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Abstract: Commercially available cathinones are drugs of long-term abuse drugs whose pharma-
cology is fairly well understood. While their psychedelic effects are associated with 5-HT2AR, the
enclosed study summarizes efforts to shed light on the pharmacodynamic profiles, not yet known at
the receptor level, using molecular docking and three-dimensional quantitative structure–activity rela-
tionship (3-D QSAR) studies. The bioactive conformations of cathinones were modeled by AutoDock
Vina and were used to build structure-based (SB) 3-D QSAR models using the Open3DQSAR engine.
Graphical inspection of the results led to the depiction of a 3-D structure analysis-activity relationship
(SAR) scheme that could be used as a guideline for molecular determinants by which any untested
cathinone molecule can be predicted as a potential 5-HT2AR binder prior to experimental evaluation.
The obtained models, which showed a good agreement with the chemical properties of co-crystallized
5-HT2AR ligands, proved to be valuable for future virtual screening campaigns to recognize unused
cathinones and similar compounds, such as 5-HT2AR ligands, minimizing both time and financial
resources for the characterization of their psychedelic effects.

Keywords: cathinones; 5-HT2AR; molecular docking; 3-D QSAR

1. Introduction

The aminergic family of G-protein coupled receptors (GPCRs) physiologically re-
spond to hormonal and neurotransmitter stimuli by activating internal signal transduction
pathways and cellular responses [1], thus representing a valuable target class for drug
discovery [2]. The 5-HT receptors (5-HTRs), as the largest subfamily of GPCRs, are acti-
vated by the neurotransmitter and neuromodulator serotonin (i.e., 5-hydroxytryptamine,
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5-HT). After being biosynthesized in the intestine from tryptophan, the hormonal be-
havior of 5-HT in the periphery is associated with mitogenesis and the proliferation of
fibroblast cells [3], homeostasis of glucose and lipid metabolism [4], enhanced arterial
contraction during cardiac hypertrophy [5,6], bronchoconstriction [7], rhythmic breath-
ing, and circadian rhythms [8], as well as pain, increased appetite, body temperature,
etc. [9]. Nevertheless, small amounts of serotonin are biosynthesized in the axons of brain
neurons, where 5-HT acts within the CNS (i.e., neocortex and hippocampi of the brain)
as a major site for the expression of 5-HT receptors (5-HTRs), regulating mood, social
cognition [10], neurogenesis [11], short- and long-term memory [12], spatial memory that
enables navigation, sexual behavior, impulsivity, aggression, and migraine attacks [13,14].

At least 14 different serotonin receptors (5-HTRs), divided into seven subgroups
(i.e., 5-HT1-7R), constitute the serotonergic system, primarily located on the membranes
of either presynaptic or postsynaptic neurons [15]. The studied 5-HT2AR here (Figure 1),
together with the 5-HT2BR and 5-HT2CR, is expressed on the postsynaptic membrane and
acts as a mediator between the extracellular physiological ligand serotonin and intracellular
G-proteins [1,16]. Activation of the 5-HT2AR by 5-HT induces the involvement of the
Gαi, Gαq/11, or Gαs proteins and subsequently increases the cellular levels of inositol
triphosphate (IP3) and diacylglycerol (DAG) [17]. The 5-HT2AR-mediated pharmacology
distinguishes the macromolecule as a drug target in the treatment of Parkinson’s and
Alzheimer’s diseases, as well as mental disorders such as schizophrenia, bipolar disorder,
depression, anxiety, and insomnia [16]. On the other hand, the 5-HT2AR is also a target for a
variety of recreational drugs, mediating the effects of potent psychoactive substances such
as lysergic acid diethylamide (LSD) or amphetamines, commonly known as psychedelics
or hallucinogens [1,18].

Although a significant number of ligands co-crystallized with 5-HT2AR were available
and deposited in the Protein Data Bank at the start of this investigation (Table 1, 13 ligands
found in 14 complexes), only nine of them were homogeneously associated with inhibition
constants (i.e., Kis) and thus were insufficient for the development of broad and computa-
tionally applicable medicinal chemistry models. Therefore, attention was focused on the
literature concerning amphetamines and their β-keto analogs cathinones, as compounds
known to exert 5-HT2AR-mediated psychedelic effects and well characterized by correspond-
ing inhibition constants (Table 2), to elucidate their hitherto unknown binding modes and to
describe their pharmacodynamic properties using 3D QSAR models. The 5-HT2AR ligands
(besides those found co-crystallized within 5-HT2BR, Table 1) were further used either for
defying structure-based alignment assessment (SBAA) rules, which were further employed
for the generation of bioactive conformations of cathinones, or as an ultimate prediction test
set (TSCRY) for external validation of 3-D QSAR models (see further discussion).

As natural products of the khat plant (Catha edulis (Vahl) Forssk. ex Endl.), cathinones
were initially structurally optimized for the medical treatment of parkinsonism, obesity, and
depression, but are now used as “legal highs” (also known as “bath salts”, “research chemi-
cals not for human consumption”, or “plant food”) [19]. Recently developed DFT-based
protocols have successfully reproduced experimental spectral data of selected synthetic
cathinones (SCs) and can be further used for the identification/prediction of physico-
chemical parameters of either known or new SCs, even in forensic applications [20]. SCs
primarily target presynaptic plasma membrane transporters for dopamine, norepinephrine,
and serotonin (DAT, NAT, and SERT, respectively) [21]. Nevertheless, they increase the
concentration of 5-HT in the synaptic space, providing the basis for CNS stimulatory and
sympathomimetic effects characterized by increased blood pressure, heart rate, mydriasis,
and hyperthermia [22]. As monoamine releasers, they enhance neurotransmitter transmis-
sion and increase synaptic concentrations; as monoamine reuptake inhibitors, they prevent
the return of neurotransmitters to presynaptic neurons and consequent metabolic degrada-
tion while simultaneously activating monoamine receptors within the limbic-corticostriatal
pathway [23].
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Figure 1. Left: The crystal structure of 5-HT2AR in complex with LSD (as deposited at PDB, 
https://www.rcsb.org/, PDB ID: 6HWT [16], accessed on 1 December 2022). LSD is depicted in blue 
encircled by the transparent sphere, TM1 (residues 69–101) is colored in blue, TM2 (residues 111–
137) is depicted in plum, TM3 (residues 114–179) is painted in orange, TM4 (residues 188–217) is 
colored in lime green, TM5 (residues 231–265) is depicted in dark red, TM6 (residues 315–349) is 
painted in violet-red, TM7 (residues 353–383) is colored in dark grey, intracellular amphipathic helix 
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Figure 1. Left: The crystal structure of 5-HT2AR in complex with LSD (as deposited at PDB,
https://www.rcsb.org/, PDB ID: 6HWT [16], accessed on 1 December 2022). LSD is depicted in
blue encircled by the transparent sphere, TM1 (residues 69–101) is colored in blue, TM2 (residues
111–137) is depicted in plum, TM3 (residues 114–179) is painted in orange, TM4 (residues 188–217)
is colored in lime green, TM5 (residues 231–265) is depicted in dark red, TM6 (residues 315–349) is
painted in violet-red, TM7 (residues 353–383) is colored in dark grey, intracellular amphipathic helix
H8 (residues 384–399) is depicted in yellow, two intracellular loops ICL1 and ICL2 (residues 102–111
and 179–187) are illustrated in cyan and hot pink, respectively, three extracellular loops ECL1, ECL2,
and ECL3 (residues 134–138, 218–230, and 350–352) are labeled in gold, dim gray, and dark slate gray,
respectively; Right: The crystal structure of 5-HT2AR immersed into dipalmitoylphosphatidylcholine
(DPPC) lipid bilayer (as deposited at OPM, https://opm.phar.umich.edu/, entry: 4282, accessed on
2 March 2023): the DPPCs are illustrated with transparent gray spheres, oxygen atoms from water
molecules are colored in red, sodium atoms are presented as pink spheres, and chlorine atoms are
described as green spheres. For the clarity of the presentation, hydrogen atoms were omitted.

The signaling and neurobehavioral effects of hallucinogens are associated with a
5-HT2AR expression on cortical layer V pyramidal neurons [17,24], suggesting the inves-
tigation of SCs as potential ligands for this receptor. Through 5-HT2AR binding, SCs
can induce euphoria, increased empathy, sociability, energy, and alertness, but also rhab-
domyolysis and autonomic symptoms such as tachycardia, hypertension, hyperthermia,
ecstasy, sociability, alertness, empathy, and increased energy [21,22]. However, when taken
at higher doses or for longer periods, stimulants can cause many psychiatric symptoms,
including anxiety, agitation, and fear, which can progress to psychosis (delusions and
hallucinations) and delirium [19,22]. Compared with amphetamines, several SCs, such as
α-PPP (9) and MDPV (14) (Table 1), have more severe psychiatric side effects [21].

Since the mechanisms by which SCs exert the above-described effects as 5-HT2AR
ligands are not yet fully understood and defined, the present study investigated the
putative bioactive conformations and structure-based (SB) pharmacodynamic profiles of
SCs (Table 2). The binding modes of the SCs, explored by molecular docking and 3-D QSAR
studies were associated with their reported pharmacological profiles, providing a basis for
the elucidation of the psychedelic or hallucinogenic effects of the SCs at the molecular level.
Derived SB 3-D structure–activity relationships were found in good agreement with various

https://www.rcsb.org/
https://opm.phar.umich.edu/
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ligands, either reported in the literature or experimentally resolved as 5-HT2AR ligands, for
which the obtained results can be used in future virtual screening campaigns to reveal new
SCs and similar compounds not yet recognized as 5-HT2AR ligands, minimizing both time
and financial resources for the characterization of their potential psychedelic effects.

2. Results and Discussion
2.1. Crystal Dataset Compilation

The experimentally resolved complexes of ligands co-crystallized with either 5-HT2AR
or 5-HT2BR (Table 1) were retrieved from the Protein Data Bank (PDB, https://www.rcsb.
org/, accessed on 1 December 2022). Fourteen experimental 5-HT2AR/ligand complexes
were assembled, including the full 5-HT2AR antagonists (FAs) and antipsychotics risperi-
done (PDB ID: 6A93) [16], and zotepine (PDB ID: 6A94 [16]), a 5-HT2AR agonist (AG) and
psychotic LSD (PDB IDs: 6WGT [25] and 7WC6 [26]), the inverse agonist (IA) 1-methyl-4-
[(5~{S})-3-methylsulfanyl-5,6-dihydrobenzo[b][1]benzothiepin-5-yl]piperazine (PDB ID:
6WH4 [25]), the 5-HT2AR partial antagonist (PA) and hallucinogen 25-CN-NBOH (PDB
ID: 6WHA [25]), the 5-HT2AR agonist (3R)-3-methyl-5-(1H-pyrrolo[2,3-b]pyridin-3-yl)-
1,2,3,6-tetrahydropyridin-1-ium (7RAN [27]), the FAs cariprazine (PDB ID: 7VOD [28]) and
aripiprazole (PDB ID: 7VOE [28]), the AGs serotonin (PDB IDs: 7WC4 [26])psilocin (the
active metabolite of psilocybin, PDB ID: 7WC5 [26]), lisuride (PDB ID: 7WC7 [26]), and
FAs lumateperone (PDB ID: 7WC8 [26]), and the non-hallucinogenic psychedelic analog
IHCH-7113 (PDB ID: 7WC9 [26]).

The 5-HT2BR ligands were AGs ergotamine (PDB IDs: 4IB4 [29], 4NC3 [30] and
5TUD [31]), LSD (PDB IDs: 5TVN [31], 7SRR [32] and 7SRS [32]), the agonists N,N-diethyl-
N’-[(8α)-6-methyl-9,10-didehydroergolin-8-yl]urea (PDB ID: 6DRX [33]), (8β)-N-[(2S)-1-
hydroxybutan-2-yl]-6-methyl-9,10-didehydroergoline-8-carboxamide (PDB ID: 6DRY [33]),
(8α)-N-[(2S)-1-hydroxybutan-2-yl]-1,6-dimethyl-9,10-didehydroergoline-8-carboxamide
(PDB ID: 6RDZ [33]), as well as FA (1S)-1-[(2-chloro-3,4-dimethoxyphenyl)methyl]-6-methyl-
2,3,4,9-tetrahydro-1H-beta-carboline (PDB ID: 6DS0 [33]).

2.2. Literature Datasets Set Compilation

The SCs as 5-HT2AR ligands were retrieved from the literature to compile a training
set (TR) (Table 2) [21,34–45], whereas the test set (TS) was compiled from listed clinically
approved drugs (Table 3) [46–62] with known affinities for 5-HT2AR, but with unknown
binding modes for all compounds except 25 (found within the 7VOE protein [28]). For ei-
ther TR or TS compounds, analysis of the available biological data revealed a homogeneous
association with potencies described as pKis (-logKi). Thus, the TR included Cathinone
(1) and its derivatives, Flephedrone (2), Mephedrone (3) (the most commonly abused
cathinone, non-selective monoamine uptake inhibitor [34,35]), and Methcathinone (4), as
likely AGs and psychedelic compounds, as well as FAs and rather antidepressive drugs
4-Bromomethcathinone (5), 3-Bromomethcathinone (6, [21]), 2-Fluoromethcathinone (7),
and 2-Trifluoromethoxy-methcathinone (8), also known to act as preferential dopamine
active transporter (DAT) and noradrenaline transporter (NAT) inhibitors and α1A adreno-
ceptor agonists/antagonists [21,34].

The experimentally determined 5-HT2AR IAs/FAs and non-psychostimulants
pyrovalerone-based SCs, namely α-PPP (9 [21]), 4-Methyl-α-PPP (10 [21]), 4-Bromo-α-
PPP (11), and 3-Bromo-α-PPP (12), were also included in the TR, alongside with Naphy-
rone (13), MDPV (14), Pyrovalerone (15), and MDPPP (16) as experimentally validated
FAs, also known as norepinephrine and dopamine reuptake inhibitors (NRIs and DRIs,
respectively) [36,37].

https://www.rcsb.org/
https://www.rcsb.org/
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Table 1. Names, structures, and inhibition constants of co-crystalized 5-HT2AR and 5-HT2BR ligands.

PDB ID
P (Mechanism) a

Compound’s
Structure pKi Ref. PDB ID

P (Mechanism) a
Compound’s

Structure pKi Ref.

5-HT2AR ligand 7WC7
AG
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Table 2. Names, structures, and inhibition constants of cathinones as human 5-HT2AR ligands
compiling the TR.

Name
(Number)

P (Mechanism) a

Compound’s
Structure pKi Ref.

Name
(Number)

P (Mechanism) a

Compound’s
Structure pKi Ref.

Cathinone and its derivatives Naphyrone
(13) FA
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a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Table 3. Commercial names, structures, and inhibition constants of human 5-HT2AR ligands com-
piling the TS. 

Name 
(Number)  

P (Mechanism) a 

Compound’s 
Structure 

pKi Ref. 
Name 

(Number)  
P (Mechanism) a 

Compound’s 
Structure 

pKi Ref. 

Aripipra�ole 
(25) FA a 

 

 
 

8.57 [46] 
Norfenfluramine 

(36) AG  
6.82 [47] 

BW-723C86 
(26) AG 

 

 
 

7.2 [48] Olan�apine 
(37) IA 

 

8.88 [49] 

Clo�apine 
(27) FA 

 

 
 

8.39 [50] 
Quentiapine 

(38) FA 
 

6.81 [50] 8.39 [50] Quentiapine
(38) FA
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6.81 [50] 6.81 [50]
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8.22 [51] 
R060-0175 

(39) IA 
 

7.44 [48] 

Ketanserin 
(29) FA 

 

 
 

9.67 [52] 
Risperidone 

(40) IA 
 

9.69 [50] 

Lorcaserin 
(30) AG 

 

 
 

6.95 [53] RS-127,455 
(41) FA 

 

6.03 [48] 

MDL-100,907 
(31) FA 

 

 
 

8.77 [54] 
Saprogrelate 

(42) FA 
 

8.52 [55] 

Mesulergine 
(32) FA 

 

 
 

7.34 [56] SB-204,741 
(43) FA  

5.00 [57] 

Mianserin 
(33) FA 

 

 
 

8.15 [58] 
SB-206,553 

(44) FA 

 

 
 

5.64 [59] 

Mirta�apine 
(34) IA  

7.78 [60] SB-242,084 
(45) FA 

 

 
 

6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

8.22 [51] R060-0175
(39) IA
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6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

7.44 [48]

Ketanserin
(29) FA
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7.78 [60] SB-242,084 
(45) FA 

 

 
 

6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

9.67 [52] Risperidone
(40) IA
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Ketanserin 
(29) FA 
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(40) IA 
 

9.69 [50] 
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(30) AG 

 

 
 

6.95 [53] RS-127,455 
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6.03 [48] 

MDL-100,907 
(31) FA 

 

 
 

8.77 [54] 
Saprogrelate 
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7.34 [56] SB-204,741 
(43) FA  

5.00 [57] 

Mianserin 
(33) FA 

 

 
 

8.15 [58] 
SB-206,553 

(44) FA 

 

 
 

5.64 [59] 

Mirta�apine 
(34) IA  

7.78 [60] SB-242,084 
(45) FA 

 

 
 

6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

9.69 [50]

Lorcaserin
(30) AG
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Ketanserin 
(29) FA 

 

 
 

9.67 [52] 
Risperidone 

(40) IA 
 

9.69 [50] 

Lorcaserin 
(30) AG 

 

 
 

6.95 [53] RS-127,455 
(41) FA 

 

6.03 [48] 

MDL-100,907 
(31) FA 

 

 
 

8.77 [54] 
Saprogrelate 
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7.34 [56] SB-204,741 
(43) FA  
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(33) FA 

 

 
 

8.15 [58] 
SB-206,553 

(44) FA 

 

 
 

5.64 [59] 

Mirta�apine 
(34) IA  

7.78 [60] SB-242,084 
(45) FA 

 

 
 

6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

6.95 [53] RS-127,455
(41) FA

Molecules 2023, 28, x FOR PEER REVIEW 8 of 33 
 

 

CP-809,101 
(28) AG 

 

 
 

8.22 [51] 
R060-0175 

(39) IA 
 

7.44 [48] 

Ketanserin 
(29) FA 
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(45) FA 

 

 
 

6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

6.03 [48]

MDL-100,907
(31) FA
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8.77 [54] 
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8.52 [55] 
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7.34 [56] SB-204,741 
(43) FA  
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(44) FA 
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(34) IA  

7.78 [60] SB-242,084 
(45) FA 

 

 
 

6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

8.77 [54] Saprogrelate
(42) FA
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6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

8.52 [55]

Mesulergine
(32) FA
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6.07 [61] 
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(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

7.34 [56] SB-204,741
(43) FA
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5.64 [59] 

Mirta�apine 
(34) IA  
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(45) FA 

 

 
 

6.07 [61] 

Naftidrofuryl 
(35) IA 

 

 
 

6.20 [55] WAY-161,503 
(46) AG  

7.40 [62] 

a Pharmacology: AG—agonist, IA—inverse agonist, PA—partial agonist, FA—full antagonist. 

Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19), 
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of 
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants, 
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like 
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selec-
tive monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and 
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR 
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those 
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41]. 

5.00 [57]
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(33) FA
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Benzo[d][1,3]dioxole-based SCs, MBDB (17), MDMA (ecstasy, 18), Butylone (19),
Ethylone (20), MDEA (21), and Methylone (22) were also listed in the TRs as examples of
SCs with the ability to directly bind 5-HT2AR most likely as AGs and psychostimulants,
resulting in the release of 5-HT. Of these, 18 induces excitation and hallucinogenic-like
perceptual changes at higher doses [38–40], while 19, 20, and 22 are known as non-selective
monoamine uptake inhibitors [33–36]. The precursors of SCs, amphetamine (23) and
methamphetamine (“crystal meth”, 24), likewise considered to be AGs, completed the TR
compilation. Binding to 5-HT2AR, 23 and 24 induce behavioral effects opposite to those
induced by stimulation of 5-HT1AR (5-HT2AR-mediated depolarization vs. the 5-HT1AR-
mediated hyperpolarization) [18,41].

Since the quantitative parameters for psychedelic or hallucinogenic effects, such as the
onset of action (OA) and duration of action (DA), are known for only a few compounds
(1–8 [35,43–45], 13, 14, and 16 [36,37], and 23 and 24 [34], Table S1, Supplementary Mate-
rials), it is not possible to derive a robust quantitative psychoactivity relationship model.
Therefore, the pKis of the SCs (Table 2) were correlated with the SB bioactive conformations
of their 5-HT2ARs using 3-D QSAR models, whose predictive abilities were externally
validated by the compiled TS.

2.3. Definition of Optimal Protocol for the Alignment of 5-HT2AR Ligands

In the development of the CoMFA-like 3-D QSAR models, a crucial step is represented
by the alignment rules [63]. Therefore, considering the lack of SCs co-crystallized with
5-HT2AR (Table 2), their bioactive conformations were modeled using as much experi-
mentally available structural data as possible on 5-HT2ARs and 5-HT2BRs crystallized in
complexes with different ligands (Table 1) [16,25–33,64]. Attention was initially focused on
lysergic acid diethylamide (LSD), the prototypical human hallucinogen, one of the most
potent psychoactive (and recreational) drugs [31], and an experimentally confirmed agonist
for both 5-HT2AR (PDB IDs: 6WGT and 7WC6, [25,26] and 5-HT2BR (PDB IDs: 5TVN [31],
6DRX [33], 7SRR [32], and 7SRS [32]) isoforms [64].

Regardless of the active site, LSD showed an almost constant binding conformation
with the lowest root mean square deviation (RMSD) (Table 4). Sequence and active site
similarities of 5-HT2AR and 5-HT2BR were approximately 40% and 60%, respectively
(Figure 2), therefore both targets were used to establish a protocol for the alignment of
SCs in the 5-HT2AR. To this end, an alignment evaluation of ligands co-crystallized in
either 5-HT2AR (Figure 3a, Table 4) [16,25–28] or 5-HT2BR (Figure 3b, Table 5) [29,30,32,33]
was performed to establish the alignment rules to define the binding modes of TR and TS
compounds. The quality of alignment was evaluated by SB 3-D QSAR models in terms of
q2 value [65].

Table 4. The RMSD matrix of either 5-HT2AR or 5-HT2BR proteins bound to LSD.

5TVN 6DRX 6WGT 7SRR 7WC6

5TVN 0.000 1.012 0.731 1.154 1.077
6DRX 1.012 0.000 0.795 1.135 1.165
6WGT 0.731 0.795 0.000 0.765 0.727
7SRR 1.154 1.135 0.765 0.000 1.195
7WC6 1.077 1.165 0.765 1.195 0.000
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Figure 2. Sequence alignment between human 5-HT2AR (Uniprot entry P28223) and 5-HT2BR
(UniProt entry P41596) performed by Clustal Omega [66]. Special characters meanings: * (Asterix)
positions with a single, fully conserved residue; “:” (colon) positions with conservation between
amino acid groups of similar properties; “.” (period) positions with conservation between amino acid
groups of weakly similar properties.
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Figure 3. The docking assessment of LSD co-crystallized into 5-HT2AR (the 6WGT crystal [16]), EC
conformation in pink, ECRD conformation in blue, RCRD conformation in green, ECCD conforma-
tion in red, and RCCD conformation in yellow (a); LSD co-crystallized into 5-HT2BR (the 5VNT
crystal [31]), EC conformation in pink, ECRD conformation in blue, RCRD conformation in green,
ECCD conformation in red, and RCCD conformation in yellow (b).
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Table 5. Structure-based alignment assessment of 5-HT2AR ligands within the RCCD stage.

Code AutoDock Vina SMINA DOCK PLANTS Ref.
SF a Vina Vinardo ad4 chemplp plp plp95

Randomized Conformation Cross-Docking (RCCD)

6A93 b 2.784 c 2.843 2.742 2.563 3.563 3.231 2.573 2.742 2.746 [16]
6A94 2.657 2.224 3.241 3.431 3.431 3.422 2.991 2.664 2.561 [16]

6WGT 2.943 1.943 2.941 2.567 2.567 2.993 2.892 3.245 2.993 [16]
6WH4 2.995 1.971 2.518 2.783 2.783 2.961 2.973 2.835 3.762 [25]
6WHA 3.726 2.941 3.663 3.452 3.452 2.693 2.116 2.985 3.426 [25]
7RAN 3.651 2.365 2.632 2.954 3.954 3.652 2.639 2.954 3.624 [27]
7VOD 3.648 1.984 3.654 3.642 3.642 2.584 2.652 2.667 3.621 [28]
7VOE 6.257 1.965 2.548 2.984 2.984 2.524 2.547 2.647 2.457 [28]
7WC4 3.658 2.695 2.458 2.658 2.658 3.632 3.698 3.965 3.621 [26]
7WC5 2.398 2.657 2.654 2.984 2.984 3.324 3.258 3.541 2.514 [26]
7WC6 3.695 3.625 3.254 3.652 3.652 2.659 2.987 2.564 2.558 [26]
7WC7 2.698 3.954 2.698 2.874 2.874 2.584 2.898 2.842 2.774 [26]
7WC8 3.654 3.625 2.548 2.636 2.636 3.395 2.235 2.665 2.664 [26]
7WC9 3.658 3.695 2.547 2.584 2.584 2.987 2.397 2.635 2.981 [26]
DA d 21.43% 50.00% 35.71% 35.71% 28.57% 28.57% 42.85% 42.85% 32.14%

a Scoring function; b Experimental conformation; c Root-Mean-Square-Deviation measured between the heavy
atoms of the ligand’s experimental and the ligand’s re-/cross-aligned conformation; d Docking accuracy.

Structure-Based Alignment Assessment

Either ligands/5-HT2AR (Table 5) or ligands/5-HT2BR (Table 6) experimentally re-
solved complexes were superimposed using 7WC8 [26,66] as a template, with the lowest
resolution of 2.45 Å. For the SB alignment assessments (SBAAs) procedure [67], the best
performing molecular docking algorithm/scoring function pair in reproducing the exper-
imentally bound conformations of the ligands was investigated using ligands extracted
from either 5-HT2AR (Table 5) or 5-HT2BR (Table 6) complexes (at the same time pro-
viding a basis for future cross-pharmacology in a discrete fashion) [67]. The following
protocol was established: first, any ligand was subjected to SBAA [67] using free or open-
source molecular docking programs: AutoDock [68], AutoDock Vina (hereafter Vina) [69],
DOCK [70], SMINA [71], and PLANTS [72], with all available scoring function (SF) vari-
ants. As previously described, the SBAA protocol [67] was investigated at four levels of
difficulty: experimental or randomized ligand conformation (EC and RC, respectively),
re-docking (RD) (ECRD and RCRD, respectively), and cross-docking (CD) (ECCD and
RCCD, respectively). While the RMSD data associated with ECRD, RCRD, and ECCD are
reported as Supplementary Materials (Tables S2 and S3), the RCCD-related RMSD val-
ues, which describe the docking programs’ abilities in reproducing experimental binding
modes from initial random ligand conformations into a never-seen protein environment
(the most difficult scenario), are reported for either 5-HT2AR or 5-HT2BR as Tables 5 and 6,
respectively.

Regarding the reproduction of co-crystallized ligand conformations in 5-HT2AR
(Table 5, Figure 3a), in the ECRD phase (Table S2, Supplementary Materials), all avail-
able docking algorithms/SFs pairs, except those implemented in AutoDock and DOCK,
showed a high level of docking accuracy (DA) [67,73,74]. Among the most accurate,
Vina was found to be the best, with a DA value of 89.28%, while SMINA, with either
vina [69], vinardo [75], or ad4 [68] SFs, showed DA ranging from 75.00% (SMINA/vina)
to 78.57% (SMINA/vinardo). The PLANTS/plp pair (DA = 82.14%) almost reached the
accuracy of Vina, while either PLANTS/chemplp or PLANTS/lp95 gave DA values close
to SMINA/vinardo. At the RCRD stage (Table S2, Supplementary Material), Vina main-
tained a DA value of more than 80%, with a physiological decrease of about 7% compared
to ECRD, while each SMINA/SF pair-associated DA was less than 75%. The ability of
PLANTS/plp to reposition 5-HT2AR’ ligand conformations showed a 5% decrease in DA,
while PLANTS/chemplp remained as accurate as SMINA/vinardo. In the ECCD evalu-
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ation phase (Table S2, Supplementary Materials), Vina remained the most accurate (DA
equal to 75%), followed by SMINA/vina and SMINA/vinardo (DA ~ 72%), while the
SMINA/ad4 and PLANTS pairs, plp and plp95, were 50–60% accurate. At the last and
most difficult level, the RCCD stage (Table 5), Vina proved to be the docking program with
the highest DA (50%).

Table 6. Structure-based alignment assessment of 5-HT2BR ligands.

Code AutoDock Vina SMINA DOCK PLANTS Ref.
SF a Vina Vinardo ad4 chemplp plp plp95

Randomized Conformation Cross-Docking (RCCD)

4NC3 b 4.454 c 2.785 2.986 2.784 2.984 4.313 3.125 2.742 3.421 [29]
4IB4 3.431 2.895 4.124 3.984 2.634 3.453 3.784 2.563 2.741 [29]

5TUD 3.625 2.748 2.642 3.614 3.569 3.695 2.539 2.597 3.625 [57]
5TVN 2.895 1.993 1.963 1.943 3.964 3.241 2.431 3.254 2.346 [31]
6DRX 2.674 2.864 2.424 2.435 2.874 3.254 2.964 3.541 2.758 [33]
6DRY 2.895 2.998 3.894 3.784 2.695 2.451 2.531 2.431 2.321 [33]
6DRZ 2.992 2.674 3.431 3.895 3.624 2.563 2.728 3.522 2.462 [33]
6DS0 2.567 1.864 2.974 2.983 2.874 2.451 2.351 2.214 3.325 [33]
7SQR 2.517 2.957 2.987 2.524 2.595 3.648 2.487 2.845 2.635 [32]
7SRS 2.698 1.997 1.987 1.987 2.749 2.874 2.228 2.457 3.984 [32]
7SRR 3.624 2.487 2.964 1.987 2.996 3.625 2.487 2.625 3.635 [32]
DA d 31.82% 63.64% 45.45% 45.45% 36.36% 18.18% 40.91% 36.36% 31.82%

a Scoring function; b Experimental conformation; c Root-Mean-Square-Deviation measured between the heavy
atoms of the ligand’s experimental and the ligand’s re-/cross-aligned conformation; d Docking accuracy.

As for the docking evaluation for ligands co-crystallized in 5-HT2BR (Table 6, Figure 3b),
all docking algorithms/SF pairs showed DAs higher than 50% during the ECRD phase
(Table S3, Supplementary Materials). In particular, Vina and SMINA/vina/vinardo showed
perfect DAs (100%), followed by SMINA/ad4 (DA higher than 80%), while for AutoDock,
DOCK, and PLANTS, the DAs ranged between approximately 59% (DOCK) and 73%
(PLANTS/chemplp/plp). In the RCRD assessment (Table S3, Supplementary Materials),
Vina retained the highest DA (86.36%), while SMINA was associated with DAs of ap-
proximately 68% and 73%. A decreasing trend was also observed for AutoDock, DOCK,
and PLANTS (chemplp and plp SFs) with DA values equal to or greater than 50% but
not exceeding 65%. At the ECCD level (Table S3, Supplementary Materials), Vina and
SMINA/vina/vinardo/ad4 were the only ones able to cross-dock 5-HT2BR ligands with
acceptable DA values of 72.73, 63.64, 54.00, and 50.00%, respectively, while AutoDock,
DOCK, and all PLANTS SFs suffered from the initial conformation with low DA values.
Finally, during the RCCD (Table 4), as in the case of 5-HT2AR, Vina was confirmed as the
program that was able to reproduce the experimental binding conformations with the least
error (DA = 63.64%).

2.4. SCs’ Binding Mode Analysis into 5-HT2A-DPPC and 3-D QSAR Models Interpretation

Based on the above SB assessments, Vina was selected as an SB tool to investigate the
binding modes of either TR or TS molecules. SCs were cross-docked into the 6A93 [16]
crystal of 5-HT2AR, previously immersed in the dipalmitoylphosphatidylcholine (DPPC)
membrane system (5-HT2AR-DPPC, https://opm.phar.umich.edu/, entry: 4282, accessed
on 2 December 2022), and co-aligned with the 5-HT2AR and 5-HT2BR crystals used for
SBAAs (Tables 3 and 4) to elaborate their binding modes, simulating a cell-like environment.
TR compounds thus adopted a binding mode similar to that of LSD and were found in
the vicinity of extracellular loop 2 (EL2) and the extracellular space, which forms a narrow
cleft lined mainly by hydrophobic side chains of residues in transmembrane (TM) helices
TM3, TM5, TM6, and TM7, as well as near the laterally extended cavity surrounded by
hydrophobic residues of TM3, TM4, TM5, and ECL2, to connect the binding site to the
plasma membrane near the lower hydrophobic cleft [16]. None of the compounds occupied

https://opm.phar.umich.edu/
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the orthosteric region in front of the hydrophobic cleft [16]. Upon deeper analysis, SCs were
observed to establish only electrostatic interactions with TM3 Asp155, instead of a hydrogen
bond (HB) established by LSD, which has been identified as a crucial interaction for the
drug’s psychotic behavior at the 5-HT2AR level [76]. To quantitatively support the observed
SB overlap, 3-D QSAR models were built using the TR docked conformations proposed
by Vina. The 3-D QSAR models were generated using Open3DQSAR software [77] with
multiple probes (Table 7), and the corresponding CoMFA-like maps were analyzed. The
final models were obtained with the fractional factorial design (FFD) feature selection
applied to the model preoptimized with the variable pretreatment optimization (VPO)
protocols by varying the lattice spacing and lattice extension [78].

Table 7. Statistical results of the best Open3DQSAR models derived after VPO and FFD optimization.

Probe Field GS a PC b CO c Z d SD e r2 f q2
LOO

g q2
LSO

h r2
YS

i q2
YS LOO

j q2
YS LSO

k

CR STE 1 5 4 0.05 0.01 0.932 0.552 0.476 0.864 −0.217 −0.264
ELE 1 5 4 0.05 0.01 0.956 0.476 0.411 0.812 −0.231 −0.284

BOTH 1 5 4 0.05 0.01 0.961 0.512 0.417 0.856 −0.231 −0.246

CB STE 1 4 4 0.01 0.01 0.943 0.473 0.442 0.836 −0.251 −0.256
ELE 1 4 4 0.01 0.01 0.967 0.414 0.412 0.822 −0.236 −0.238

BOTH 1 4 4 0.01 0.01 0.934 0.486 0.446 0.821 −0.245 −0.217

NC=O STE 1 5 3 0.02 0.04 0.951 0.536 0.498 0.861 −0.236 −0.284
ELE 1 5 3 0.02 0.04 0.931 0.254 0.436 0.856 −0.258 −0.264

BOTH 1 5 3 0.02 0.04 0.962 0.521 0.432 0.754 −0.312 −0.157

NR STE 1 4 5 0.03 0.01 0.943 0.484 0.461 0.814 −0.264 −0.264
ELE 1 4 5 0.03 0.01 0.945 0.512 0.421 0.806 −0.254 −0.235

BOTH 1 4 5 0.03 0.01 0.952 0.504 0.412 0.825 −0.147 −0.135

O=C STE 1 3 5 0.05 0.02 0.912 0.501 0.495 0.841 −0.264 −0.244
ELE 1 3 5 0.05 0.02 0.925 0.482 0.472 0.822 −0.254 −0.251

BOTH 1 3 5 0.05 0.02 0.976 0.498 0.426 0.734 −0.137 −0.146

OH2 STE 1 5 5 0.05 0.02 0.973 0.684 0.594 0.845 −0.264 −0.241
ELE 1 5 5 0.05 0.02 0.981 0.562 0.534 0.824 −0.247 −0.224

BOTH 1 5 5 0.05 0.02 0.971 0.671 0.316 0.842 −0.145 −0.321
a Grid spacing (in Å); b Optimal number of principal components/latent variables; c CutOff values ± interval
in kcal/mol; d Zeroing values in kcal/mol; e Standard deviation; f Conventional square-correlation coefficient;
g Cross-validation correlation coefficient using the leave-one-out method; h Cross-validation correlation coefficient
using the leave-some-out (LSO) method with 5 random groups; i Average square correlation coefficient obtained
after Y-scrambling process. j Average cross-validation correlation coefficient using the leave-one-out (LOO) method
obtained after Y-scrambling process. k Average cross-validation correlation coefficient using the leave-some-out
(LSO) method with five random groups obtained after Y-scrambling process.

The best models were obtained with the OH2 probe, with associated q2 values of 0.684,
0.562, and 0.671 with steric (STE), electrostatic (ELE), and both fields (BOTH or STE + ELE),
respectively (Table 7, Figure 4). Although the OH2 probe STE model was statistically
superior to the model derived with either field (BOTH), for the sake of completeness, the
final model interpretation was performed using the OH2 probe-based PLS-coefficients
(OH2PLS-coefficients maps) obtained with the BOTH field model. Thus, in a CoMFA-like
fashion, the positive STE OH2PLS-coefficients (green isocontours) cover the regions of the
molecules where the bulky substituents would increase the activity, while the negative
STE OH2PLS-coefficients (shown as yellow isopleths) indicate the regions where the bulky
substituents decrease the activity. Positive ELE OH2PLS-coefficients (red polyhedra) indi-
cate regions where positively charged functions and hydrogen bond donors (HBDs) are
positively correlated with activity, while negative ELE OH2PLS-coefficients (blue maps) indi-
cate regions where negatively charged functions and hydrogen bond acceptors (HBAs)
are positively correlated with potency. Despite the intrinsic limitations of the generated
OH2-based STE, ELE, and BOTH models (limited TR chemical diversity), the low error
of the cross-validated absolute error of prediction for either TR or TS and TSCRY activ-
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ities (Tables S4–S6, Supplementary Materials) enabled the model as a tool to predict the
activities of yet-untested SCs analogs or similar compounds (see further discussion).
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2.4.1. The Cathinones’ Benzene Ring and Its Substituents’ Contribution

The benzene ring (Ph) of the SCs can be considered as a first pharmacophoric feature.
Thus, the unsubstituted Ph (found in AGs 1, Figure 5a,b; 4, Figure 6a,b; 23, Figure S1a,b, and
24, Figure S2a,b, as well as within an IA 9, Figure 6c,d; Supplementary Materials, Table S2)
was placed at the bottom of the hydrophobic cleft. Within the listed SCs, the Ph’s ortho-
positions proximal to the β-carbonyl group (β-CO) orientation (see further discussion),
according to the positive STE OH2PLS-coefficients maps, formed favorable steric interactions
with Ser159, Thr160, and Ser242 side chains, implying that the additional bulkiness would
be preferable for the agonistic pharmacology and likely the hallucinogenic effects. In
contrast, the yellow STE OH2PLS-coefficients maps emphasized the unfavorable T-shaped
(i.e., edge-to-face) van der Waals interactions of the opposite-side o-positions with the
benzyl part of Trp336′s indole ring, as well as with Phe340, toward which bulkiness should
be reduced, perhaps endowing lower psychostimulation.

On the other hand, the m-positions on the β-CO side interacted with Ile163, where the
negative steric 3-D QSAR maps indicated repulsive interactions with the sec-methyl group
of Ile163, while the positive STE OH2PLS-coefficients maps indicated the favorable attraction
with the pentanoic acid-based side chain of the residue, as well as with the indole ring of
Trp164. The m-carbon atoms were observed in favorable T-shaped steric interactions with
the indole ring nitrogen of Trp336 (the green STE OH2PLS-coefficients maps as evidence).

Finally, the p-positions could mainly establish van der Waals contacts with Phe332,
Val333, and Phe340 in a T-shaped manner, as well as with Phe243 via parallel displaced
interactions, described with either positive or negative steric 3-D QSAR maps. The slightly
larger extent of the negative steric 3-D QSAR maps can probably be associated with a
repulsive character.
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Figure 5. The structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients
(positive steric coefficients presented in green, negative steric coefficients depicted in yellow, positive
electrostatic coefficients portrayed in red, negative electrostatic coefficients displayed in blue) for
1 (a,b); 2 (c,d); 17 (e,f). For the clarity of presentation, DPPC was omitted.

In addition, upon the p-substitution of Ph with a halogen moiety (leading to the
agonism of 2, Figure 5c,d; full antagonism of 5, Figure S2c,d, and inverse agonism of 11,
Figure S1c,d, Supplementary Materials), the p-halogen likely established induced dipole
interactions with Phe332 and the surrounding residues, according to the negative ELE
OH2PLS-coefficients maps. The slight decrease in electronegativity (and increase in bulkiness)
upon p-Br incorporation, as in 11 or 5, resulted in reduced inhibition constants and likely
inverse agonism/full antagonism. Moreover, concerning 2, both 11 and 5 were slightly
rotated towards Trp336, overlapping the m-position of the unsubstituted benzene ring.
Therefore, according to the positive ELE OH2PLS-coefficients fields, as with HBA, the p-Br
was not well tolerated by the indole moiety of Trp336, which probably prefers an HBD at
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the m-position while interfering with SC; according to the alignment of the positive STE
OH2PLS-coefficients contours, certain HBD could be of increased steric hindrance.
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Figure 6. The structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients
(positive steric coefficients presented in green, negative steric coefficients depicted in yellow, positive
electrostatic coefficients portrayed in red, negative electrostatic coefficients displayed in blue) for
4 (a,b), 9 (c,d), and 18 (e,f). For the clarity of presentation, DPPC was omitted.

The p- to m-halogen position shift, i.e., p-Br to m-Br, as seen in 12 (Figure S3a,b,
Supplementary Materials) or 6 (Figure S3e,f, Supplementary Materials), in which the m-Br
pointed toward Phe332 and Trp336, likely contributed to the reduced binding potency,
full antagonism, and the exertion of antidepressive effects. Nevertheless, the model also
indicated that a double m-halogen substitution could contribute to an additional decrease
in the binding potency of SC.



Molecules 2023, 28, 6236 16 of 32

A decrease in potency is observed when the halogen position is changed from para to
ortho, as seen in FAs and non-psychostimulants/antidepressives 7 (Figure S4a,b,
Supplementary Materials) and similarly in 8 (Figure S4e,f, Supplementary Materials). The
o-F moiety of 7 established unfavorable steric interactions (negative STE OH2PLS-coefficients con-
tours) with the Trp336 side-chain benzene. At the same time, the positive ELE OH2PLS-coefficients
isocontours indicated that an o-HDB within the structure of SC is preferred by Trp336 instead
of o-F as HBA. The 8′s o-OCF3 as a bulkier and more electronegative scaffold led to an
unwanted steric clash (negative STE OH2PLS-coefficients contours as evidence) with Ile163 and
Trp164, although the positive ELE OH2PLS-coefficients/negative ELE OH2PLS-coefficients isocon-
tours alignment implied that more of the HBD character is needed for Trp164 engagement.

Replacement of the p-halogen with a hydrophobic moiety such as the methyl of
an AG 3 (Figure S5a,b, Supplementary Materials), as well as IAs/FAs 10 (Figure S5e,f,
Supplementary Materials) and 15 (Figure S6a,b, Supplementary Materials), resulted in a
~15◦ rotation of the central aromatic ring, leading to the overlap of the p-CH3 function with
the p-Br or m-Br, respectively. The increased bulkiness at the bottom of the hydrophobic
cleft reduced the potency, as verified by the incorporation of 1,3-dioxolane at the m- and
p-carbons of the phenyl ring, respectively (i.e., benzo[d][1,3]dioxole formation), as in
derivatives 14 (Figure S4c,d, Supplementary Materials) and 16–22 (Figure 5, Figure 6 and
Figures S3–S8, Supplementary Materials), or fused benzene as the naphthyl moiety in 13
(Figure S6e,f, Supplementary Materials), contributing to inverse agonism/full antagonism
(14 and 15).

2.4.2. The Cathinones’ β-Carbonyl Group Contribution

The orientation of the unsubstituted or substituted Ph within the structures of SCs
strongly influenced the behavior of β-CO and vice versa. This group can be considered as a
second pharmacophoric feature, as in 1 (Figure 5a,b) and 4 (Figure 6a,b). The β-CO formed
a strong HB with the side-chain hydroxyl portion of Thr160 (β-CO----HO-Thr160, O-O
distance of 2.636 and 2.464 Å, respectively), characterized by negative ELE OH2PLS-coefficients
isocontours, thus contributing to the agonistic pharmacology and psychedelic effects. With
the incorporation of p-F (2, Figure 5c,d), the β-CO has shifted away from preventing the
optimal β-CO----HO-Thr160 O-O distance toward attractive electrostatic interactions (p-F
likely compensated for the lack of HB to maintain the high potency of 2 as an AG and
psychostimulant). However, with the introduction of the p-Br, as in 11 and 5 (Figure S1c,d
and Figure S2c,d, respectively, Supplementary Materials), the β-CO----HO-Thr160 hydro-
gen bonding distance was restored due to the ~15◦ in-plane rotation of CSs concerning
2 (O-O distance of 3.396 and 3.238 Å for 11 and 5, respectively), proving the value for
IAs/FAs as well. The p-substitution with a methyl group (3, 10, and 15, Figure S5a,b and
Figure S5e,f, and Figure S6a,b, respectively, Supplementary Materials), together with both
p- and m-substitution with 1,3-dioxolane or benzene (13, 14, 16–22, and Figure 5, Figure 6
and Figures S2–S6, Supplementary Materials), also forced the β-CO----HO-Thr160 HB
formation (O-O distance of 2. 728, 3.360, 2.835, 3.321, 3.229, 2.989, 2.892, 3.119, and 3.217 Å,
respectively).

However, the p-Br to m-Br switch, as in 12 (Figure S3a,b, Supplementary Materials)
and 6 (Figure S3e,f, Supplementary Materials), or the p-F to o-F switch, as in 7 (Figure S4a,b,
Supplementary Materials), all inverse agonists/full antagonists, resulted in the alterna-
tive β-CO----HO-Ser159 HB formation (O-O distances of 2.585 Å, 3.245 Å, and 3.396 Å,
respectively), for which relatively high potency was retained. The β-CO----HO-Ser159
HB (O-O distance = 2.971 Å) was retained even when the bulkier 8′s o-fluoromethoxy
moiety (Figure S6e,f, Supplementary Materials) formed an additional HB with Thr160 (O-O
distance = 2.288 Å), also covered by negative ELE OH2PLS-coefficients isocontours, or when
Ph was unsubstituted (9, Figure 6c,d, dHB = 2.971 Å). The absence of β-CO (14 and 16–22,
and 23 and 24, Figures 5 and 6, and S1–S6, Supplementary Materials) resulted in the lowest
potencies, which were partially compensated by the benzo[d][1,3]dioxole (14 and 16–22) or
Ph (23–24) alone.
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2.4.3. The Cathinones’ Methylene Group and Methylene Group’ Substituents Contribution

Here, we focused on the importance of alkyl-substituted methylene fragments (i.e.,
-CH2-Rs, either methyl- [-CH2-CH3], ethyl- [-CH2-CH2-CH3 ], or propyl- [-CH2-CH2-
CH2-CH3] substituted) located between either substituted/non-substituted Ph-β-CO or
benzyl (Bn, in the absence of β-CO) moieties and substituted/non-substituted terminal
amines (-NH2) (Table 1). Therefore, the orientations of the -CH2-CH3 fragments were
almost conserved and the correct SB correlation to the surrounding groups was difficult
to establish. Thus, between either Ph-β-CO----HO-Thr160 HB and -NH2 or -NHCH3
(1, Figures 4a and 5b, and 4, Figure 6a,b, respectively) or Bn and -NH2 or -NHCH3 (23,
Figure S1a,b: 24, Figure S2a,b, Supplementary Materials), the -CH2-CH3 was involved
in the attractive steric interactions with Val156 (see the STE OH2PLS-coefficients maps) that
enhanced the agonistic and hallucinogen effects of compounds. Nevertheless, the -CH2-
CH3 contribution was not critical for the SCs, as it was the loss of β-CO that directly
affected the potency reduction from the highest (1) to the lowest (23 and 24). The con-
version of -NH2 to pyrrolidine (9, Figure 6c,d) directed the substituent methyl group
toward favorable interactions with Phe339 and Phe340 (as evidenced by positive STE
OH2PLS-coefficients maps), but also contributed to inverse agonist/full antagonist pharma-
cology. Interestingly, a similar orientation of the -CH2-CH3 moiety (accompanied by a
further decrease in potency) was observed with m-Br-Ph-β-CO----HO-Ser159 HB and
pyrrolidine (12, Figure S3a,b, Supplementary Materials), as well as with o-OCF3-Ph-β-CO-
---HO-Ser159 HB and -NHCH3 (8, Figure S4e,f, Supplementary Materials). In addition, both
-CH2-CH3 (22, Figure S5c,d; 20, Figure S2e,f, Supplementary Materials) and -CH2-CH2-CH3
(19, Figure S1e,f, Supplementary Materials) indicated that Phe339 and Phe340 were bound
by 1,3-dioxolane-Ph-β-CO----Thr160 HB and either -NHCH3 or -NH-Et.

The potency remained relatively high (above the 5 pKi units), with the -CH2-CH3
surrounded by p-X-Ph-β-CO----HO-Thr160 HB and either -NHCH3 (2, X=F, Figure 5c,d;
5, X=Br, Figure S4c,d, Supplementary Materials) or pyrrolidine (11, X=Br, Figure S1c,d,
Supplementary Materials), and by p-Me-Ph-β-CO----HO-Thr160 HB and pyrrolidine (3,
Figure S3a,b; 10, Figure S5a,b Supplementary Materials), which further directed the tar-
geted functional group towards the T-shaped steric interaction with the indole ring of
Trp336, where a larger portion of negative STE OH2PLS-coefficients contours relative to posi-
tive ones indicated that further bulkiness increase towards Trp336 would lead to inverse
agonism/partial agonism and would thus be detrimental for the psychedelic influence of
SC, whereas positive/negative ELE OH2PLS-coefficients maps indicated that methyl group
replacement by HBD/HBA would be beneficial for agonistic behavior and psychedelic
effects.

In contrast, either m-Br-Ph-β-CO----HO-Ser159 HB (6, Figure S3e,f, Supplementary
Materials) or o-F-Ph-β-CO (7, Figure S4a,b, Supplementary Materials) next to -NHCH3
forced the -CH2-CH3 to have unproductive (note negative STE OH2PLS-coefficients contours)
van der Waals interactions with Val156 and Ser242, which was reflected in inverse ag-
onism/partial agonism pharmacology. The similar interactions of -CH2-CH3 were ob-
served to be surrounded by 1,3-dioxolane-Ph-β-CO----Thr160 HB and pyrrolidine (16,
Figure S6c,d, Supplementary Materials), as well as by 1,3-dioxolane-Bn-and-NHCH3 (18,
Figure 6e,f; 21, Figure S3c,d, Supplementary Materials), but not for -CH2-CH2-CH3 (17,
Figure 5e,f), which remained bound to Phe340. However, the incorporation of the propyl
group was accompanied by either naphthalene-β-CO----HO-Thr160 HB (13, Figure S6e,f,
Supplementary Materials), 1,3-dioxolane-Ph-β-CO····HO-Thr160 HB (14, Figure S4c,d,
Supplementary Materials), or p-Me-Ph-β-CO····HO-Thr160 HB (15, Figure S4a,b,
Supplementary Materials), and pyrrolidine turned the -CH2-CH2-CH2-CH3 towards Trp151
and Val156, defining the boundary for Phe340 steric clash tolerance.

2.4.4. The Cathinones’ Amine Nitrogen Contribution

The affinities of SCs to 5-HT2AR and their psychedelic behavior can also be attributed
to their interactions with Asp155 via the terminal primary, secondary, or tertiary nitrogen.
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Thus, the primary amine, as in AGs 1 (Figure 5a,b), 3 (Figure S5a,b, Supplementary Materi-
als) and 23 (Figure S1a,b, Supplementary Materials), provided a salt bridge with Asp155
instead of HB (d = 4.772 and 5.853 Å, respectively, and the strongest interaction could have
contributed to the highest potency of 1), despite being characterized with positive ELE
OH2PLS-coefficients maps. The absence of hydrogen bond between the -NH2 and Asp155 is
likely the reason for lower psychedelic activities of SCs compared to LSD [25,26,31,32]. Nev-
ertheless, distinct interactions were characterized by negative STE OH2PLS-coefficients isocon-
tours, indicating that the increase in bulkiness at the -NH2 level would reduce the potency
of SCs and convert AGs into IAs/FAs, i.e., psychostimulants into non-psychostimulants.

The above hypothesis was (in part) supported by the analysis of the secondary,
i.e., either N-methyl substituted, as in 2, 4–8, 17–19, 22, and 24 (Figure 5, Figure 6 and
Figures S1–S6, Supplementary Materials), or N-ethyl substituted, as in 20 and 21 (Figure
S4e,f and Figure S5c,d, respectively, Supplementary Materials) amines. The listed SCs
also formed a salt bridge with Asp155 via the -N-H part (highlighted by positive ELE
OH2PLS-coefficients isocontours), strongly conditioned by the alignment of the N-methyl/N-
ethyl groups with one of the two subregions bounded by Leu228, Val336, Phe339, Trp336,
and Tyr370 (as for 5–7 and 20), or Val156 alone (as for 4, 8, 17–19, 21, 22 and 24), described
by simultaneous attractive/repulsive 3-D QSAR maps.

The effect of bulky substituents on the -NH2 was further analyzed, starting from the
tertiary nitrogen of SCs found in pyrrolidine, as in 9–16 (all IAs/FAs except 16, Figure 6
and Figure S1–S6, Supplementary Materials), which adopted three different conformations.
Favorably attracted by Val156 (as in 9, 10, and 12; the positive STE OH2PLS-coefficients contours
as evidence), the tertiary nitrogen provided good potency through moderate electrostatic
interactions with Asp155 (distance over 6 Å, positive ELE OH2PLS-coefficients maps as vali-
dation). On the other hand, the interactions with Phe339 (observed for 11 and 16) moved
the heterocycle away from Asp155 into a negative STE OH2PLS-coefficients cloud, implying a
need to maximally reduce bulkiness. Displacement of the heterocycle from Val156 towards
Ser242 and Phe340, as in 13–15, contributed more negatively than positively (a larger pro-
portion of negative STE OH2PLS-coefficients maps than positive ones observed) to the potency,
with a lack of interactions with Asp155.

2.4.5. Generated 3-D QSAR Models’ Predictive Abilities

The Vina-predicted conformations and OH2 probe-derived BOTH 3-D QSAR models were
evaluated for predictivity on TS compounds (Table 3 and Table S3, Supplementary Materials;
Figure 7, Figure 8 and Figures S9–S15, Supplementary Materials).
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The binding modes for all compounds except 25 (co-crystalized within the 7VOE
protein [28]) were modeled for SCs and were associated with experimentally available pKi
values. The pKi values of TSs were predicted with an average absolute error of prediction
(AAEPs) of 0.61 and 1.29 with the LOO and LSO CVs optimized models, respectively (Table
S3 Supplementary Materials), to which the associated predictive q2 (q2

pred) values were
calculated to be 0.43 and 0.307, respectively, confirming the good predictive capabilities
of the model [79]. Similar to the SCs, ten TS compounds, namely 26–28, 30, 32–34, 36,
39, and 41 (Figure 8 and Figures S7–S11d, respectively, Supplementary Materials), filled
only the hydrophobic pocket of the 5-HT2AR’s active site and were predicted in potency
with the absolute error of prediction (AEP) below 1. Among them, the best predicted one
was 33, with errors of prediction (EPs) after LOO and LSO CVs of 0.03 and 0.16 pKi units.
The AEP was only 0.095 pKi units, while the worst was 32, associated with LOO and LSO
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CVs AEPs of 0.37 and 0.97 pKi units, respectively. For the bipartite 5-HT2AR ligands, the
AEP was greater than 1. The remaining compounds that were SB aligned throughout both
the orthosteric region and the hydrophobic pocket of the receptor’s bipartisan active site.
Within the subset, only compound 37 (Figure S10a,b, Supplementary Materials) potency
was predicted with tolerable accuracy (LOO and LSO CVs AEPs of 1.2 and 0.94 pKi units,
respectively), whereas the worst predicted compound was 29 (Figure S7c,d, Supplementary
Materials) (LOO and LSO CVs AEPs of 1.83 and 2.24 pKi units, respectively).

Previously published CoMFA/CoMSIA LB 3-D QSAR models based on dibenzazecines [80],
3-aminoethyl-1-tetralones, piperazines, benzothiazepines, pyrrolobenzazepines [81], and
arylpiperazines [82], as well as the LB GRID/GOLPE models of (aminoalkyl)benzo and het-
erocycloalkanones [83], were also more accurate in predicting the potencies of compounds
occupying the hydrophobic pocket. On the other hand, within the molecular docking-based
SB GRID/GOLPE 3-D QSAR models generated on either butyrophenones [84], or lozapine,
ziprasidone, and ChEMBL-listed analogues [84], the quality of the alignment within either the
orthosteric area, the hydrophobic pocket, or both, was, as here, evaluated using the highest
q2 [63,85]. However, the universal SB 3-D QSAR model(s) defining the agonism/antagonism
on the entire 5-HT2AR active site remains to be generated, perhaps after increasing the number
of Ki-associated co-crystallized 5-HT2AR compounds to a minimum of 15 (and thus updating
Table 1), using either Open3DQSAR [77], 3-D_QSAutogrid/R [78], or Py_CoMFA [31,86].

2.5. Molecular Determinants for SCs

The pharmacodynamic profile obtained from the 3-D QSAR map analysis indicated
some pharmacophoric features that may positively or negatively affect the potency of SCs
as 5-HT2AR ligands. Therefore, comprehensive 3-D structure–activity relationship (SAR)
rules were derived for the SCs structure–activity relationship model [67] and are shown
in Figure 1 as a template (Figure 9). This led to the derivation of a unique SAR as a tool
that could be used to drive the virtual screening campaign of new cathinones and similar
compounds as 5-HT2AR ligands that could, as AGs, exert psychostimulant properties.
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Thus, the central benzene ring (Ph) of SCs may be either unsubstituted or o-substituted
proximal to the β-carbonyl group (β-CO) with bulkier portions to sterically engage Ser159,
Thr160, and Ser242, while the o-bulkiness increase towards Trp336 and Phe340 would
not be tolerated and HDB portions should be forced. As for the m-position on the β-CO
side towards Ile163 and Trp164, Ph should either remain unsubstituted or be heavily
substituted by a highly electronegative electron withdrawing/HBA group, while Trp336
on the opposite side would tolerate bulkier moieties with an HBD character. The p-position
of Ph before Phe243, Phe332, Val333, and Phe340 could accommodate moieties, providing
minimal van der Waals contacts with or substituted by a highly electronegative electron
withdrawing/HBA group.

The β-CO pharmacophoric feature is responsible for the formation of HBs with Thr160,
mitigated by the presence of either p-electronegative groups/HBA or bulky substituents (or
functional groups containing each of these features) at the same position. Nevertheless, the
most electronegative functional groups incorporated at the p-position of Ph may prevent
the β-CO----HO-Thr160 HB formation. On the other hand, the incorporation of m- or
o-electronegative groups/HBA (or corresponding hybrid functional groups) leads to the
formation of β-CO----HO-Ser159 HB. Since none of the SCs formed the HB with Asp155
(an interaction that leads to the hallucinogenic effect of LSD [31]), the β-CO or similar
β-HBA bioisosteric scaffold remains preferred for SCs to ensure the H-bonding described
above, since the absence of β-CO resulted in the lowest potencies.

The -CH2- fragment substituted with a methyl group, located between the β-CO (or
Bn) and -NH2 (or -NHCH3), seemed to be the best choice to establish attractive steric
interactions with Val156. The substitution of -NH2 with bulkier acyclic and cyclic aliphatic
moieties could also direct the -CH2-CH3 moiety to favorable van der Waals interactions
with Phe339 and Phe340. The m-HBA/o-HBA-Ph-β-CO····HO-Ser159 HB architecture also
supported the alignment of -CH2-CH3 with Phe339 and Phe340 but could also direct the
moiety to unfavorable steric hindrance with Ser242. The -CH2-CH3 moiety should not
be properly lengthened or branched, as the further increase of van der Waals interactions
towards the listed residues could lead to decreased potency. Either the m-HBA-Ph-β-CO-
---HO-Thr160 HB or p-Me-Ph-β-CO····HO-Thr160 construct could force the -CH2-CH3
toward more unfavorable steric interactions with Trp336, a residue that would be more
tolerant of the -CH2-HBD/HBA fraction.

The -NH2 of the SCs should remain unsubstituted to maintain a salt bridge interaction
with Asp155 and ensure high potency. Substitution with more voluminous moieties such
as N-methyl/N-ethyl could be tolerated but could also result in penalizing van der Waals
interactions with Leu228, Val336, Phe339, Trp336, and Tyr370, although not interfering
with the -N-H moiety to form the required salt bridge. Finally, the tertiary nitrogen could
provide attractive steric interactions with Val156 and interfere with Asp155, again resulting
in lower potency.

2.6. External Validation of 3-D QSAR Models on Experimentally Determined 5-HT2AR Ligands

Finally, the suitability of the obtained 3D QSAR model to be used as a tool for virtual
screening and potency prediction was evaluated on TSCRY (Table 1, Figure 10). Since
the bioactive conformations of the TSCRY compounds were experimentally resolved, a
deeper discussion in terms of their potency prediction was included concerning the TS
compounds. Thus, the alignments of TSCRY compounds were not as conserved as those
of TS compounds, where most of the main cores of TS compounds were aligned with
SCs, and for some of the compounds, the remaining parts occupied the orthosteric region.
Therefore, the AAEPs of TSCRYs’ pKi values were significantly higher for both LOO and
LSO CVs optimized models, 1.12 and 1.49 (Table S5, Supplementary Materials), associated
with q2

pred of 0.33 and 0.28, respectively, confirming the above-described 3-D QSAR model
as a useful tool [79] to discover potential new chemical entities as 5-HT2AR ligands to be
studied as broad psychedelic agents.
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Thus, the best-predicted activities were for the 6A94 (Figure 11a,b), 6WH4 (Figure 11c,d),
and 6WHA (Figure 11e,f) ligands that were found deeply buried in the hydrophobic pocket,
with AEPs of only 0.72, 0.95, and 1.05 pKi units after the LOO CV, and 0.86, 1.16, and 1.69
pKi units after the LSO CV, respectively. Moreover, given that the 6WH4 crystal is one of the
most potent 5-HT2AR ligands known to date (Table 1), predicting its potency with acceptable
error was very important for the present 3-D QSAR model, proving the model as capable
of recognizing the highly potent ligands bound in a hydrophobic pocket. The main cores
of 6WGT (Figure S14a,b, Supplementary Materials), 7WC6 (Figure S14c,d, Supplementary
Materials), and 7WC7 (Figure S14e,f, Supplementary Materials) were positioned at the top of
the hydrophobic pocket, orthogonal to the SCs, and were within the scope of the 3-D QSAR
PLS-coefficients, this time resulting in the LOO CV AEPs of 1.11 (for LSD) and 1.17 (for lisuride)
pKi units and LSO CV AEPs of 1.51 (for LSD) and 1.46 (for lisuride) pKi units, respectively.

On the other hand, 6A93 (Figure S15a,b, Supplementary Materials), 7VOD (Figure S15c,d,
Supplementary Materials), and 7VOE (Figure S15e,f, Supplementary Materials) crystals occu-
pied both the orthosteric and hydrophobic pockets. The main core of 6A93 was superimposed
by SCs and thus was the only part of the molecule covered by 3-D QSAR PLS-coefficients, as the
rest filled the orthosteric cavity, for which the AEPs according to LOO and LSO CVs were 1.80
and 1.47 pKi units, respectively. In contrast, 7VOD and 7VOE crystals were positioned above
the SCs and only the central molecular regions were included in the 3-D QSAR PLS-coefficients,
resulting in AEPs of 0.76 and 1.65 pKi units after LOO cross-validation and 1.88 and 1.79 pKi
units after LOO cross-validation.
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yellow, positive electrostatic coefficients portrayed in red, negative electrostatic coefficients displayed
in blue) for 6A94 (a,b); 6WH4 (c,d); 6WHA (e,f). For the clarity of presentation, DPPC was omitted.

3. Materials and Methods
3.1. Crystal Structures Preparation

All selected 5-HT2AR and 5-HT2BR complexes (Table 1) available from the Protein Data
Bank (https://www.rcsb.org/, accessed on 1 December 2022) were loaded into the UCSF
Chimera v1.10.1 software [87] and were visually inspected. Complexes were superimposed
using 5TVN as a template (the best-resolved complex with a resolution of 1.6 Å) using
the MatchMaker module and were then separated into chains using the command line
implementation of the Chimera split command. Compared to other chains, chains A were
complete with respect to the presence of antagonists and were retained. The antagonists
were extracted from each chain A complex, completed by adding hydrogens appropriate
for pH 7.4, and the AMBER parameters were calculated by Antechamber using a semi-
empirical QM method. The protein parts of the stored monomers were improved by adding

https://www.rcsb.org/
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hydrogen atoms using the embedded leap module of the Amber 12 suite [88], after which
the correct hydrogen atoms, appropriate for pH 7.4, were assigned to each amino acid
residue. After preparation, the proteins were fused with the appropriate ligands and the
complexes were energy minimized as follows. They were solvated by the Leap module
with water molecules (TIP3P model, SOLVATEOCT Chimera command) in a box extending
10 Å in all directions, neutralized with either Na+ or Cl− ions, and refined by a single point
minimization using the Sander module of the Amber suite with a maximum of 1000 steps of
steepest descent energy minimization and a maximum of 4000 steps of conjugate gradient
energy minimization, with an unbound cutoff of 5 Å. Minimized complexes were re-aligned
(5TVN as a template), after which all ligands were extracted to compose the SB-aligned TR,
ready to be used for the subsequent 3-D QSAR model building.

3.2. Alignment Assessment Rules

Structure-based alignment. Regarding SB alignment, a number of docking programs
with all available scoring functions, free or open source for academic use, were eval-
uated to select the best one to reproduce the binding mode of 5-HT2AR and 5-HT2BR
ligands. Namely, the programs were AutoDock [68], AutoDock Vina (hereafter referred
to as Vina) [69], SMINA [71], DOCK [70], and PLANTS [72]. The entire SB procedure was
evaluated using four levels of difficulty:

1. Experimental Conformation Re-Docking (ECRD): a procedure in which the experi-
mental conformations (EC) are flexibly docked back into the corresponding protein,
evaluating the program for its ability to reproduce the observed bound conformations.

2. Randomized Conformation Re-Docking (RCRD): a similar assessment to ECRD with the
difference that the active site of protein is virtually occupied by conformations initially
obtained from computational random optimization of corresponding co-crystallized
molecules coordinates and positions. Thus, ligands were initially displaced from the
active site and their experimental coordinates were changed by means of assigning
new coordinates values: X = 0.000, Y = 0.000, Z = 0.000. Following that, allocated
conformations were energy-minimized. Here the programs are evaluated for their ability
to find the experimental pose, starting from the randomized minimized conformation.

3. Experimental Conformation Cross-Docking (ECCD): comparable to ECRD, but the
molecular docking was performed on all the TR proteins except the corresponding
natives. Here the programs are evaluated to find the ligand binding mode in the active
site such as the native one by means of amino acid configuration but are different in
terms of amino acids induced-fit conformations, mimicking discrete protein flexibility
at the same time.

4. Randomized Conformation Cross-Docking (RCCD): same as the ECCD but using
RCs as starting docking conformations. This is the highest level of difficulty since
the program is demanded to dock any given molecule into an ensemble of protein
conformations not containing the native one. The outcome is considered as the most
important ability of the docking program, as the most accurate scoring function in the
RCCD experiment is subsequently applied to any TS molecules whose experimental
binding mode is unknown. The related docking accuracy (DA) is a direct function of
the program’s probability to find a correct binding mode for an active molecule.

The alignment fitness was quantified through the evaluation of RMSD values and the
subsequent docking accuracy (DA) values. As previously reported [31], DA can be used
to test how the docking or alignment algorithms, respectively, are capable of predicting a
ligand pose as close as possible to the experimentally observed and can be calculated by
the following equation:

xA = frmsd ≤ a + 0.5 (frmsd ≤ b − frmsd ≤ a) (1)

In particular, xA is equal to DA in the case of docking accuracy, whereas frmsd ≤ a and
frmsd ≤ b represent the fraction of aligned ligands, showing an RMSD value less than 2 Å
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or equal to 2 Å (a coefficient) and less than 3 Å or equal to 3Å (b coefficient), respectively.
The widely accepted standard is that the correctly docked/aligned conformations are those
displaying an RMSD value lower than 2 Å on all heavy atoms from the crystallographic
structure of the ligand conformation, as found in the inhibitor–enzyme complex. Structures
with RMSD between 2 and 3 Å are considered partially docked/aligned, whereas those with
a RMSD higher than 3 were mis-docked and were thus not considered in the DA calculation.

3.2.1. AutoDock Settings

For all ligands, the rigid root and rotatable bonds were defined using AutoDockTools.
The docking was performed with AutoDock 4.2 by applying the cuboid docking grid coor-
dinates, provided as follows: the xyz coordinates (in Ångströms) for the computation were
Xmin/Xmax = −1.805/30.447, Ymin/Ymax = −12.113/9.482, Zmin/Zmax = 48.159/60.462.
The coordinate setup was performed in a manner to embrace the minimized inhibitor,
spanning 10 Å in all three dimensions. The Lamarckian Genetic Algorithm was used to
generate orientations or conformations of ligands within the binding site. The procedure of
the global optimization started with a sample of 200 randomly positioned individuals, a
maximum of 1.0 × 106 energy evaluations, and a maximum of 27,000 generations. A total
of 100 runs were performed with RMS Cluster Tolerance of 0.5 Å.

3.2.2. Vina Settings

The docking simulations were carried out with an energy range of 10 kcal/mol
and exhaustiveness of 100 with RMS Cluster Tolerance of 0.5 Å, using the identical
grid as for AutoDock4.2. The output comprised 20 different conformations for every
receptor considered.

3.2.3. Smina Settings

As Smina is AutoDock Vina fork, an identical setup was used as for Vina for either
vina [69], vinardo [75], or ad4 [68] scoring functions.

3.2.4. DOCK Settings

During the docking simulations with the DOCK program, the proteins were considered
to be rigid while the inhibitors were regarded as flexible and were subjected to energy
minimization. The solvent-accessible surface of each enzyme without hydrogen atoms
was calculated using the DMS program [89], using a probe radius of 1.4 Å. The orientation
of ligands was described using the SPHGEN and SPHERE_SELECTOR modules. A box
around the binding site was constructed with the accessory module SHOWBOX. The steric
and electrostatic environment of the pocket was evaluated with the program Grid using a
0.3 Å of grid spacing. Selected spheres were within 8 Å from ligand heavy atoms of the
crystal structure, and for computing, the energy grids an 8 Å box margin and 6–9 VDW
exponents were used.

3.2.5. PLANTS Settings

The docking site was limited inside a 12 Å radius sphere, centered in the mass center
of the crystallized ligand. Docking was performed by default settings using three different
scoring functions: chemplp, plp, and plp95.

3.3. Generation of the TR and TS Designed Compounds

TR, TS, and designed compounds were modelled by applying the Chemaxon’s msketch
module [90] through molecular mechanic optimization, upon which the hydrogen atoms
appropriate to pH 7.4 were assigned. Upon the generation of structures, compounds were
uploaded into previously described SB to obtain the bioactive conformations.
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3.4. Retrieval of 5-HT2AR-Lipid Bilayer Complex

The crystal structure of 5-hydroxytryptamine receptor 2A in complex with risperidone,
deposited at PDB under the code: 6A93, was found modeled in dipalmitoylphosphatidyl-
choline (DPPC) bilayer system and deposited as entry: 4282 at Orientations of Proteins
in Membranes (OPM) database (https://opm.phar.umich.edu/, accessed on 2 December
2022). Upon retrieval, the 5-HT2AR-DPPC complex was subjected to the same preparation
protocol with UCSF Chimera, as described in Section 3.1.

3.5. Structure Alignment of LSD, TR, TS, and Designed Compounds within 5-HT2AR

The same relative coordinates were assigned to the 5-HT2AR- DPPC system as for
5-HT2BR, using the UCSF Chimera’s MatchMaker module. Afterwards, either LSD, TR,
TS, or designed compounds were docked into 5-HT2AR-DPPC complex using the best
performing algorithm/scoring function.

3.6. 3-D QSAR Models Generation

The herein Vina-based TR was submitted to Open3DQSAR procedure to generate
partial least squares (PLS)-based 3-D QSAR models using eight probes, namely CR (alkyl
carbon), CB (aromatic carbon), NC=O (amide nitrogen), NR (amine nitrogen), O=C (car-
bonyl oxygen), OH2 (oxygen in water), HNCO (amide hydrogen), and ELE (electrostatic
field). The 3D QSAR models were built for each probe using a maximum of 5 principal
components. Initially generated molecular interaction fields (MIFs) and PLS 3-D QSAR
models were first optimized on 1 Å grid spacing using the standard pretreatment pro-
tocol (energy cutoff of ± 5 Kcal/mol, zeroing = 0.01 Kcal/mol, and minimum standard
deviation = 0.05) and by storing the corresponding standard (r2) and cross-validated
(q2) correlation coefficients. A second stage of optimization was achieved by a Variable
Pretreatment Optimization (VPO) procedure using Leave-One-Out (LOO) and Leave-Some-
Out (LSO) cross-validation while monitoring q2. Full pretreatment of the data derived
from the MIFs calculations was performed by exploring the combinations of cutoff values
from −5 to 5 kcal/mol with intervals between the cutoffs equal to 1, zero values from
−0.005 to 0.05 kcal/mol with an interval of 0.005, and standard deviation values from
−0.01 to 0.1 with an interval of 0.01. The final 3-D QSAR models (Table 7) were obtained
by the fractional factorial design (FFD) feature selection procedure. The internal validation
(robustness) of the 3-D QSAR models was evaluated by classical cross-validation (CV)
techniques (LOO and LSO), while the lack of random correlation was evaluated by CV
and Y-scrambling combination (Table 7). The best 3D QSAR models were used to predict
the activity of either co-crystalized TR compounds (Table 1) or SB-aligned TS compounds
(Table 3).

4. Conclusions

The enclosed manuscript summarizes the efforts to define the pharmacodynamics of
SCs available in the literature [21,34] as 5-HT2AR ligands, namely agonists (i.e., psychedelic
abusers) and IAs/PAs (i.e., non-psyshostimulants). The bioactive conformations of SCs
were obtained using the AutoDock Vina [69] after exhaustive SB alignment evaluation
on co-crystallized 5-HT2AR and 5-HT2BR ligands, while the crucial interactions leading
to the inhibition constants and possible psychedelic effects for AGs were described by
a statistically robust CoMFA-like 3-D QSAR model, as generated by Open3DQSAR [77],
starting from the OH2 probe, using both steric and electrostatic fields. The obtained PLS-
coefficients maps were summarized in a 3-D SAR model (i.e., molecular determinants),
a useful tool for virtual screening campaigns in the search for new SCs with potential
psychedelic effects with an etiology in the agonism of 5-HT2AR. The applicability of the
OH2 probe 3-D QSAR model as a predictive engine was evaluated on co-crystallized
5-HT2AR ligands, showing satisfactory predictive properties, considering that none of the
experimentally resolved 5-HT2AR ligands were structural homologs of SCs.

https://opm.phar.umich.edu/
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28176236/s1, Table S1. Onsets and durations of actions of SCs 5-HT2AR ligands
compiling the TR. Table S2. Structure-based alignment assessment of 5-HT2AR ligands. Table S3.
Structure-based alignment assessment of 5-HT2BR ligands. Table S4. Best Open3DQSAR Models’
(OH2 model at PC5) Predictive Abilities for TR. TableS5. Best Open3DQSAR Models’ (OH2 model at
PC5) Predictive Abilities for TS. TableS6. Best Open3DQSAR Models’ (OH2 model at PC5) Predictive
Abilities for TSCRY. Figure S1. The structure-based alignment within 5-HT2AR-DPPC and OH2
probe-based PLS-coefficients (positive steric coefficients presented in green, negative steric coefficients
depicted in yellow, positive electrostatic coefficients portrayed in red, negative electrostatic coef-
ficients displayed in blue) for 23 (a,b); 11 (c,d); 19 (e,f). For the clarity of presentation, DPPC was
omitted. Figure S2. The structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based
PLS-coefficients (positive steric coefficients presented in green, negative steric coefficients depicted in
yellow, positive electrostatic coefficients portrayed in red, negative electrostatic coefficients displayed
in blue) for 24 (a,b); 5 (c,d); 20 (e,f). For the clarity of presentation, DPPC was omitted. Figure S3. The
structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive
steric coefficients presented in green, negative steric coefficients depicted in yellow, positive electro-
static coefficients portrayed in red, negative electrostatic coefficients displayed in blue) for 12 (a,b);
21 (c,d); 6 (e,f). For the clarity of presentation, DPPC was omitted. Figure S4. The structure-based
alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients
presented in green, negative steric coefficients depicted in yellow, positive electrostatic coefficients
portrayed in red, negative electrostatic coefficients displayed in blue) for 7 (a,b); 14 (c,d); 8 (e,f). For
the clarity of presentation, DPPC was omitted. Figure S5. The structure-based alignment within
5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients presented in green,
negative steric coefficients depicted in yellow, positive electrostatic coefficients portrayed in red,
negative electrostatic coefficients displayed in blue) for 3 (a,b); 22 (c,d); 10 (e,f). For the clarity of
presentation, DPPC was omitted. Figure S6. The structure-based alignment within 5-HT2AR-DPPC
and OH2 probe-based PLS-coefficients (positive steric coefficients presented in green, negative steric
coefficients depicted in yellow, positive electrostatic coefficients portrayed in red, negative electro-
static coefficients displayed in blue) for 15 (a,b); 16 (c,d); 13 (e,f). For the clarity of presentation, DPPC
was omitted. Figure S7. The structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based
PLS-coefficients (positive steric coefficients presented in green, negative steric coefficients depicted in
yellow, positive electrostatic coefficients portrayed in red, negative electrostatic coefficients displayed
in blue) for 28 (a,b); 29 (c,d); 30 (e,f). For the clarity of presentation, DPPC was omitted. Figure S8.
The structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive
steric coefficients presented in green, negative steric coefficients depicted in yellow, positive electro-
static coefficients portrayed in red, negative electrostatic coefficients displayed in blue) for 31 (a,b);
32 (c,d); 33 (e,f). For the clarity of presentation, DPPC was omitted. Figure S9. The structure-based
alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients
presented in green, negative steric coefficients depicted in yellow, positive electrostatic coefficients
portrayed in red, negative electrostatic coefficients displayed in blue) for 34 (a,b); 35 (c,d); 36 (e,f). For
the clarity of presentation, DPPC was omitted. Figure S10. The structure-based alignment within
5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients presented in green,
negative steric coefficients depicted in yellow, positive electrostatic coefficients portrayed in red,
negative electrostatic coefficients displayed in blue) for 37 (a,b); 38 (c,d); 39 (e,f). For the clarity of
presentation, DPPC was omitted. Figure S11. The structure-based alignment within 5-HT2AR-DPPC
and OH2 probe-based PLS-coefficients (positive steric coefficients presented in green, negative steric co-
efficients depicted in yellow, positive electrostatic coefficients portrayed in red, negative electrostatic
coefficients displayed in blue) for 40 (a,b); 41 (c,d); 42 (e,f). For the clarity of presentation, DPPC was
omitted. Figure S12. The structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based
PLS-coefficients (positive steric coefficients presented in green, negative steric coefficients depicted in
yellow, positive electrostatic coefficients portrayed in red, negative electrostatic coefficients displayed
in blue) for 43 (a,b); 44 (c,d). For the clarity of presentation, DPPC was omitted. Figure S13. The
structure-based alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive
steric coefficients presented in green, negative steric coefficients depicted in yellow, positive elec-
trostatic coefficients portrayed in red, negative electrostatic coefficients displayed in blue) for 45
(a,b); 46 (c,d). For the clarity of presentation, DPPC was omitted. Figure S14. The structure-based
alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients
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presented in green, negative steric coefficients depicted in yellow, positive electrostatic coefficients
portrayed in red, negative electrostatic coefficients displayed in blue) for 6WGT (a,b); 7WC6 (c,d);
7WC7 (e,f). For the clarity of presentation, DPPC was omitted. Figure S15. The structure-based
alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients
presented in green, negative steric coefficients depicted in yellow, positive electrostatic coefficients
portrayed in red, negative electrostatic coefficients displayed in blue) for 6A93 (a,b); 7VOD (c,d);
7VOE (e,f). For the clarity of presentation, DPPC was omitted. Figure S16. The structure-based
alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients
presented in green, negative steric coefficients depicted in yellow, positive electrostatic coefficients
portrayed in red, negative electrostatic coefficients displayed in blue) for 7WC4 (a,b); 7RAN (c,d);
7WC5 (e,f). For the clarity of presentation, DPPC was omitted. Figure S17. The structure-based
alignment within 5-HT2AR-DPPC and OH2 probe-based PLS-coefficients (positive steric coefficients
presented in green, negative steric coefficients depicted in yellow, positive electrostatic coefficients
portrayed in red, negative electrostatic coefficients displayed in blue) for 7WC9 (a,b); 7WC8 (c,d). For
the clarity of presentation, DPPC was omitted.

Author Contributions: Conceptualization, N.T., R.R. and M.M.; methodology, N.T., R.R. and M.M.;
validation, M.V., E.K., V.R., B.A., S.L.M., M.B., R.F. and E.P., formal analysis, M.V., E.K., V.R., B.A.,
S.L.M., M.B., R.F. and E.P.; investigation, all authors; resources, all authors.; a curation, all authors;
writing—original draft preparation, N.T.; writing—review and editing, R.R. and M.M.; supervision,
R.R. and M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Serbian Ministry of Science, Technological Development,
and Innovation (Agreement Nos. 451-03-47/2023-01/200122 and 451-03-47/2023-01/200378), and
supported by two grants from Progetti di Ricerca di Università 2015, Sapienza Università di Roma
(C26A15RT82 and C26A15J3BB).

Informed Consent Statement: Not applicable.

Data Availability Statement: Complexes herein used to derive 3-D QSAR models and perform SB
alignments assessments are available at Protein Data Bank (https://www.rcsb.org/). Structures of
other training set and test set compounds are retrieved from literature. The obtained 3-D QSAR
models are available upon request from Milan Mladenović (E-mail: milan.mladenovic@pmf.kg.ac.rs).
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