely used. Both approaches will be the focus of this review for
the development of new esterase probes for in vitro and in vivo bioimaging applications.
It is important to emphasize that the design of suitable probes must consider diverse
spatiotemporal requirements, depending on the specific scope of the study, which can
range from investigating single cells to examining the entire body. Key considerations
in probe design include selectivity, depth of tissue penetration, resolution, sensitivity,
pharmacokinetic profile, production cost, and other relevant factors [11].

2. Optical Fluorescence Technique and Fluorescent Probes

Optical fluorescence is a non-radioactive technique that involves the administration of
a fluorescent agent. This agent is excited (hvEX) by an external light source, passing from
the ground state (S0) to the excited-state life (S1

′). This state evolves to the S1 excitation
state by internal conversion (IC), which immediately triggers emission (hvEM) with lower
energy and a greater wavelength than the excitation light source. During this phenomenon,
some of the energy is dissipated as heat or through other non-radioactive processes to S0 or
intersystem crossing (ISC) [15]. This process is illustrated by the Jablonski diagram shown
in Figure 1 [16].
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Figure 1. Jablonski diagram illustrating the process of excitation and emission of fluorescence [16].
Image created using BioRender (www.biorender.com (accessed 23 August 2023)).

Fluorescent probes, when combined with the widespread use of confocal microscopy,
have demonstrated several advantages over traditional modalities such as computed
tomography (CT), magnetic resonance imaging (MRI), or radioisotope imaging. These
advantages include ease of use, high sensitivity and resolution, low cost, and non-invasive
real-time detection [1,11].

Most probes consist of three scaffolds: a fluorescent moiety that serves as the signaling
component and is responsible for the spectroscopic properties; a recognition moiety that
acts as the binding component to the target; and a linker that connects both fragments [1].
The fluorescent component incorporated into the probe can exist in two forms: agents
that exhibit fluorescence upon excitation, known as fluorophores, and those that require
prior modification to acquire fluorescent properties, known as fluorogenics. This latter
modification can occur after binding to a target [17], through a chemical reaction [18], or
even due to alterations in their environment, such as changes in pH, hypoxia, the presence
of reactive oxygen or sulfur species, or the presence of metal ions [15,19,20].

The applicability of fluorescent probes depends on changes in fluorescence properties
such as emission intensity, wavelength, and lifetime. Therefore, their design is aimed at
achieving accurate signal modulation and adequate selectivity towards the target. This

www.biorender.com
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design typically involves controlling sensing mechanisms and a wide range of fluorophores
and fluorogenic agents.

The fluorescence emission of most fluorescent probes relies on various sensing mecha-
nisms, including: photoinduced electron transfer (PET) (I); intramolecular internal charge
transfer (ICT) (II); Förster resonance energy transfer (FRET) (III), excited state intramolec-
ular proton transfer (ESIPT) (IV); aggregation-induced emission (AIE) (V); and multiple
modality fluorescence approaches, which are widely described in the literature [21,22].

The choice of fluorophores or their combination can span from the ultraviolet-visible
(200–600 nm) to the near-infrared or far-red spectral regions (650–1000 nm), which deter-
mines the excitation/emission profiles (Figure 2).
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Figure 2. Summary of most common fluorophores by structure and emission color [23].

Over the past 10 years, most existing fluorescent probes for esterases have been based
on fluorophores such as coumarin (1), fluorescein (2), resorufin (3), and rhodamine (4) [24].
However, their limited ability to penetrate tissues, light scattering, and interference from
background auto-fluorescence issues have led to the increased use of near-infrared and
far-red fluorescent probes for bioimaging applications [23]. Among these cyanines, such
as Alexa Fluor 647 (6), Cy5, and Cy7, many are widely applied. Nevertheless, one main
limitation is their difficulty in passing across cell membranes due to their positive charge.
As an alternative to these far-red cyanines, 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-
2-one) (DDAO, 7) has been reported (Figure 3) [25].
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As an alternative to overcoming the limitations of fluorescent probes based on fluo-
rophore scaffolds with an “on-off” approach, researchers have explored other strategies.
These approaches involve the use of fluorogenic moieties and leverage various response
modes in an “off-on” fashion. The “off-on” approaches have been efficiently designed to
function as enzyme substrates [1].
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An “off-on” type of fluorescent probe, designed to modify the fluorescence by an
enzymatic response, can be prepared, for example, by masking a functional group (e.g.,
free -OH or -NH2) on the fluorophore with an enzyme recognition moiety (e.g., acetoxy
or acetoxymethyl ether), as illustrated in Scheme 1 [26]. In this way, the fluorescence is
quenched until the functional group is deprotected by the enzymatic action.
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Scheme 1. Turn-on fluorescent probe 9 by esterase hydrolysis.

Some additional examples include derivatives of the previously mentioned DDAO
(7) or a subclass of spiro-type derivatives (DSACO, 12) with an esterase-masking moiety
(Figure 4) [25,27]. These probes have been used for detecting and tracking esterase and
lipase activities and profiling esterases of Mycobacterium species [25,28].
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Figure 4. Examples of far-red fluorophores with an esterase masking group.

Another alternative for designing an “off-on” fluorescent probe is the use of a self-
immolating linker (e.g., a p-hydroxybenzyl alcohol unit and an acetylated “trimethyl lock”
system) to connect both the fluorogenic and the recognition moieties [1]. Upon enzymatic
transformation, the structural change triggers spontaneous cleavage of the linker unit,
releasing the fluorophore [29]. Okada and collaborators describe a representative example,
illustrating the utility of this self-immolative linker for the detection of esterase activity by
conjugation of an acetylated “trimethyl lock” and a nitrobenzoxadiazole (NBD, 19) unit
(Scheme 2) [30].
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The key advantage of this strategy lies in reducing the steric hindrance between the
bulky fluorophore and the enzyme active site, thereby enhancing the efficiency of the
probe as an enzyme substrate. However, a potential concern arises due to the release of
by-products during the self-immolation process, which could have adverse effects on living
systems. To address this issue, researchers have introduced a new class of fluorescent
probes comprising two main units: a fluorescence quencher and an activator, employing
a turn-on mechanism (as depicted in Scheme 3). When the esterase initiates the cleavage
of the carboxylate (quenched form, 21), it acts as a fluorescence activator, leading to the
detachment of the mercapto group (quencher). As a result, the emissive cyanine-based
fluorophore Cy5 (22) is generated without the formation of any by-products. This approach
ensures a more controlled and safer activation of the fluorophore, making it a promising
solution for biological applications [31].
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Scheme 3. Enzyme-mediated turn-on mechanism in which the quenched fluorophore is activated
(turned on) through activator-induced quencher-detachment.

As a combination of both methodologies (“on-off” and “off-on”), ratiometric probes
arise. These probes present an attractive and reliable alternative for the development of en-
dogenous esterase detection tools. In this approach, a ratiometric fluorophore binds to the
recognition moiety, as illustrated in Scheme 4 [32,33]. After the hydrolysis reaction by the
esterase, there is a noticeable shift in either the emission or excitation wavelength. This shift
enables the calculation of the ratio between the fluorescence intensities at the two wave-
lengths. As a result, the accuracy and sensitivity of detection are significantly improved,
and potential interferences, such as instrumental conditions, are eliminated. Moreover,
these ratiometric probes possess a self-calibration capability, setting them apart from the
“off-on” probes discussed earlier. Compared to the “on-off” approach, ratiometric and
“off-on” approaches are generally preferred because they offer several advantages, includ-
ing reduced background signal [1]. These strategies enhance the performance of esterase
detection tools, making them more versatile and reliable for various biological applications.
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Recent research has presented illustrative examples of fluorescent probes designed to
target esterases. These probes utilize the aforesaid sensing mechanisms to enable efficient
and selective detection of esterase activity.

2.1. Imaging and Therapy: Fluorescent Probes for Esterases
2.1.1. Cells Viability

The intrinsic machinery of cells encompasses a series of physiological and pathological
processes, including apoptosis and necrosis, aimed at eliminating unwanted cells and
ensuring cellular viability. During cell death, several changes take place, and one of the
most notable is the loss of esterase activity levels [34].

Numerous fluorescent probes have been developed to monitor cell characteristics,
utilizing some of the previously mentioned sensing mechanisms [35,36]. A representative
example was presented by Tian et al. In their study, they devised a ratiometric dual-color
fluorescent probe specifically designed to differentiate between live and dead cells based
on esterase activity. The core of their strategy involved a chemical modification of the
fluorophore 3-hydroxyflavone (27). By esterification of the hydroxyl group, the ESIPT
process in dead cells was blocked (blue color, 440 nm). In contrast, in live cells, where
hydrolysis could occur due to the esterase activity, the ESIPT phenomenon was allowed to
occur, yielding an orange color emission at 570 nm (Scheme 5) [37].
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Scheme 5. Sensing mechanism based on ESIPT process of fluorescent probe 27 for discriminating
live (orange) and dead cells (blue) in dual color mode [34,37]. Reprinted with permission from [37].
Copyright © 2018 American Chemical Society.

Another example of an ESIPT-based fluorescent probe intended for assessing differ-
ences in esterase activity as a cell viability test was presented by Lu et al. [38]. In their
research, they developed a ratiometric probe known as BTE (30). This probe exhibited a
distinct change in fluorescence emission from short-wavelength blue (at 465 nm) to longer-
wavelength green (at 543 nm) in response to esterase hydrolysis within live cells. This
transformation was attributed to the cleavage of the acetoxy group present in the probe
BTE, caused by esterase-mediated hydrolysis in live cells (Scheme 6).
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Modifications to the structure of the aforementioned fluorophore, based on the com-
mon 2-(2′-hydroxyphenyl)-benzothiazole (HBT, 32), have also been explored by various
researchers to detect esterase levels. Notably, Kong and collaborators have achieved the
successful synthesis of multicolor fluorescent probes that exhibit a remarkable fluores-
cence color change upon hydrolysis catalyzed by endogenous esterase in living HeLa
cells (Figure 5) [5]. These fluorescent probes have been validated for their use in eval-
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uating the efficacy of esterase inhibitors, showing another valuable application of this
imaging strategy.
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Figure 5. (A) Structures and ESIPT response mechanism of probes 34a–c for specific detection of
esterase and (B) fluorescence microscopy images of HeLa cells incubated with fluorescent esterase
probes (a–f) (34a exhibited dark green (d), 34b in yellow (e) and 34c in red (f) fluorescence) and bis(4-
nitrophenyl) phosphate-BNPP (inhibitor) for intracellular esterase inhibition experiments (g–l) [5].
Reprinted from publication [5], Copyright 2021, with permission from Elsevier.

More recently, a novel acetylated conjugate of naphthalimide and benzothiazole
groups (35) has been employed for the qualitative detection of esterase inhibition in cells
treated with orlistat, an obesity treatment. This innovative fluorescent probe, once again,
relies on the activation of the ESIPT sensing mechanism, triggered by the release of a free
hydroxyl group induced by esterase hydrolysis. Consequently, this process leads to the
emission of fluorescence through enol/keto phototautomerization (Scheme 7) [6].
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An appealing approach to enable optical imaging of esterase functions and levels
involves the design of ratiometric dual-color fluorescent probes that control the ICT process.
Wang et al. adopted this strategy and made modifications to the core of a diketopyrrolopy-
rrole dye (38) to visualize esterase activity and distinguish between live and dead cells.
To achieve this, they incorporated a phenyl acetate group on the pyridine, forming a pyri-
dinium cation with a strong red emission (at 655 nm), attributed to the ICT phenomenon.
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In the presence of active esterase in living cells, the acetoxyl group undergoes cleavage,
halting this signaling mechanism and resulting in the emission of fluorescence in the yellow
range (at 551 nm) (Figure 6) [39].
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2.1.2. Organelles-Targeted Fluorescent Probes 

Figure 6. (a) Chemical structures of fluorescent probe 38 and sensing mechanisms to detect esterase
activity and cell viability. (b) Fluorescent imaging of TPC1 cells stained with 38 at different incubation
times ((A,F,K) 5 min; (B,G,L) 15 min; (C,H,M) 30 min; (D,I,N) 45 min; (E,J,O) 60 min) in differ-
ent fluorescent channels ((A–E) yellow channel (525–585 nm); (F,J) red channel (625–685 nm) and
(K–O) merge image). λex = 490 nm. Scale bar = 10 µm [34,39]. Reprinted with permission from [39]
Copyright © 2018 American Chemical Society.

2.1.2. Organelles-Targeted Fluorescent Probes

As previously discussed, the design of fluorescent probes can be customized not
only for cellular-level exploration but also for targeting organelles such as mitochondria,
endoplasmic reticulum-ER, or lysosomes. While there are numerous probes available for
cytosolic esterase detection, the development of organelle-targeted fluorescent probes that
offer reliable in situ monitoring of esterase activity remains relatively limited.

An illustrative demonstration of the adaptability of this type of imaging technique to
various targets is seen in ratiometric fluorescent probes based on the 4-hydroxynaphthalimide
(NHI) scaffold, as described in two independent studies [7,40]. In both works, Shen et al.
and Guo et al. tailored the probes for specific organelles by introducing distinct targeting
moieties, as shown in Figure 7. In the study by Shen et al., a methyl pyridinium cation was
incorporated into the NHI skeleton as a mitochondria-targeted moiety 41, whereas Guo et al.
used a p-toluenesulfonamide group 42 as an ER-directed ligand. In both cases, the acetoxyl
group served as the esterase-reactive moiety, inducing changes in the fluorescence emission
from the blue to green range. The experimental results from both studies confirmed that
these organelle-targeted probes 43a–b, relying on the ICT mechanism, serve as suitable
tools for esterase detection.
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Figure 7. Modification of the target moiety on two different ratiometric fluorescent probes based on
4-hydroxynaphthalimide scaffold and ICT process, for exploring specific organelles [7,40]. Image
created using BioRender (www.biorender.com (accessed on 17 August 2023)).

Gao et al. achieved specific detection of the lysosomal esterase, which is implicated in
Wolman disease, using a fluorescent light-up probe. This probe (44) was constructed based
on a salicyladazine fluorophore bearing esterase-reactive acetoxyl groups and incorporating
morpholine as the lysosome targeting moiety (Scheme 8). The main feature of this probe
lies in the combination of both AIE and ESIPT mechanisms within a single entity. This
combination enhances the sensitivity and efficiency of the probe in detecting lysosomal
esterase activity. Moreover, it is noteworthy that the design can be extended for the detection
of other enzymes or analytes through the conjugation of different cleavable/recognition
elements, allowing for potential applications in various research and diagnostic fields [41].
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Scheme 8. Fluorescent probe for targeting lysosomal esterase based on AIE and ESIPT mecha-
nisms [41].

The unblocking of hydroxyl groups activates the ESIPT process, which is facilitated by
the possibility of intramolecular hydrogen bond formation. Additionally, this unblocking
promotes AIE by restricting the free rotation of the N-N bond [41].

Another fluorescent probe targeting the endoplasmatic reticulum has been recently
reported by Xiang et al. They designed a near-infrared fluorescent probe for monitoring
esterase changes in tumors in vitro and in vivo. As shown in Scheme 9, they analyzed the
esterase-catalyzed hydrolysis by activation of an ICT process in naphatilimide derivative
46. They based their design on the advantage of the high lipophilicity of the probe to target
the endoplasmatic reticulum [42].

www.biorender.com
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Scheme 9. Design of near-infrared fluorescent probe and sensing mechanism for monitoring esterase
in tumors [42].

Other authors have also focused on the quantification of esterase activity in mitochon-
dria. For example, Wang et al. designed a new series of ratiometric near-infrared fluorescent
probes (48a–d) for esterase detection (Scheme 10). In this case, the ester hydrolysis of the
different ring trigger moieties released the fluorophore 49. The difference in the change in
the plane-twisted dihedral angle deflection in the molecules allows the calculation of the
ratiometric fluorescence [43].
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Scheme 10. Near-Infrared fluorescent Probes with different ring structures trigger groups targeting
mitochondrial esterase [43].

Lai et al. [43] used the same approach to detect changes in mitochondrial viscosity in
living cells associated with early necrosis processes. The presence of a positively charged
hemicyanine is the key factor in its accumulation in mitochondria. Moreover, after hydroly-
sis by the esterase, the twisted intramolecular charge transfer process produces a stronger
fluorescence signal (Scheme 11). This phenomenon is especially relevant in early necrotic
cells compared to healthy ones. Thus, differentiation among live, death, and necrotic stages
was reported.
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chondrial viscosity [43].

Recent studies have also focused on the development of fluorescent probes with a
dual-imaging approach for studying the relationship among different organelles. This ap-
proach enables the detection of complex biological events, providing information about the
implications of various organelles with different functions in the same disease. In addition,
these multifunctional probes could be used to track drug metabolism. In this regard, an
esterase-responsive AIE probe has been designed and synthesized for mitochondrial/lipid
droplet dual imaging (Figure 8) [44,45].
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Figure 8. Dual-imaging approach of an esterase-responsive AIE probe for targeting mitochondria and
lipid droplet [44,45]. Image created using BioRender (www.biorender.com (accessed on 26 July 2023)).

A pyridinium cation was introduced in the structure as a mitochondria-targeting group.
When the probe NAP-Py-E 51 targets the mitochondria, it interacts electrostatically with
electronegative membranes, resulting in the emission of a near-infrared red fluorescence.
Then, the acetoxyl group of NAP-Py-E 51 is hydrolyzed by mitochondrial esterases in
living cells, converting it to NAP-Py 52, which reflects esterase activity and cell viability.
The specific aggregation of NAP-Py 52 in lipid droplets shows a green emission, leading to
a dual-color emission from the two-organelle targets.

The scope and versatility of this imaging technique are further demonstrated by its
combination with other tools. For example, Fan et al. recently presented an activatable
photoacoustic/fluorescent probe, responsive to esterases, for real-time imaging of acute
injury (Figure 9) [46]. This probe (53), based on a modified structure of the fluorophore
hemicyanine, overcomes the limitations of common contrast agents, such as limited re-
tention in pulmonary alveoli, poor blood circulation, and biotoxicity. As a result, this
probe offers an effective tool for early diagnosis of the progression of various lung diseases
through intravenous injection.
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Figure 9. Activatable Photoacoustic/Fluorescent Probes for imaging lung diseases by esterase
activation [46].

Another innovative study introduces the use of 19F NMR in combination with a
fluorogenic flavonoid derivative that includes an esterase-masking moiety. Upon esterase-
mediated activation by cleaving the acetoxyl group, the probe undergoes an ESIPT effect,
resulting in changes to the 19F chemical shifts (Scheme 12). This approach yields a dual-
response probe with good sensitivity, selectivity, and real-time detection capabilities, along
with an improved imaging depth [47].
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Scheme 12. A dual fluorogenic and 19F NMR probe for the detection of esterase activity [47].

The growing interest in new probes has led to the exploration of rare earth terbium (III)
as a potential luminescence assay for detecting esterase activity in the subnanomolar range.
These probes, developed by Hetrick et al., were inspired by the photoluminescent signal
generated through coordination with effective sensitizers, such as carboxylate groups. This
approach extends their use to non π-conjugated systems, making them valuable alternatives
to common fluorescence probes. As depicted in Scheme 13, esters of thiopheneacetic acid
(57) are hydrolyzed by the esterase, triggering the sensitization of Tb3+ and resulting in
luminescence [48]. The use of terbium (III) offers exceptional sensitivity, enabling the
detection of esterase activity at remarkably low concentrations.
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Scheme 13. Terbium (III) luminiscense assay for detecting esterase activity [48].

2.1.3. Fluorescent Probes for Tissues and Organs

In addition, there has been a focus on developing fluorescent probes for specific
types of esterases, aiming to achieve selective diagnosis of abnormal functions in tis-
sues and organs. These probes are designed to differentiate among different types of
esterases, which may be differentially expressed and have varying substrate specificities.
Notably, a significant number of examples described in the literature have focused on
probes targeting carboxylesterases (CEs), particularly carboxylesterase 2 (CE2), and only a
few examples have used cholinesterases (ChEs). With regard to ChEs, we can highlight
several noteworthy probes. Firstly, there is a semisynthetic probe designed based on the
SNIFIT concept [49]. Secondly, a boronate fluorescent probe is utilized for the detection
of the h202 generation [50]. Lastly, there are probes specifically designed for screening
acetylcholinesterase inhibitors [51].

2.1.4. Carboxylesterases

These enzymes belong to the a,b-fold intracellular serine hydrolase family, and
the main isoform CE2 exhibits heterogeneous distribution in both healthy and tumor
tissues [52,53]. CE2 plays an important role in the phase I metabolism of endobiotics and
is also involved in the detoxification/activation of drugs, particularly oral anticancer pro-
drugs [54]. Therefore, there is a growing need for the design and development of probes for
monitoring the activities of these enzymes during pathological disorders, such as different
types of cancer, and for screening or evaluating the effects of anticancer drugs. Several ex-
amples have been designed based on the aspects mentioned above. Additionally, Dai et al.
present a minireview featuring specific examples of carboxylesterase fluorescent probes,
providing further insights into the diversity and potential applications of these innovative
imaging tools [4].

For instance, recent findings reported by Li et al. unveil a novel mitochondria-targeting
near-infrared (NIR) molecular imaging tool for monitoring CES2 during liver-related
diseases. As depicted in Scheme 14, the design of probe 59 is inspired by the control of
the ICT process through the cleavage of the trigger-benzoyloxy group upon reaction with
CES2 [9].
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Scheme 14. Imaging molecular tool for monitoring CES2 through enzyme-mediated activation of an
ICT process.

In 2018, Park et al. conducted a sensing study using a ratiometric two-photon probe for
CES2, revealing lower activity of this enzyme in breast cancer cells compared to normal cells.
The researchers employed a self-immolative trimethyl lock linker design, which connected
the fluorophore and the succinate ester, selected as the CES2′s binding moiety. Upon linker
release, the ICT mechanism is turned on, resulting in a change in the fluorescence properties
(Scheme 15) [53]. Prior to this study, in 2016, Park and other collaborators described the use
of similar ratiometric two-photon probes for monitoring CE activities in live hepatocytes
and liver tissues [55].
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Scheme 15. Self-immolative trimethyl-lock linker to design a selective carboxylesterase ratiometric
fluorescent probe.

Another example used the self-immolative linker 4-(acetoxybenzyl)oxy as both a
quenching and recognizing group to develop near-infrared fluorescent probes for tracking
endogenous carboxylesterase. Li et al. chose the decomposed fluorophore 64 produced
from the unstable cyanine precursor for this NIR fluorescent probe (Scheme 16) [56].
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Scheme 16. Self-immolative approach for design NIR-fluorescent probe for tracking CES.

Other fluorogenic scaffolds, such as naphthalimides, have been used by other re-
searchers. Jin et al. designed a two-photon ratiometric fluorescent probe (67) for imaging
CES2 in living cells in deep tissues, thereby expanding its potential applications in biologi-
cal systems (Scheme 17). In this study, they attributed the desirable, red-shifted emission
observed after deprotection of the amino group to the strong ICT efficiency [57].
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Scheme 17. Design of ratiometric fluorescent probe for imaging CES2.

Zhang et al. utilized the versatility of the naphthalimide scaffold to incorporate
structural modifications, creating a fluorescent probe (69) with a morpholine unit for
lysosomal binding. By monitoring the ICT after hydrolysis of the carboxylic ester group,
the resulting compound (70) enabled the assessment of different expression levels of CES2
in both normal and cancerous pancreatic tissues (Scheme 18) [58].
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Scheme 18. Naphthalimide-derived fluorescent probe for lysosomal detection by ICT monitoring.

In the past two years, the application of carboxylesterase “off-on” fluorescent probes
to evaluate their potential as drug activators has gained significant relevance [54]. An
illustrative example is presented by Wang et al., who utilized a near-infrared two-photon
fluorescent probe, incorporating dicyanomethylene-4H-pyran as a precursor scaffold (71)
for the ICT mechanism (Scheme 19). In their study, Wang et al. used this probe in an
orthotopic colon carcinoma mouse model to investigate its effectiveness in detecting car-
boxylesterase activity and its potential implications as a drug activator.
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Scheme 19. Near-infrared two-photon fluorescent probe for detecting CES2.

The utilization of a near-infrared fluorescent probe 73, based on spiro compounds
and DSACO derivatives, has emerged as a valuable tool for high-throughput screening of
herbal medicines (Scheme 20) [52].
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3. PET Technique and PET Probes

Positron emission tomography (PET) relies on different biophysical principles [59,60].
This direct radiolabeling technique finds utility in various fields of nuclear medicine, not
only for monitoring pathophysiological processes but also for understanding drug action
through tomographic images. The radiotracers used for tagging the cells ex vivo/in vitro,
after an incubation period, have an optimal imaging time window. It is necessary to
consider this aspect both for their preparation by incorporation of a radioisotope into a
biologically active molecule and for the specific tracking studies [61].
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PET imaging agents incorporate a radionuclide in their structure to generate images
by detecting the photons generated during the decay process [59]. These radionuclides
are isotopes with varying half-lives, such as 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.7 min,
the most widely used). They are typically produced in a cyclotron or generator system
and emit a positively charged particle known as a positron from the nucleus. This particle
travels a short distance within the surrounding tissue before it undergoes annihilation,
combining with an electron through a matter-antimatter interaction (Figure 10). The mass
of the positron and electron is converted into energy, resulting in the emission of two
511 keV γ-rays (photons) simultaneously, emitted at approximately 180◦ to each other. The
simultaneous registration of radiation allows for the visual and quantitative analysis of
biological function [14,59,62].
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Figure 10. Physical phenomena for diagnosis by PET imaging [61]. Image created using BioRender
(www.biorender.com (accessed on 26 July 2023)).

The spatial resolution of clinical/preclinical PET (6–10 mm) is lower compared to other
medical imaging techniques such as magnetic resonance imaging (MRI, 1–2 mm) or com-
puted tomography (CT, 0.1–0.5 mm) [61]. To address this limitation, the combination of PET
and CT was introduced in 1994. This led to the development of hybrid systems (PET/CT),
revolutionizing neuroimaging by enabling functional and morphological imaging in a
single examination [59].

3.1. Non-Invasive Nuclear Molecular Imaging for Neurological Disorders

Currently, one of the biggest challenges in medicine is understanding the behavior
of the human brain. The complexity of the neurological connections, as well as the en-
tirety of receptors, transporters, and neurochemical signaling agents that compose them,
remains largely unknown. This lack of knowledge hinders the prognosis and diagnosis of
neurodegenerative pathologies [63–65].

Moreover, the blood–brain barrier (BBB) plays a crucial role in maintaining the home-
ostasis of the central nervous system (CNS) and protecting it from invasive and harmful
substances [66]. This hampers the adjustment of an appropriate dosage and the penetration
of drug-like molecules into the human brain [67]. This factor, combined with the lack of
correlation between in vitro and in vivo pharmacokinetic data in conventional predictive
models, makes it difficult to reach therapeutic concentrations in the brain and often leads
to failures in the discovery process of new chemical entities [68].

In this regard, the development of nuclear medicine and new imaging techniques, such
as PET, has been an expanding area in preclinical and clinical investigations, as well as in
the development of new drugs for both diagnosis and treatment, since the 1980s [69]. Their
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ability to map various brain targets and neurochemical functions in vivo with practically
unlimited penetration capacity, excellent selectivity, and real-time, non-invasive detection
has made them a major advancement in neuropsychopharmacology [14,70]. Moreover,
only microdoses of radiotracer are required for cell labeling and tracking, as final biological
concentrations typically range from nM to pM [71]. Prior to the development of these
techniques, traditional invasive methods could not be used directly on the human brain
due to ethical reasons and technical complexity. Therefore, most biological information
was obtained through post-mortem analysis [72].

In this sense, PET micro-dose or dose finding studies have indeed emerged as a
validated strategy [73]. A radiolabeled drug with high specific radioactivity (>1 Ci/µm) is
administered to trace anatomical distribution and binding affinities to different organs and
tissues over time. This approach can be applied either in the early stages of drug candidate
selection or even to determine an appropriate clinical dose for an investigational drug
(Figure 11) [74].
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Figure 11. Implications of PET radiotracers in drug discovery [70].

For example, PET radiopharmaceuticals provide important and valuable knowledge
in various aspects of drug development and clinical use [75]. Firstly, they offer insights
into the pharmacokinetics and distribution of a drug during the early stages of drug devel-
opment. Secondly, PET imaging provides pharmacodynamic information, which allows
for determining the relationship between the neurochemical and cognitive/behavioral
effects of the drug. This aids in assessing the drugs therapeutic potential. Thirdly, PET
enables the monitoring of therapeutic responses during clinical use, providing valuable
data on the drugs effectiveness. Lastly, PET imaging can aid in the identification of new
biomarkers and their involvement in pathological processes. These aspects are vital for
the success of a drug candidate during clinical trials (Figure 12). For this reason, the use
of PET imaging targeting the CNS is considered a promising tool in both preclinical and
clinical processes [76]. The output of PET imaging depends on the chemical nature of
the radiotracer and the physiological conditions of the living subjects. Thus, the design
of a specific radiotracer is an essential step to achieve target selectivity and appropriate
distribution in the region of interest (Figure 12) [77,78].
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One of the essential approaches in the investigation of neurodegenerative disorders
is the examination of changes occurring at the neuronal metabolism level. In this regard,
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the use of PET is essential for studying the balance between transmitters and receptors
in brain systems such as dopaminergic, serotonergic, or cholinergic systems. Within
the neurotransmitter pathway, the presynaptic neuron, the postsynaptic neuron, and the
intraneuronal metabolism are the typical locations of interest (Figure 13). Specifically, the
neuroimaging of the central cholinergic system in the CNS has been a rapidly growing
field since the 1980s [79]. This complex and multi-component neurotransmitter system
uses acetylcholine for the transduction of action potentials during cholinergic synapses [12]
and plays a crucial role in brain functions such as attention, memory, emotions, cognition,
and consciousness.
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Several studies have emphasized the use of radioligand imaging agents to target
different components of the cholinergic system involved in neurodegenerative diseases
such as dementia, particularly Alzheimer’s disease (AD), which accounts for 60–80% of
cases [80,81]. Other frequently encountered disorders include frontotemporal dementia
(FTD) and dementia with Lewy bodies (DLB).

These targets are usually categorized based on their function, including acetylcholine
receptors such as nicotinic (nAChRs) and muscarinic (mAChRs); neurotransmitters such
as acetylcholine (Ach); transporters like vesicular acetylcholine (VAChT); and presy-
naptic high-affinity choline uptake transporters (CHT-1) as well as enzymes including
choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase
(BuChE) [79,82].

3.1.1. PET Probes for Imaging AChE and BChE in Dementia Disorders

In the context of this review, we will focus on two major esterase enzymes involved in
the cholinergic system, AChE and BuChE, for in vivo nuclear imaging. These hydrolytic
enzymes catalyze the breakdown of cholinergic esters into choline and the corresponding
acetate or butyrate ions. They play a regulatory role in maintaining appropriate levels of
acetylcholine (Ach) in the synapse [83]. Dysregulation of their activities has been linked to
different neurogenerative disorders, including AD, which is characterized by severe pro-
gressive cognitive and motor impairment. The cholinergic dysfunction hypothesis [84] has
been considered, along with the deposition of extracellular misfolded beta-amyloid (senile
plaques) and intraneuronal τ-protein aggregation (neurofibrillary tangles), as one of the cru-
cial causes of this chronic, multifactorial disease, but to date, of unknown etiology [85,86].
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This hypothesis is supported by previous observations of reduced cholinergic activity,
particularly ACh levels, in post-mortem autopsies of AD brain patients.

In this respect, the implications of AChE and BuChE are well accepted. It has been
reported that the presence of AChE is significantly reduced in the brains of late-stage AD
patients (90%), whereas BuChE activity remains unchanged or even increases progressively.
This suggests that BuChE may have a compensatory role in maintaining ACh levels [87,88].
In addition, several studies provide evidence that these cholinesterases (ChEs) are also
involved in secondary neuropathogenic phenomena, such as the processing and deposition
of senile plaques [88]. Other studies link their contribution to other diseases, including
cardiovascular pathologies, obesity, diabetes mellitus type 2, or even cancer [87].

As a result of their involvement in AD and related dementias, ongoing research is
focused on the development of new promising treatments and early diagnostic methods.
Currently, cholinesterase inhibitors such as Donepezil (Aricep®), Rivastigmine (Exelon®) or
Galantamine (Razadyne®) are some of the few drug therapies that have clinically demon-
strated the ability to temporarily minimize and/or stabilize symptoms at different disease
stages [89]. They share a basic mechanism of action, which consists of the inhibition of
ChEs to prevent the breakdown of Ach.

In this context, the use of PET radiotracers that target AChE and/or BuChE can be
considered a promising strategy to facilitate the development of effective treatments or
monitor therapy response. By accurately designing these radiotracers with the aid of
computational techniques and taking advantage of their affinity and target selectivity, they
can be used to differentiate between different neurodegenerative disorders (Figure 14) [90].
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Figure 14. PET radiotracer to distinguish neurodegenerative disorders (asymmetric altered pat-
tern) [90]. Reprinted with permission from [90]. Copyright 2014, the Radiological Society of North
America (RSNA®).

Since the late 1990s, several investigations have been conducted in AD using two
different types of AChE’s PET radioprobes. A series of reversible or irreversible AChE
inhibitors (AChEIs) have been labeled with 11C and 18F to map and visualize AChE binding
sites in the brain. This pioneering strategy, which uses AChEIs themselves as radiotracers,
enables not only a mapping of active sites or enzyme activity in different brain regions
but also a direct analysis of the pharmacokinetic properties of these AChEIs. Another
strategy involves the design of labeled analogues of acetylcholine to quantify AChE activity
by measuring trapped membrane-impermeable polar metabolites that result from the
hydrolysis of these analogues. This approach allows for the measurement of changes
associated with aberrant enzyme activity [91].

First Class of AChE’s PET Probes (Labeled AChEIs)

In 1996, Pappata et al. reported the first in vivo imaging study of human AChE distri-
bution at different anatomical cerebral levels (striatum > cerebellum > thalamus > cerebral
cortex) using [11C]Physostigmine (79) as a tracer [92]. The synthesis of this radiolabeled
AChE inhibitor was previously described by Bonnot-Lours et al. in 1993 (Scheme 21) [93].
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Scheme 21. Radiosynthesis of [11C]-Physostigmine via nucleophilic attack of the
[11C]methylisocyanate [79].

Previously, in 1991, the same group reported N-[11C]methyltacrine (82) as a radioli-
gand (Scheme 22) [94]. However, this tracer exhibited non-specific binding to brain regions,
which could be attributed to the lack of selectivity of AChE over BuChE [92,95].
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Scheme 22. Radiosynthesis of [11C]methyltacrine via nucleophilic attack.

Funaki et al. described in 2003 the radiosynthesis protocol for [5-11C-methoxy]-
donepezil ([11C]-donepezil) 84 (Scheme 23), a representative inhibitor radiolabeled with
an N-benzylpiperidine moiety (83) that was examined in vitro and in vivo in rat brain [96].
The study proposed the use of 84 for in vivo visualization of AChE in the human brain
and for evaluating the efficacy of AChE inhibitor therapies [96]. In 2007, Okamura et al.
utilized 84 for PET imaging to measure in vivo AChE density in the brains of patients with
AD following 6-month oral administration of donepezil [97]. The aim of this study was to
validate 84 as a tool for the pharmacological evaluation of donepezil.
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Scheme 23. Radiosynthesis of [11C]-donepezil 84 [97].

Previously, De Vos et al. reported the biological evaluation of [11C]-donepezil as a
radiotracer for studying AChE, but with the difference that the methoxy group was the one
in position 6 [98]. This study did not yield conclusive results regarding the distribution
of AChE in the brain. Nevertheless, it highlighted the importance of radiolabeling at the
appropriate position of the structure [97].

Only a few examples in the literature use 18F for labeling molecules as potential
radiotracers to measure acetylcholinesterase in the brain, despite its several advantages
over 11C. One such advantage is its ease of cyclotron production and longer half-life
(109.8 min vs. 20.4 min), which allows for longer periods of in vivo scanning of biological
processes, providing more time to study and observe the desired phenomenon. Finally,
from a drug development perspective, the use of fluorine as a bioisostere of hydrogen offers
convenience due to its small van der Waals radius, strong bonding capability with carbon,
high electronegativity, and lipophilicity [88,99,100].

One attractive example of using 18F radionucleotides is the work of Lee et al., who
described the synthesis and biological evaluation of halogen-substituted donepezil ana-
logues, including their radiolabeled forms. This research highlights the importance of a
drug candidate that not only exhibits good activity but also allows for a non-radioactive
synthesis that can be adapted to a feasible radiosynthesis within a short period of time and
with good yields [101]. In this case, although the presence of an unlabeled fluorine in the
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C-3 position of the phenyl ring (86b) demonstrated the highest AChE inhibitory activity,
the [18F]fluorination at the less reactive meta-position was limited by labeling methods
(Scheme 24). Therefore, they ultimately opted to prepare the C-4 (para-18F substituted)
analogue of donepezil (87) through a reductive amination with 18F-labeled benzaldehydes,
which was previously reported by Wuest (Scheme 24) [100].
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Scheme 24. Feasible obtention of a potential non-radioactive drug candidate and radiosynthesis of
[18F]4 (para-substituted) isomer.

The same conclusion was also observed in the independent works of Lee [102] and
Ryu [103], who studied a series of 18F labeled compounds that contain the N-benzyl
piperidine benzoisoxazole lactam moiety as a pharmacophore (89a–b, Scheme 25).
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Scheme 25. Radiosynthesis of [18F]2 (ortho) 89a and [18F]4 (para) 89b with N-benzyl piperidine
lactam benzoisoxazole moiety as a pharmacophore [102,103].

As a continuation of these results and with the advancement of new radiochemical
methodologies, Lee et al. recently synthesized the 18F labeled meta-isomer ([18F]3) of CP-
118,954 using diaryliodonium salt precursors for direct nucleophilic 18F-labeling. Their aim
was to evaluate the in vivo affinity of AChE in rat brains, and their findings demonstrated
that AChE’s affinity is influenced by the position of aromatic fluorine, as represented in
Figure 15 [104].
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Figure 15. PET/CT images comparing the different [18F] isomers ([18F]2 is ortho, [18F]3 is meta and
[18F]4 is para-substituted) in a normal rat brain [104]. Reprinted from publication [104], Copyright
2017, with permission from Elsevier.
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Using the same pharmacophore as Lee and Ryu, in 2002, Musachio et al. reported
the radiosynthesis of CP118,954 (90) labeled with 11C instead of 18F (Scheme 26) [105]. In
parallel, Bencherif et al. conducted a study of this inhibitor as a PET imaging agent to
demonstrate the response to AChEIs such as donepezil and to assess changes in AChE
binding sites during the progression of AD [106].
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Scheme 26. Radiosynthesis of 91.

This type of inhibitor, benzoisoxazole lactam derivative 95, demonstrated potent
in vitro enzyme inhibition in the sub-nanomolar range compared to other related AChE in-
hibitors containing N-benzylpiperidine with indanone (92) [98], benzoisoxazoles (94) [107],
or indoles (93) [108] groups (Figure 16). Most of these compounds also exhibited high
selectivity for AChE over BuChE. However, despite the strong binding properties and en-
zymatic inhibitory activity in the nanomolar range of 92, 93, and 94, these inhibitors failed
in vivo mapping of AChE. The lack of correlation between the radioactivity of these PET
probes and the AChE binding affinity values, as well as previous data reported about the
density of AChE in the brain, shows the importance of selecting a specific pharmacophore
to design a suitable radiotracer with proper biodistribution [106].
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Figure 16. Types of pharmacophores to design PET probes for AChE (PDB: 4EY7) based on
different inhibitors.

Wang et al. developed a 11C-radiosynthesis method for conformationally restricted
quaternary ammonium rivastigmine analogues to image both AChE and BuChE (Figure 17,
101), based on a newer generator inhibitor with dual activity on both enzymes. These
probes, which belong to a different class of enzyme inhibitors, exhibit higher affinity
compared to their tertiary amine precursors. However, the presence of a positive charge
in their structure hampers their ability to pass through the BBB. Therefore, the authors
proposed their potential application as tracers for cardiac imaging of AChE and BuChE.
This highlights the importance of designing drugs/tracers that can effectively cross the
BBB when targeting the CNS in neurodegenerative disorders [109].
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Figure 17. First generation of radiolabeled rivastigmine (tertiary amine) and radiosynthesis of new
conformationally restricted quaternary ammonium rivastigmine analogues.

Optically pure (−)-galanthamine, another traditional AChE inhibitor that has received
clinical approval for the treatment of mild to moderate dementia in patients with AD [110],
is also used in the development of potential radiopharmaceutical probes for imaging brain
AChE. Building upon this inhibitor, in 2014, Kimura et al. described the synthesis and
radiolabeling of (−)- and (+)-galanthamines (104a–b) by N-methylation using [11C]methyl
triflate of norgalanthamines. These precursors were obtained optically pure by chiral
resolution (Scheme 27) [111].
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Scheme 27. Obtention and radiolabeling of (−)- and (+)-galanthamines.

In vitro and in vivo experiments were conducted using these compounds in mice to
study the distribution and activity of AChE. Biodistribution studies revealed significant
differences in the accumulation of radioactivity in different brain sections (such as the stria-
tum and cerebellum) for both tracers. Furthermore, a different response to pre-treatment
with donepezil was also observed in blocking experiments (Scheme 27). These findings
demonstrated that only (−)-[11C]galanthamine 104a can serve as a PET tracer for imaging
regions with abundant AChE, providing insights into the pathogenesis and progression of
AD. This can be attributed to its similar AChE inhibitory activity to commercially available
(−)-galanthamine hydrobromide, along with its specific binding properties [111].

Recent studies have focused on the design of PET probes with enhanced selectivity
between AChE and BuChE. Despite sharing 65% of the aminoacid sequence, these two
enzymes differ in their tissue distribution, kinetic properties, and substrate specificity.
AChE is predominantly found in nerve cells, specifically in the synaptic cleft (in its soluble
form) and in the synaptic membranes (in its bound form). On the other hand, BuChE
is primarily associated with glial cells [112]. Both enzymes present a catalytic active
site situated at the bottom of a hydrophobic gorge as well as a peripheral anionic site.
However, the gorge volume of the catalytic site in BuChE is significantly larger (~200 Å)
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compared to that of AChE (Figure 18) [113]. This conformational disparity enables BuChE
to accommodate larger substrates and confers differences in their substrate specificity [112].
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In this context, Sawatzky et al. were the pioneers in synthesizing a selective and potent
inhibitor-type radiotracer for BuChE. They achieved this by incorporating 11C or 18F as
radioisotopes into the carbamate moiety (105) of a tetracyclic precursor (Scheme 28) [115].
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Scheme 28. Synthetic routes for preparing a selective radiolabeled pseudo-irreversible BuChE
PET probe.

As shown in Figure 19, the mechanism of action of these PET probes is based on
covalent and pseudo-irreversible radiolabeling through a carbamoylation reaction of a
serine hydroxyl residue at the active site of the BuChE enzyme [71].
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In vitro kinetics of enzyme inhibition and a first ex vivo autoradiography with healthy
mouse brain slices were also carried out to demonstrate that this type of tracer could enable
the in vivo mapping of BChE distribution [115].

The inhibition of this type of ligand is transient due to the chemical instability of
carbamates. This fact hinders the design of these carbamate-based PET tracers due to
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the complexity of their kinetic and binding behaviors. It is also necessary to achieve a
precise balance in the carbamoylation rate to accurately reflect the true distribution of
BuChE throughout the body and the CNS [87]. Several publications have reported that the
introduction of heterocyclic moieties and polar groups at the end of alkyl chains in these
carbamate inhibitors might improve physicochemical properties, such as protein binding,
penetration through the BBB, and water solubility [114].

For this reason, more recently, Gentzsch et al. have developed a new generation of
18F-PET carbamate tracers with a morpholine moiety at the end of alkyl chains, leading to
a significantly prolonged duration of action. The synthesis of these probes has been carried
out using a novel protecting group strategy for 18F radiolabeling of carbamate precursors
(Scheme 29) [87].
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Scheme 29. Synthesis of 110. Reagents and conditions: (i) 1. epichlorohydrine, RT, 3 h; 2.
H2SO4, 140 ◦C, 1 h; 3. H2O, CHONH2, 145 ◦C, 20 h; (ii) H2, Pd/C, MeOH, RT, 1 h; (iii) 1. 2-
(6-bromohexyl)isoindoline-1,3-dione, N,N-diisopropylethylamine (DIPEA), DMF, 100 ◦C, 20 h; 2.
TosCl, NEt3, CH2Cl2, RT, 20 h; (iv) H4N2·H2O, EtOH, 80 ◦C, 1.5 h; (v) 1. p-nitrophenyl chloroformate,
NEt3, CH2Cl2, 3 h, RT; 2. 13-methyl-5,8,13,13a-tetrahydro-6H-isoquinolino [1,2-b]quinazolin-10-ol,
NaH, CH2Cl2, 2 h, RT; (vi) TMS Cl, para-formaldehyde, CH2Cl2, RT, 18 h; (vii) MeOH, RT, 1 h; (viii) 1.
[ 18F]KF, K222, MeCN, 110 ◦C, 10 min; 2. 6 M HClaq, 90 ◦C, 5 min.

Second Class of AChE´s PET Probes (Analogues of ACh)

The design of substrate types for AChE and/or BuChE radioprobes for in vivo PET
imaging is based on modifying the structure of ACh to obtain a neutral, lipophilic substrate
that is permeable to the BBB. As depicted in Figure 20, once the radioprobe (of a lipophilic
nature) enters the brain (k1), it undergoes hydrolysis to form a polar radiometabolite that
is unable to cross the membrane (due to its hydrophilic nature). The ratio of the trapped
radiometabolite relies on the activities of ChEs (k3), and the evaluation of the generated
radioactivity is crucial in elucidating the role of cholinesterase enzymes in AD. According
to Kikuchi et al., when applying the two-tissue compartment kinetic model, it is also
important to consider the rate of back diffusion of the radioprobe (k2) and the rate of
metabolite elimination (kel) to obtain an accurate value for k3, which is associated with
AChE and/or BuChE activities [91].
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In most of the examples described in the literature, the basic scaffold consists of a
N-methylpiperidin-4-yl ester with a different acyl group (acetate, propionate, isobutyrate,
and butyrate), which is hydrolyzed to an N-methylpiperidin-4-ol metabolite. This acyl
group determines the specificity of the enzyme. As mentioned earlier, larger substrate sizes
provide a better fit for BuChE. Hence, [11C]MP4A (118d) and [11C]MP4P (118e) exhibit
higher specificity for AChE compared to BuChE, whereas [11C]MP4B (118f) is considered a
potential radiopharmaceutical for BuChE. Currently, the first two 11C labeled analogues
are approved for clinical use in neurodegenerative diseases by PET (Table 1) [116,117].

Table 1. Properties of most widely used 11C radiotracers clinically approved to evaluate neurodegen-
erative disorders [117].

Selectivity for AChE

Radiotracer Human cerebral cortex
(Irie et al. 1996) PET scan time Optimum brain regions for measurement in humans

[11C]MP4A 94% 40–60 min Cerebral cortex, thalamus

[11C]MP4P 86% 60–80 min Cerebral cortex, thalamus, and cerebellar
cortex (striatum)

For instance, in a small clinical two-phase study lasting 12 months, Kadir et al. utilized
[11C]MP4P (118e) to investigate the effect of galantamine on cortical AChE and nicotinic
receptor binding in 18 patients with mild AD. The primary focus of the study was to
evaluate these effects using PET imaging techniques [118].

As mentioned in the introduction, authors such as Namba et al. and Shinotoh et al.
have proven the use of these radioligands as a valid strategy to distinguish between AD (B),
Parkinson’s disease (C), and progressive nuclear palsy (D). This distinction is supported by
the PET-generated images shown in Figure 21 [119,120].

The design of PET probes with N-methylpiperidin-3-yl esters has also been studied.
However, the presence of an asymmetric carbon in these compounds complicates their
use as radiotracers. Prior separation of the optical isomers is necessary to establish a
proper correlation with the described kinetic model. This separation is required due to the
different rates of hydrolysis of isomers by AChE, and it is essential for the accurate design
of a radioprobe [121].

In terms of the radiosynthesis of these probes, the most commonly used method
is N-[11C]methylation using [11C]methyl iodide or [11C]methyl triflate as radiolabeled
precursors. However, when mapping cerebral AChE using the metabolite trapped method,
it is not suitable to include the radioisotope in the acyl group. If the acyl group were
radiolabeled, the resulting [11C]acetic acid generated in the blood would enter the brain
and be metabolized by glial cells into 11CO2, which would be rapidly cleared from the
brain (Scheme 30) [91].
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Scheme 30. Most commonly method for radiosynthesis of 11C-radiolabeled ACh analogues.

Once again, 18F radiolabeled derivatives were designed to increase the half-life of
the radiotracer. The most significant examples are [18F]FEtP4A (121a) and [18F]FEP-4MA
(121b, Scheme 31). However, the preparation strategy had to be modified for these tracers
due to the instability of the fluoromethyl group attached to the secondary amine and the
adverse effect on AChE activity caused by the undesirable fluorine ion generated through
defluorination. Kikuchi et al. described the successful preparation of these radioligands
through the use of radioactive fluoroethylation of N-piperidin-4-yl esters (120a-b) with
[18F]fluoroethyl triflate, tosylate, or different halogens (-Br, -I) [91].
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4. Materials and Methods

The bibliographic search was carried out using the Google and Google Scholar search
engines combined with different databases such as PubMed (https://pubmed.ncbi.nlm.nih.
gov (accessed on 1 April– 26 July 2023)), Web of Science (www.webofscience.com (accessed
on 1 April–26 July 2023)), or Scopus (www.scopus.com (accessed on 1 April–26 July 2023)).
All the chemical structures were drawn using ChemDraw 22 (www.perkinelmer.com
(accessed on 1 May–17 August 2023)). The graphical abstract representation and the
indicated figures were created using BioRender (www.biorender.com (accessed on 1 July–
23 August 2023)).
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5. Conclusions

While there are several reviews in the literature that compile probes targeting enzymes,
very few encompass esterases, and, to the best of our knowledge, none have been published
in the last two years. This is why we find it relevant to gather PET and fluorescent probes
that target esterases, focusing mainly on acetylcholinesterases, butyrylcholinesterases, and
carboxyesterases. These enzymes are involved in pathologies of the central nervous system
and cancer, which have a high incidence in the population.

The development of probes targeting these enzymes is of utmost importance, not only
for enabling early diagnosis to improve patients’ prognosis but also for aiding in therapy
monitoring and even the development of new drugs. Additionally, the advancement of
new non-invasive in vivo imaging approaches has broad applicability, operating at various
levels, including molecular, cellular, and organ levels, or even the whole organism.

In conducting this review, we focused on analyzing the probes developed for different
applications and drawing conclusions about the key factors to consider during probe
development. While our review is centered on esterases, the methodologies employed
and the conclusions reached can be applied to probes targeting any other target for the
aforementioned diseases or others. We believe that sharing this knowledge will be beneficial
to the scientific community interested in entering this area of research. In fact, within our
research group, we have embarked on a new line of investigation to develop PET and
fluorescent probes targeting kinases using this knowledge.

Author Contributions: A.R. and I.O. jointly conceptualized the article and supervised its writing.
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