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Abstract: The dynamic characteristics of sandwich panels with a hierarchical hexagonal honeycomb
(SP-HHHs) show significant improvements due to their distinct hierarchy configurations. However,
this also increases the complexity of structural analysis. To address this issue, the variational asymp-
totic method was utilized to homogenize the unit cell of the SP-HHH and obtain the equivalent
stiffness, establishing a two-dimensional equivalent plate model (2D-EPM). The accuracy and effec-
tiveness of the 2D-EPM were then verified through comparisons with the results from a detailed 3D
FE model in terms of the free vibration and frequency- and time-domain forced vibration, as well as
through local field recovery analysis at peak and trough times. Furthermore, the tailorability of the
typical unit cell was utilized to perform a parametric analysis of the effects of the length and thickness
ratios of the first-order hierarchy on the dynamic characteristics of the SP-HHH under periodic
loading. The results reveal that the vertices serve as weak points in the SP-HHH, while the vertex
cell pattern significantly influences the specific stiffness and stiffness characteristics of the panel. The
SP-HHH with hexagonal vertex cells has superior specific stiffness compared to panels with circular
and rectangular vertex cells, resulting in a more lightweight design and enhanced stiffness.

Keywords: sandwich panel; hierarchical hexagonal honeycomb; equivalent stiffness properties;
dynamic characteristics; variational asymptotic analysis

1. Introduction

The honeycomb sandwich structure, with its impressive mechanical properties, includ-
ing high strength, low weight, and superior energy absorption capacity, has been widely
employed in a range of fields, including aerospace, ships [1], and vehicles [2,3]. Due to the
challenging application environments, sandwich panels’ performance requirements are de-
manding, which has led to extensive studies aimed at optimizing the honeycomb sandwich
structures [4,5]. Significantly, both the facesheet and core layer in a sandwich panel play
equally critical roles; however, it is the core layer that primarily governs the mechanical
properties of the panel. Hence, researchers’ efforts to improve the mechanical properties
have focused on structural changes in the core layer [6]. For instance, Wang et al. [7] sug-
gested using a triangular honeycomb sandwich structure to simplify the construction and
enhance the connection between local areas, thus improving bending resistance. Similarly,
Yang et al. [8] explored the use of a core layer with a negative Poisson’s ratio to enhance
the sandwich panel’s shear resistance and hardness, resulting in ductile behavior.

The hierarchical honeycomb sandwich structure has recently gained popularity as a
result of its unique core-layer construction, which builds on the well-known honeycomb
sandwich panel design [9]. This new structure is formed by replacing the vertices of
regular honeycomb cores with smaller honeycomb-like units, which can themselves be
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further replaced with smaller ones, leading to a hierarchy of structures ranging from zero-
order hierarchy (i.e., traditional honeycomb sandwich structures) to first-order hierarchy,
second-order hierarchy, and so on, as illustrated in Figure 1. Researchers have examined
and confirmed the superior mechanical properties of hierarchical honeycomb sandwich
structures compared to traditional honeycomb sandwich structures [10]. For instance,
Ajdari et al. [11] verified that the stiffness of first-order and second-order hierarchical
honeycomb sandwich structures can be, respectively, 2 and 3.5 times greater than that of
traditional honeycomb sandwich structures with the same mass. Zhang et al. [12] found
that hierarchical honeycomb structures could improve crushing strength compared to
traditional honeycomb structures.

Figure 1. Hierarchical hexagonal honeycombs with (a) zero-order hierarchy, (b) first-order hierarchy,
and (c) second-order hierarchy [11].

Traditional honeycomb sandwich panels have found extensive applications in in-
dustries such as the aerospace, shipbuilding, and vehicle industries, where exceptional
impact resistance is of paramount importance. However, hierarchical honeycomb sandwich
structures, as indicated by Sun et al. [13], can increase specific energy absorption (SEA) by
81.3 and 185.7% for first- and second-order hierarchical honeycomb sandwich structures,
respectively, thus offering superior resistance and greater potential for these industries.
Furthermore, Li et al. [14] discovered that hierarchical honeycomb sandwich structures
not only possess the aforementioned superior properties but also have improved bend-
ing resistance. Hence, hierarchical honeycomb sandwich structures demonstrate several
exceptional characteristics, a few of which have been discussed, and possess tremendous
potential for future applications.

Hierarchical honeycomb structures find broad applications in the aerospace, automo-
tive, and maritime industries, despite the dearth of relevant research [15]. While studies
have demonstrated that hierarchical honeycomb sandwich structures possess superior me-
chanical properties, the impact of vibrations commonly observed in practical applications
on their operational status remains unclear [16,17]. Hence, it is imperative to investigate
the dynamic characteristics of these structures. Numerous studies on the dynamic char-
acteristics of honeycomb sandwich structures have been conducted. Li et al. [18] and
Pham et al. [19] conducted an analysis of the free vibration of a honeycomb sandwich
plate using hyperbolic tangent shear deformation theory and improved the higher-order
element. Wang et al. [20] investigated the free vibration of composite sandwich layers
through numerical simulations and experimental methods. However, few studies have
been conducted on the dynamic characteristics of hierarchical honeycomb sandwich struc-
tures [21,22]. As a result, the dynamic characteristics of these structures and their suitability
for application in the aforementioned industries remain uncertain, as do any unexpected
vibration-related properties they may exhibit. Furthermore, due to the complexity of these
structures, engineers require simpler research methods. This study aims to fill the exist-
ing knowledge gap by utilizing a simplified analysis method to investigate the dynamic
characteristics of hierarchical honeycomb sandwich structures.
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Recently, Cesnik and Hodges [23] proposed the variational asymptotic method (VAM)
for the rigorous construction of reduced plate and shell models, achieving a good balance
between efficiency and accuracy [24,25]. The analysis of the original 3D plate is approx-
imated by using a constitutive model for a unit cell and conducting a corresponding 2D
equivalent plate model (2D-EPM) analysis. All approximations are exclusively confined
within the constitutive modeling, and the accuracy of these approximations is ensured to
be optimal by the VAM. The unit cell is employed to fill the gap between the effective prop-
erties and the macro-structural analysis [26]. This study contributes to the development
of a VAM-based 2D-EPM for sandwich panels with a hierarchical hexagonal honeycomb
(SP-HHHs), which is achieved by replacing the vertices of a regular hexagonal honeycomb
with smaller hexagons, as shown in Figure 1b. This method represents a practical and
effective approach for analyzing these structures in engineering applications and fills the
research gap concerning their dynamic characteristics.

This paper is structured as follows: Section 2 outlines the theoretical derivation process
for establishing a VAM-based 2D-EPM for SP-HHHs. Section 3 compares and discusses the
results for free and forced vibrations using both 3D and 2D models. Section 4 investigates
the effects of the length and thickness ratios of the first-order hierarchy on the dynamic
characteristics and effective stiffness properties of the SP-HHH. Section 5 compares the
dynamic characteristics of hierarchical sandwich panels with different vertex patterns.
Lastly, Section 6 presents the study’s concluding remarks.

2. Variational Asymptotic Equivalent Model for SP-HHH

This section details the derivation of a VAM-based 2D-EPM for the SP-HHH. The
3D-FEM of the SP-HHH is reduced to constitutive modeling over the 3D unit cell (providing
effective stiffness properties) and the 2D-EPM for global analysis. Figure 2 depicts the
dimension reduction analysis of the SP-HHH, where y1 − y2 and x1 − x2 originate from
the geometric center of the core cell and the panel, respectively. It is important to note that
the unit cell depicted in Figure 2b requires a division of the small hexagons located at the
upper and lower vertices to ensure its periodicity.

Figure 2. Analysis process using VAM-based equivalent model: (a) 3D FE model; (b) constitutive
modeling over the unit cell; (c) 2D equivalent plate model.

2.1. Kinematics of the SP-HHH

From a macro perspective, the equivalent single layer (ESL) analysis treats a sandwich
plate as a continuous medium under the assumption that displacement exhibits gradual
variation across the unit cell. Accordingly, the displacement function of the SP-HHH is
defined on the reference plane x1 − x2 while neglecting x3. The partial derivative of the
displacement function is then determined as [27]

∂u(xα, yi, t)
∂xα

=
∂u(xα, yi, t)

∂xα

∣∣∣∣
yi=const

+
1
ζ

∂u(xα, yi, t)
∂yi

∣∣∣∣
xα=const

≡ u,α +
1
ζ

u;i, (1)

where (·),α and (·);i represent the derivatives with respect to macro-coordinates xα, (α = 1, 2)
and micro-coordinates yi, (i = 1, 2, 3), respectively, and ζ denotes the small parameter rep-
resenting the ratio of the thickness to the in-plane dimensions.
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2.2. Step One: 3D Strain Field

The 2D plate variables (ūi) and warping functions (χi) can be utilized to represent the
3D displacement field (ui) of the SP-HHH such that [28]

u1(xα, yi, t) = ū1(xα, t)− ζy3ū3,1(xα, t) + χ1(xα, yi, t)

u2(xα, yi, t) = ū2(xα, t)− ζy3ū3,2(xα, t) + χ2(xα, yi, t)

u3(xα, yi, t) = ū3(xα, t) + χ3(xα, yi, t)

, (2)

where the underlined terms denote the deformations from the classic plate theory.
From Equation (2), the explicit expressions of ūi can be obtained as

ū1 = 〈u1〉+ 〈ζy3〉ū3,1, ū2 = 〈u2〉+ 〈ζy3〉ū3,2, ū3 = 〈u3〉, (3)

where 〈·〉 denotes the volume average over the 3D unit cell.
The 2D displacements can be calculated as the average of the corresponding 3D

displacements using Equation (3), and the warping functions are constrained accordingly by

〈χi〉 = 0. (4)

The strain field in the 3D-FEM can be expressed by decomposing the rotation tensor
in a suitable manner, such as

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
− δij, (5)

where δij is the Kronecker symbol,
The required warping functions are updated based on the variable change according

to Equation (1),
χi(x1, x2, x3) = vi(x1, x2, x3) + ζy3 ϕi(y1, y2, y3), (6)

where vi and ϕi represent global and local warping functions in the macro- and micro-
coordinate systems, respectively.

Substituting Equations (2) and (6) into Equation (5) and eliminating higher-order terms
with no effect on the total energy, we can derive the explicit formulation for the 3D strain
field as

ε11 = ε11 + ζy3κ11 + ζv1,1 + ϕ1;1,

2ε12 = 2ε12 + ζy3(κ12 + κ21) + ζ(v2,1 + v1,2) + ϕ1;2 + ϕ2;1,

ε22 = ε22 + ζy3κ22 + ζv2,2 + ϕ2;2,

2ε13 = ζv3,1 + ϕ3;1 + ϕ1;3,

2ε23 = ζv3,2 + ϕ3;2 + ϕ2;3,,

ε33 = ϕ3;3,

(7)

where
εαβ(x1, x2) =

1
2
(
ūα,β + ūβ,α

)
, καβ(x1, x2) = −ū3,αβ. (8)

The 3D strain field E can be expressed in matrix form, such as

Ee = [ε11 ε22 2ε12]
T = ε + ζy3κ + Iα

(
ϕ‖;α + ζv‖,α

)
,

2Es = [2ε13 2ε23]
T = ζv‖,3 + eα(ϕ3;α + ϕα;3),

Et = ε33 = ϕ3;3,

(9)
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where ()|| = [()1 ()2]
T, ε =

[
ε11 2ε12 ε22

]T, κ = [κ11 κ12 + κ21 κ22]
T, and

I1 =

 1 0
0 1
0 0

, I2 =

 0 0
1 0
0 1

, e1 =

{
1
0

}
, e2 =

{
0
1

}
. (10)

2.3. Step Two: 3D Energy Expression

The strain energy of the SP-HHH is

U =
∫∫
s

1
Ω
UΩdx1dx2, (11)

where s refers to the reference surface of the sandwich panel; UΩ
Ω is the strain energy density,

with Ω representing the projected area of the unit cell in the y1 − y2 plane; and UΩ is the
strain energy of a unit cell, which can be expressed as the summation of the energy stored
in each member of the unit cell,

UΩ =
∫ − tc

2 −t f

− tc
2

∫ √
3

2 l1

−
√

3
2 l1

∫ 3
2 l1

− 3
2 l1
ET

b DbEbdy1dy2dy3 +
∫ tc

2 +t f

tc
2

∫ √
3

2 l1

−
√

3
2 l1

∫ 3
2 l1

− 3
2 l1
ET

t DtEtdy1dy2dy3

+ 6×
∫ tc

2

− tc
2

∫ t1
2

− t1
2

∫ l1−2l2
2

− l1−2l2
2

ET
ADAEAdy′1dy′2dy′3 + 24×

∫ tc
2

− tc
2

∫ t2
2

− t2
2

∫ l2
2

− l2
2

ET
B DBEBdy′1dy′2dy′3

+ 2×
∫ tc

2

− lc
2

∫ t1
2

− t1
2

∫ l1−2l2
4

− l1−2l2
4

ET
C DCECdy′1dy′2dy′3

, (12)

Here, the subscripts b and t represent the bottom and top facesheets of the sandwich
panel, respectively; the subscripts A, B, and C denote the corresponding members of the
core cell, as shown in Figure 3c; and y′i represents the local element coordinates, and its
origin and orientation vary with changes in each cell wall.

Figure 3. Unit cell of the SP-HHH and its parts for the strain energy integral (l1 and l2 are side
lengths of the microstructure and hexagon, respectively; t1 and t2 correspond to their respective wall
thicknesses; t f and tc are the thicknesses of the facesheet and core layer, respectively).
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Equation (11) can be written as

U =
1
2

〈
ETDE

〉
=

1
2

〈
Ee

2Es
Et


T De Des Det

DT
es Ds Dst

DT
et DT

st Dt


Ee

2Es
Et


〉

, (13)

where De, Des, Det, Ds, Dst, and Dt are the sub-matrices of the 6× 6 material matrix.
The virtual work done by the external load is

W3D =W2D +W∗

=
∫

s
(piūi + qαδū3,α)ds +

∫
s
(〈 fivi〉+ τihϕi/2− βihϕi/2)ds, (14)

where βi and τi are the traction forces on the bottom and top surfaces, respectively; fi
denotes the body force; and pi = 〈 fi〉+ τi + βi, qα = h/2(βα − τα)− 〈ζy3 fα〉.

The 3D kinetic energy can be decomposed into the kinetic energy of the 2D-EPM and
the residual kinetic energy that cannot captured by the 2D-EPM, such as

K3D = K2D +K∗, (15)

where
K2D =

1
2

∫
s

(
ρ∗VTV + 2ωTρ∗ξV + ωTΦω

)
ds, (16)

K∗ = 1
2

∫
V

ρ
[
(ωχ + χ̇)T(ωχ + χ̇) + 2(V + ωξ)T(ωχ + χ̇)

]
dV , (17)

where V represents the absolute velocity measured on the deformed reference surface; ω
denotes the inertial angular velocity; V represents the volume domain enclosed by the
panel’s boundaries or surfaces; χ̇ = ∂χ/∂t, ξ = [ 0 0 x3 ]T ; ρ∗ξ =

[
0 0 〈x3ρ〉

]T ;

Φ =

 〈
x2

3ρ
〉

0 0
0

〈
x2

3ρ
〉

0
0 0 0

; ρ and ρ∗ are the density and equivalent density of the 3D-FEM

and 2D-EPM, respectively; and ρ∗ can be determined as in step five.
The elastodynamic behavior of a sandwich panel is governed by the principle of

minimum potential energy, which can be written as follows∫ t2

t1

[
δ(K2D +K∗ −U ) + δW2D + δW∗

]
dt = 0, (18)

and the variational principle governing χi can be written as the principle of the stationary
potential energy,

min
χi∈Equation (4)

〈
ET DE

〉
. (19)

It is evident that this variational problem for χi is presented exclusively over the
unit cell rather than the entire structure. The solution for χi can be derived by asymptotic
analysis of the variational statement in Equation (18) without relying on ad hoc assumptions.
The asymptotic analysis involves expanding the displacement field and other relevant
variables in a series of small parameters or perturbation parameters associated with the
characteristic length scales or geometrical features of the unit cell.
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2.4. Step Three: Asymptotic Analysis

Before applying the VAM, it is necessary to evaluate the order of each term in
Equation (18)

εαβ ∼ hκαβ ∼ ϕi ∼ n, vi ∼ hn, vi,α ∼
h
a

n, v,3 ∼ n

h fα ∼ αα ∼ βα ∼ µ
h
a

n, h f3 ∼ α3 ∼ β3 ∼ µ

(
h
a

)2
,

(20)

where µ denotes the order of material properties, which signifies the significance of the
material property for the overall behavior; n represents the order of the minimum strain,
which specifies the power to which the minimum strain is raised in the analysis.

To obtain the zeroth-order approximation of the variational statement in Equation (18),
the asymptotically smaller terms (namely, K∗ and δW∗) are eliminated,∫ t2

t1

[
δ

(
K2D −

∫
Ω
U0dΩ

)
+ δW2D

]
dt = 0, (21)

where U0 can be obtained from Equation (13) by removing the derivatives of the displace-
ment field with respect to xα,

2U0 =

〈
(ε + ζy3κ)TDe(ε + ζy3κ) + 2(ε + ζy3κ)T

(
Desζv‖,3 + Det ϕ3;3

)
+ζvT

‖,3Dsζv‖,3 + 2ζvT
‖,3Dst ϕ3;3 + ϕT

3;3Dt ϕ3;3

〉
. (22)

The introduction of Lagrange multipliers λi allows us to derive the corresponding
Euler–Lagrange equation as[

(ε + ζy3κ)TDes + ζvT
‖,3Ds + ζvT

‖,3Dst

]
,3
= λ‖,[

(ε + ζy3κ)TDet + ζvT
‖,3Dst + ϕ3;3Dt

]
,3
= λ3,

(23)

where λ|| = [λ1 λ2]
T.

The stress-free boundary conditions at the top and bottom surfaces can be obtained as[
(ε + ζy3κ)TDes + ζvT

‖,3Ds + ζvT
‖,3Dst

]+/−
= 0,[

(ε + ζy3κ)TDet + ζvT
‖,3Dst + ϕ3;3Dt

]+/−
= 0.

(24)

From these conditions, the solutions for v|| and v3 can be obtained as

v‖ =
〈
−(ε + ζy3κ)D̄es(Ds)

−1
〉T

, v3 =
〈
−(ε + ζy3κ)D̄et(D̄t)

−1
〉

, (25)

where
D̄es = Des − D̄et(Dst)

T(D̄t)
−1, D̄et = Det − Des(Ds)

−1Dst,
D̄t = Dt − (Dst)

T(Ds)
−1Dst.

(26)

Substituting Equation (25) into Equation (22), the stain energy of the 2D-EPM can be
obtained as

U2D = 1
2

〈
(ε + ζy3κ)TK(ε + ζy3κ)

〉
= 1

2

{
ε
κ

}T[ A B
BT D

]{
ε
κ

}
, (27)

where
A = 〈K〉, B = 〈ζy3K〉, D =

〈
ζy2

3K
〉
,

K = De − DesD−1
s DT

es − DetDT
et/Dt.

(28)
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The constitutive equation of the 2D-EPM can be expressed as

N11
N22
N12
M11
M22
M12


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66





ε∗11
ε∗22
2ε∗12
κ∗11
κ∗22
2κ∗12


. (29)

where A11 and A22, respectively, indicate the tensile stiffnesses along the x1 and x2 direc-
tions, A66 indicates the in-plane shear stiffness, A12 and A21 indicate the tensile couplings,
and A16 and A61, as well as A26 and A62, indicate the tensile-shear couplings; D11 and D22,
respectively, indicate the bending stiffnesses along the x1 and x2 directions, D66 indicates
the torsional stiffness, D12 and D21 indicate the bending couplings, and D26 and D62, as
well as D16 and D61, indicate the bending-torsional couplings; and B11 and B22 indicate the
tensile-bending couplings, B16 indicates the tensile-torsional coupling, B26 indicates the
bending-shear coupling, and B66 indicates the torsional-shear coupling.

The obtained constitutive relationship can be incorporated into the two-dimensional
equivalent plate to facilitate free vibration analysis, allowing for the determination of
natural frequencies and modes. Additionally, with the acquired damping system, forced
vibration analysis can be conducted in both the time and frequency domains. This can be
achieved by utilizing modal/steady-state dynamics solvers in finite element software, such
as ABAQUS/Standard.

2.5. Step Four: Recovery Relationship

To enhance the developed model, it is imperative to determine the recovery relation-
ship for local fields after obtaining the response amplitude. Since every material point of
the 2D-EPM has an associated unit cell as its microstructure, Equation (3) can be employed
for recovering the local displacement field within the unit cell,

ui = ūi +

 ū1,1 ū1,2 ū1,3
ū2,1 ū2,2 ū2,3
ū3,1 ū3,2 ū3,3


y1
y2
y3

+ ζχi. (30)

The local strain field can be recovered as follows

E0
e =

[
ε0

11 ε0
22 2ε0

12
]T

= ε + ζy3κ, 2E0
s =

[
2ε0

13 2ε0
23
]T

= −χ‖,3, E0
t = ε0

33 = χ3,3. (31)

The local stress field can be determined by applying the general Hooke’s law,

σ = KE . (32)

2.6. Step Five: Equivalent Density of 2D-EPM

The facesheets and core layer are considered to have perfect bonding without any
relative sliding, allowing for the computation of the total mass of the unit cell within the
SP-HHH as

m = mc + m f

= ρc × [6× (l1 − 2l2)× t1 + 24× l2 × t2 + (l1 − 2l2)× t1]× tc + 2ρ f × 3
√

3l2
1 × t f ,

(33)

where ρ f represents the density of the facesheet, ρc denotes the density of the core layer,
and t f and tc correspond to their respective thicknesses.

The equivalent density of the SP-HHH can be obtained as

ρ∗ =
m

VΩ
=

m

3
√

3l2
1 ×

(
tc + 2t f

) . (34)
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3. Model Verification

The flowchart illustrating the validation process for the dynamic analysis using the
2D-EPM is presented in Figure 4. The equivalent stiffness properties of the SP-HHH were
determined through VAM-based homogenization of the unit cell. These properties were
then input into the 2D-EPM for conducting free vibration analysis. Based on the obtained
natural frequencies and modes, the frequency scanning range, as well as the positions for
excitation and reception in the harmonic response analysis, was determined. Subsequently,
by examining the maximum resonant responses at peak and trough times, local displace-
ment and stress fields within the unit cell were obtained using recovery relationships. To
evaluate the accuracy of the 2D-EPM, the natural frequencies, modes, frequency response
function (FRF) curves, and displacement–time curves at the first resonance frequency were
compared with those obtained from the 3D-FEM. This comparative analysis served as the
foundation for predicting the fatigue life of the SP-HHH when subjected to periodic loads.

Figure 4. Flow chart for verifying the dynamic characteristics of the SP-HHH using the 2D-EPM.

The three-dimensional model of the SP-HHH comprised 24 unit cells in the x1 direction
and 14 unit cells in the x2 direction. The sandwich panel had uniform side lengths of
400 mm, and the geometric parameters of the unit cell were a = 30 mm, b = 10

√
3 mm,

l1 = 10 mm, l2 = 2 mm, t1 = t2 = 1 mm, tc = 9 mm, and t f = 1 mm. The material
used in the simulation was aluminum, with material parameters of ρ = 2.7× 103 kg/m3,
E = 70 GPa, and v = 0.3.

To evaluate the precision of mesh dividing, the amplitude convergence criterion was
used for mesh convergence analysis. The amplitude convergence results for the model with
different mesh sizes are presented in Figure 5. The model with a mesh size of eight exhibited
insufficient accuracy. For mesh sizes of two, three, four, and five, the model’s calculation
results were relatively close, but the computation time for mesh sizes of two and three was
significantly longer compared to the mesh size of five. Therefore, to enhance computational
efficiency, this study opted for a mesh size of five. The 2D-EPM employed 21,656 S4R shell
elements, while the 3D-FEM utilized 255,104 C3D10 solid elements, as shown in Figure 6,
both of which satisfy the accuracy requirements for engineering purposes. To construct
a feasible FE model, all internal boundaries were eliminated. Furthermore, both the core
layer and facesheet were assigned a solid homogeneous section with elastic properties.
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Figure 5. Convergence analysis of mesh size using the vibration amplitude.

Figure 6. Geometry and meshing of the SP-HHH and its unit cell.

3.1. Free Vibration Response

To assess the accuracy of the 2D-EPM in predicting the natural frequencies and modes
of the SP-HHH, free vibration analyses were performed with both models using various
boundary conditions (BCs), as illustrated in Figure 7. The BCs included a free bound-
ary (denoted as F) and clamped boundary (denoted as C). The deviation between the
results obtained from the 3D-FEM and 2D-EPM was quantified as the “Error”, which was
calculated as

Error =

∣∣∣∣ω2D-EPM −ω3D-FEM

ω3D-FEM

∣∣∣∣× 100% (35)

where ω3D−FEM and ω2D−EPM represent the natural frequencies obtained from the 3D-FEM
and 2D-EPM, respectively.

Table 1 compares the first six natural frequencies of the SP-HHH as predicted by
both the 3D-FEM and 2D-EPM, considering the BCs CCCF, CCFF, and CFFF. The obtained
results suggested a general agreement between the natural frequencies predicted by the
two models. However, an increase in the relative error of the 2D-EPM’s natural frequency
predictions was observed as the order of the frequency increased. The maximum errors for
the three considered BCs were 5.38%, 6.58%, and 5.32%, respectively, all of which remained
below 7%. Comparative analysis of the natural frequencies obtained from the 2D-EPM and
3D-FEM, utilizing various BCs, revealed an upward trend in the natural frequencies for
both models with enhanced boundary constraints.
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(a) CCCF (b) CCFF (c) CFFF (d) CCCC

Figure 7. Boundary conditions adopted in the free vibration analysis.

Table 1. Comparison of the fist six natural frequencies predicted by the two models under different
BCs. Unit: Hz.

Order
CCCF CCFF CFFF

3D-FEM 2D-EPM Error 3D-FEM 2D-EPM Error 3D-FEM 2D-EPM Error

1 427.07 399.17 6.53% 396.05 415.60 4.94% 62.18 65.89 5.97%
2 705.24 694.17 1.57% 470.63 482.56 2.53% 151.67 150.92 0.49%
3 1110.60 1037.50 6.58% 767.35 752.38 1.95% 378.44 396.45 4.76%
4 1333.80 1342.50 0.65% 1075.30 1132.50 5.32% 481.62 460.35 4.42%
5 1401.10 1364.00 2.65% 1179.80 1224.00 3.75% 547.62 555.36 1.41%
6 2000.50 1972.20 1.41% 1388.90 1320.40 4.93% 950.17 932.42 1.87%

Table 2 compares the first six natural frequencies and corresponding modes of the
SP-HHH as predicted by both the 3D-FEM and 2D-EPM under CCCC BCs. The findings
revealed a strong level of agreement between the natural frequencies obtained from the
2D-EPM and the 3D-FEM, with a discrepancy of only 6.3%. This value falls well within the
acceptable engineering tolerance, highlighting the reliability and accuracy of the predictions.
The mode complexity increased with the ascending mode order, as did the half-wavelengths
in both the x1 and x2 directions. The modes predicted by both the 3D-FEM and 2D-EPM
exhibited remarkable similarity. Specifically, the first four modes, denoted f (m, n), under
the CCCC BCs corresponded to (1, 1), (2, 1), (1, 2), and (2, 2). Here, m and n represent the
half-wavelengths along the x1 and x2 directions, respectively.

Table 2. Comparison of first six natural frequencies and vibration modes predicted by the two models
under CCCC BCs.

Order 1 2 3 4 5 6

3D-FEM

635.79 Hz 1275.40 Hz 1277.30 Hz 1857.7 Hz 2239.40 Hz 2252.20 Hz

2D-EPM

595.83 Hz 1199.50 Hz 1199.60 Hz 1747.60 Hz 2111.20 Hz 2123.00 Hz

Error 6.3% 6.0% 6.1% 5.9% 5.7% 5.7%

In terms of modeling efficiency, the 2D-EPM demonstrated superior performance
compared to the 3D-FEM, which was primarily attributed to its simplified implementation
of boundary conditions and loads. Additionally, the 2D-EPM proved to be more efficient in
conducting free vibration analysis, with a computation time of 45 s when employing eight
CPUs. The computing platform utilized for these analyses was a Precision Tower 7910 (Dell
company, Round Rock, TX, USA) equipped with two Intel Xeon E5-2660 CPUs operating at
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a clock speed of 3.2 GHz with 128 GB of memory. In summary, the 2D-EPM was capable of
predicting the natural frequencies and modes of the SP-HHH and was computationally
superior to the 3D-FEM, which highlights its significance in the preliminary design of
SP-HHHs.

3.2. Frequency-Domain Analysis of Forced Vibration

Based on the results of the free vibration analysis, the first six natural frequencies
of the sandwich panel were obtained. To validate the accuracy of the 2D-EPM in forced
vibration analysis, the frequency response was investigated by conducting frequency-
domain analysis. To obtain comprehensive data, four regions were designated on the
sandwich panel depicted in Figure 8 for excitation and measurement of vibration amplitude.
This resulted in four distinct cases with each case having a region assigned as the excitation
zone, while vibration measurements were obtained from all four regions to elucidate
structural responses. To prevent stress concentration, a uniform load with an amplitude of
1 MPa was distributed over each region. Based on the free vibration outcomes, frequency-
domain analysis was employed in the frequency range between 500 and 3000 Hz for a
400 mm by 400 mm plate subject to CCCC BCs.

(a) Case One (b) Case Two (c) Case Three (d) Case Four

Figure 8. Cases used in frequency-domain analysis of forced vibration. The coordinates of points A,
B, C, and D are (−100, 100), (−100, −100), (100, 100), and (100, −100), respectively.

Figures 9–12 compare the forced vibration responses in cases one to four predicted by
the 3D-FEM and 2D-EPM, respectively. Frequency-domain analysis revealed distinctive
peaks spanning from the fundamental frequency of 649 Hz to the sixth natural frequency of
2274 Hz, indicating a resonance phenomenon. Notably, the resonance peak associated with
the first to the fourth natural frequencies was considerably larger than that corresponding
to the fifth and sixth natural frequencies. The characteristics exhibited by the FRF curves
were in good agreement with the aforementioned modal diagram under CCCC BCs. Firstly,
the symmetry of the vibration response at each point corresponded to the symmetry
observed in the modal diagram. For instance, in the modal diagram of the first mode, the
receiving points exhibited identical displacements, leading to a high level of coherence in
the FRF curve across these four points (with slightly larger amplitudes of excitation points).
Similarly, the points situated on the diagonal of the fourth modal diagram displayed
consistent displacement responses, causing convergence of the vibration responses of
points A and D, as well as B and C, on the FRF curve. This pattern of symmetry extended to
other modes as well. Secondly, owing to the close similarity between the second and third
natural frequencies, the FRF curves displayed their superposition. The modes’ symmetry
further contributed to this phenomenon, as points located on one diagonal effectively
canceled each other out, resulting in minimal peaks, while points on the opposite diagonal
overlapped, leading to larger peaks.
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Figure 9. Comparison of frequency response function (FRF) curves predicted by two models for each
receiver point (case one).
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Figure 12. Comparison of frequency response function (FRF) curves predicted by two models for
each receiver point (case four).

3.3. Time-Domain Analysis of Forced Vibration

The frequency-domain analysis in the previous section revealed that the central point
of the panel exhibited the strongest resonance response when excited at point A in case
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one. To delve deeper into the resonance response in case one, we performed steady-state
time-domain analyses employing both the 3D-FEM and 2D-EPM. The excitation load and
modal damping ratio were selected to align with the values obtained from the frequency-
domain analysis, specifically corresponding to a frequency of 635.79 Hz for the 3D-FEM
and 595.83 Hz for the 2D-EPM.

Figure 13a illustrates the deflection–time curves at the first resonance frequency of
the forced vibration response as predicted by the 3D-FEM and 2D-EPM. The maximum
displacements recorded for the 3D-FEM and 2D-EPM were 0.251 mm and 0.243 mm,
respectively, with a relative error of 3.3%, which satisfies engineering accuracy requirements.
Furthermore, the distinct periods observed between the 3D-FEM and 2D-EPM implied
that variations in dimensions yield distinct numbers and characteristics for the vibration
modes. The 3D-FEM accounted for the through-the-thickness deformation and the non-
uniformity of complex structures, leading to a higher first resonance frequency compared
to the 2D-EPM. The deflections measured at the peak and trough times, extracted from
the deflection–time curves, are represented in Figure 13b,c, respectively. It is clear that
these deflections exhibit similarities with the first free vibration mode analyzed in Table 2,
thereby demonstrating a remarkable agreement between the deflection results obtained by
the 3D-FEM and 2D-EPM.
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Figure 13. Deflection–time curves at first resonance frequency of the forced vibration response
predicted by the 3D-FEM and 2D-EPM.
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3.4. Local Field Recovery

In this section, the displacement and strain information obtained from the point with
the greatest amplitude in the 2D-EPM is used to recover the local displacement and strain
field within the 3D unit cell. The recovery point corresponds to excitation point A identified
in the previous time-domain analysis.

Table 3 presents the recovered displacement fields within the unit cell at the peak
and trough times of the time-domain curve. Upon comparing the displacements along the
three main axes, it was evident that the displacement U3 exhibited the most significant
magnitude, with amplitudes 827 and 737 times larger than those of U1 and U2, respectively.
The maximum displacement of U3 measured 0.334 mm, exceeding the results obtained
from the three-dimensional analysis shown in Figure 13b by 10.17%. This observation
indicates a favorable level of accuracy in the recovery of the local displacement field.

Table 3. Recovered local displacement fields within the unit cell at the peak and trough times of the
time-domain curve.

Displacement Trough Time Peak Time

U

U1

U2

U3

It is noteworthy that the recovered local displacement within the unit cell was typically
greater at the trough time compared to that at the peak time. This disparity can be attributed
to the presence of the hierarchical honeycomb within the sandwich panel. The hierarchical
honeycomb hindered the vibration of the sandwich panel at the trough time, resulting in
an amplified amplitude. Conversely, at the peak time, the influence of the hierarchical
honeycomb was relatively limited, leading to a smaller amplitude.

Table 4 shows the local stress field within the unit cell at the peak and trough times. The
results clearly indicate that the local stress was mainly taken by the facesheets. Additionally,
there existed a notable concentration of localized stress at the interface between the facesheet
and the core layer, indicating high susceptibility to damage. The analysis outcomes for the
local stress field hold paramount importance for fatigue failure analysis.



Materials 2023, 16, 5741 17 of 25

Table 4. Recovered local stress fields within the unit cell at the peak and trough times of the time-
domain curve.

Stress Trough Time Peak Time

Von Mises

σ11

σ22

σ33

It is important to highlight that the local stress at the trough time of the forced vi-
bration surpassed that at the peak time, a phenomenon ascribed to the internal structural
attributes of the SP-HHH. The hierarchical honeycomb core within the panel restricted the
propagation path of the vibration at the trough time, thereby impeding the transfer and
dispersion of the vibrational energy. As a result, the vibrational energy accumulated within
a confined region, leading to pronounced local stress at the trough time. Conversely, the
influence of the hierarchical structure diminished during the peak time. At this juncture,
the hierarchical honeycomb core exerted a lesser impact on vibration, enabling greater
freedom for the dissemination and dispersion of vibrational energy. Consequently, the
accumulation and concentration of local stress at the peak time were reduced.

4. Structural Parameter Analysis

This section investigates the effects of the length and thickness ratios of the first-order
hierarchy on the dynamic characteristics of the SP-HHH under CCCC BCs using the 2D-
EPM. A circular excitation area with a diameter of 20 mm located at the geometric center of
the panel was subjected to a sinusoidal harmonic load of 1 MPa. The damping ratio was
maintained at 0.01.

4.1. Microstructure-to-Hexagon Thickness Ratio

Figure 14a shows the variation curve for the equivalent stiffness with a thickness ratio
of t2/t1 while the other parameters remain unchanged (l1 = 10 mm, l2 = 3 mm). It is
evident that the equivalent tensile and bending stiffness both increased gradually as the
thickness ratio increased from 0.4 to 1.5. Figure 14b shows that the specific stiffness de-
creased with increasing thickness ratio. Furthermore, Figure 14c exhibits changes in natural
frequencies and the first response amplitude with alterations in the thickness ratio. It is no-
table that the first three natural frequencies decreased gradually with increasing thickness
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ratio, accompanied by a gradual decrease in the first resonance amplitude. This decrease
could be attributed to the increase in equivalent density, which was relatively greater than
the resulting increase in equivalent stiffness due to the increase in the thickness ratio.
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Figure 14. Effect of thickness ratio on the dynamic characteristics of the SP-HHH (the abscissa
represents the microstructure-to-hexagon thickness ratio).

4.2. Microstructure-to-Hexagon Length Ratio

Figure 15a presents the relationship between the microstructure-to-hexagon length
ratio (l2/l1) and the equivalent stiffness in the 2D-EPM, while the other parameters were
kept constant (t1 = t2 = 1 mm). The findings demonstrate that the equivalent stiffness was
uniform along both principal axes. This uniformity arose from a decrease in the region
along the shorter side accompanied by a complete strengthening of the microstructure.
Conversely, the region along the longer side increased but only experienced a partial
reinforcement of the microstructure. These opposing effects counterbalanced each other,
resulting in similar equivalent stiffness along the directions of both principal axes.
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Figure 15. Effect of length ratio on dynamic characteristics of the SP-HHH (the abscissa represents
the microstructure-to-hexagon length ratio).

Figure 15b shows that there was no substantial change in the specific bending stiff-
nesses as the length ratio increased. However, the specific torsional stiffness, represented
by D66/ρ∗, exhibited a significant increase. This discrepancy can be primarily attributed
to the longitudinal bending stiffness of the top and bottom facesheets of the hierarchical
honeycomb sandwich panel, which predominantly influenced the specific bending stiffness.
Consequently, alterations in the vertex microstructures in the core layer had minimal impact
on the specific bending stiffness. Conversely, an augmentation in the length ratio resulted
in an increased number of transverse connections within the core layer and improved their
quality. This phenomenon subsequently enhanced the shear stiffness of the sandwich panel,
thus significantly enhancing the overall torsional stiffness.

Figure 15c illustrates the variations in the first resonance amplitude and first three
natural frequencies over the length ratio range of 0.15 to 0.40. The results indicate a
decrease in all three natural frequencies as the length ratio increased, indirectly suggesting
a continuous enhancement in the stiffness of the sandwich panel. Specifically, an increase
in the specific stiffness led to a reduction in resonance amplitude.

4.3. Summary

To present the impact of the two ratios on the dynamic characteristics of the SP-HHH
in a more intuitive manner, Table 5 displays the variations in the equivalent stiffness (A11
and D11), specific stiffness (D11/ρ∗), fundamental frequency ( f1), and the first resonance
amplitude (RA) associated with these ratios. It is evident that the impact of the thickness
ratio on the equivalent stiffness, frequency, and amplitude was considerably greater than
that of the length ratio within a specific range. However, an increase in the thickness
ratio could result in a more pronounced reduction in specific stiffness. In practical design,
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it is crucial to emphasize the thickness ratio that has a more pronounced influence on
the dynamic characteristics of the SP-HHH. Furthermore, the findings suggest that the
stiffness of the hierarchical honeycomb sandwich panel is mainly limited by the vertexes,
and reinforcement of the vertexes can enhance the sandwich panel’s stiffness due to the
even distribution of mass and materials across the entire sandwich panel.

Table 5. Influence of geometric parameters on the dynamic characteristics of the SP-HHH.

Ratios Range ∆A11 ∆D11 ∆D11/ρ∗ ∆ρ∗ ∆ f1 ∆RA

Thickness ratio 0.4–1.5 27.0% 30.8% −24.3% 65.4% −16.7% −12.7%
Length ratio 0.15–0.4 6.1% 6.4% 6.4% 33.7% −7.0% −1.9%

5. Geometric Variation of the Vertex Cell

The geometric variations of the vertex cells in hierarchical honeycomb structures play
a crucial role in adjusting the overall performance. It is, therefore, imperative to acquire
a comprehensive understanding of these variations to comprehend the behavior of the
structure as a whole. This section investigates the impact of diverse vertex cell patterns
on the dynamic characteristics of an SP-HHH. In addition to the mentioned self-similar
hierarchical hexagonal honeycomb, two innovative hierarchical honeycombs representing
circular and rectangular vertex cells were developed, as shown in Figure 16b,c. The
length and thickness ratios of the three hierarchical honeycombs were all set to 0.3 and 1,
respectively.

(a) Hexagonal vertex cell (b) Circular vertex cell (c) Rectangular vertex cell

Figure 16. Hierarchical honeycomb with (a) hexagon, (b) circular, and (c) rectangular vertex cells.

Figure 17 shows the effects of different vertex cell patterns on the dynamic character-
istics of the SP-HHH. It reveals that the SP-HHH with hexagonal vertex cells displayed
higher specific stiffness than the rectangular one (except D22/ρ?). Furthermore, both the
specific stiffness and equivalent stiffness of the SP-HHH with circular vertex cells were
inferior to those of the other two patterns. Figure 17c shows that the SP-HHHs with circu-
lar and rectangular vertex cells exhibited higher equivalent densities when compared to
the one with hexagonal vertex cells, and the first three natural frequencies were smaller.
However, the SP-HHH with circular vertex cells demonstrated a smaller first resonance
amplitude than that the one with the hexagonal vertex cells. Hence, it can be concluded
that the SP-HHH with hexagonal vertex cells has superior specific stiffness compared to
those with circular and rectangular vertex cells, resulting in a more lightweight design and
enhanced stiffness. Conversely, the SP-HHH with circular vertex cells exhibited a greater
mass-to-stiffness ratio. As a result, it offers distinct advantages in terms of amplitude
control.
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Figure 17. Effects of different vertex cell patterns on dynamic characteristics of SP-HHHs.

Tables 6 and 7 compare the local displacement and stress fields within the central unit
cell of the sandwich panels with circle and rectangular vertex cells, respectively. Upon
comparing the results presented in Tables 3 and 4, it is evident that the local stresses had a
most pronounced uneven distributed in both the core layer and facesheet of the unit cell
with rectangular vertex cells. However, such an uneven stress distribution was significantly
alleviated in the unit cell with hexagonal and circular vertex cells. Furthermore, a notice-
able concentration of local stress occurred at the connection between the vertex unit and
facesheet, with rectangular vertex cells displaying the most severe stress concentration.
This phenomenon of stress concentration was substantially mitigated in hexagonal and
circular vertex cells, resulting in enhanced bearing capacity and fatigue resistance. Con-
sequently, hexagonal vertex cells offer a favorable balance between lightweight design
and high strength, closely approximating the stress distribution state of circular vertex
cells. This advantageous property contributes significantly to their superior stiffness and
strength.
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Table 6. Recovered local displacement fields within the central unit cell of sandwich panels with
circular and rectangular vertex cells at the trough time of the time-domain curve.

Displacement Circular Vertex Cell Rectangular Vertex Cell

U

U1

U2

U3

Table 7. Recovered local stress fields within the central unit cell of sandwich panels with circular and
rectangular vertex cells at the trough time of the time-domain curve.

Stress Circular Vertex Cell Rectangular Vertex Cell

σMises

σ11
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Table 7. Cont.

Stress Circular Vertex Cell Rectangular Vertex Cell

σ22

σ33

6. Conclusions

This study establishes an equivalent two-dimensional model for sandwich panels with
a hierarchical hexagonal honeycomb by employing the variational asymptotic method. To
verify the accuracy of the established model in terms of dynamic characteristics, free and
forced vibration analyses of the SP-HHH were conducted. The obtained results indicate
that the equivalent two-dimensional model can effectively and precisely analyze an SP-
HHH’s dynamic characteristics. Through investigating the influence of the length and
thickness ratios of the first-order hierarchy on the dynamic characteristics of the SP-HHH,
the following conclusions were drawn:

(1) As the microstructure-to-hexagon thickness ratio increased, there was a concurrent
increase in the panel’s equivalent stiffness. However, the first resonance amplitude
and the first three natural frequencies exhibited a gradual decrease due to a correlated
decrease in specific stiffness, as dictated by the thickness ratio;

(2) Increasing the microstructure-to-hexagon length ratio led to a decrease in the first
resonance amplitude and the first three natural frequencies of the SP-HHH. However,
the equivalent stiffness of the sandwich panel continued to increase. These findings
suggest that the vertices of the hierarchical honeycomb structure are the weakest part,
and strengthening them could help enhance the overall stiffness of the sandwich panel;

(3) The SP-HHH with hexagonal vertex cells demonstrated higher specific stiffness com-
pared to configurations with circular and rectangular vertex cells, resulting in a more
lightweight design and improved stiffness. In contrast, the SP-HHH with circular
vertex cells exhibited a higher mass-to-stiffness ratio, providing distinct advantages
in terms of amplitude control.
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Abbreviations
The following symbols were used in this paper:

xi, yi Macro- and micro-coordinates, respectively
ζ Micro–macro scale ratio
ui, ūi Displacements of the 3D-FEM and 2D-EPM, respectively
〈·〉 Integral over the volume domain of the unit cell
χi Warping function
Ee, Es, Et Strain components of the 3D-FEM
l1, l2 Side lengths of the microstructure and hexagon, respectively
t1, t2 Wall thicknesses of the microstructure and hexagon, respectively
t f , tc Thicknesses of the facesheet and core layer, respectively
s Reference surface of the sandwich panel
uΩ
Ω Strain energy density

τi, βi, fi Traction forces on the top and bottom surfaces of the plate and body force
V Absolute velocity measured on the deformed reference surface
ω Inertial angular velocity
ρ, ρ∗ Density and equivalent density of the 3D-FEM and 2D-EPM, respectively
ρ, ρ∗ Density and equivalent density of the 3D-FEM and 2D-EPM, respectively
λi Lagrange multipliers
δW̄2D, δW̄∗ Virtual work independent of and related to the warping function
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