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Abstract: Injection molding is a method commonly used to manufacture plastic products. This
technology makes it possible to obtain products of specially designed shape and size. In addition, the
developed mold allows for repeated and repeatable production of selected plastic parts. Over the
years, this technology grew in importance, and nowadays, products produced by injection molding
are used in almost every field of industry. This paper is a review and provides information on recent
research reports in the field of modern injection molding techniques. Selected plastics most commonly
processed by this technique are discussed. Next, the chosen types of this technique are presented,
along with a discussion of the parameters that affect performance and process flow. Depending
on the proposed method, the influence of various factors on the quality and yield of the obtained
products was analyzed. Nowadays, the link between these two properties is extremely important.
The work presented in the article refers to research aimed at modifying injection molding methods
enabling high product quality with high productivity at the same time. An important role is also
played by lowering production costs and reducing the negative impact on the environment. The
review discusses modern injection molding technologies, the development of which is constantly
progressing. Finally, the impact of the technology on the ecological environment is discussed and the
perspectives of the process were presented.
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1. Introduction

Injection molding technology is one of the most common methods used in the plastics
processing industry. It is a method that can be used for mass production of products
with complex shapes [1,2]. It is used in many industries, not only in the production of
children’s toys and medical equipment, but also in the automotive or aerospace industries.
Injection molding technology is a method to obtain molded products by injection molding
of plastic [3–5]. The plastic is melted under heat and injected into a suitable mold and then
cooled and solidified. Injection molding was known for many years. However, the process
was refined over time. Different variations of injection molding technology were developed
in response to new challenges in technology and new types of plastics. The need for change
is also driven by the increasing expectations of manufacturers in various industries for the
final products, as well as the target customers of these products [6,7]. The first work on
plastic injection molding dates back to the 19th century. Initially, a relatively simple machine
was developed to mold buttons, hair combs, and other small items. In the 20th century,
developments in polymer chemistry were instrumental in introducing new plastics, such
as polyethylene, polypropylene, and polystyrene, which were ideal for injection molding.
Work intensified with the development of the first practical injection molding machine in
1946, which made it possible to automatically inject plastic into a mold. This invention also
contributed to the development of injection molding technology and greatly facilitated the
previously known process [8–10]. In the following years, injection molding became widely
used in industry. The main focus was on designing equipment with greater power and with
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automation of the process. The development of advanced molding techniques contributed
to increasing the efficiency and precision of this production method. With the development
of technology in the field of polymeric materials, injection molding found application in an
increasing number of industries [11,12]. From automobiles to electronics, injection molding
became one of the most important manufacturing techniques [13]. Injection molding
technology involves cyclic plasticization of plastic under a high temperature (Figure 1). The
melted plastic is then injected under a certain pressure into a mold cavity, in which, after
solidification, a specific product shape is given [14–16]. The first step is proper preparation
of the mold by mapping the final shape that the finished product is to have. Since it
is possible to obtain virtually any shape of the product and the mold must be properly
designed for each component separately, this technology is cost-effective primarily for
high-volume production [17,18]. The plastic is usually used in powder or pellet form and
is subjected to high temperatures to melt and plasticize it. Further, the plastic mass under
high pressure is injected through an injection molding machine system. Injection must be
rapid and at the right temperature of the plastic and the mold so that it does not “freeze”
during the filling phase, which may cause underfilling. After the entire mold is filled with
the melted plastic, the whole is cooled so that the product obtains the specified shape. The
time of cooling depends on the type of plastic and the thickness of the product. Once the
finished product is obtained, additional processing may be required, including removal
of excess plastic, painting, or assembly of several parts [19]. Injection molding plastic
processing has several important advantages, most importantly, the mentioned flexibility of
the molded product shape and size. However, the size of the detail is limited by the size of
the injection molding machine, and equally important are specific rules in the design of the
mold to allow the removal of the molded product after processing. In the case of small parts,
often during one molding cycle, several or a dozen parts are made simultaneously, which
affects the speed of the process. Thus, this method allows for economical production of
large batches of products. In addition, injection molding is a popular process due to its high
precision, speed of production, repeatability, and possibility of mass production [20,21].
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The paper discusses the most commonly processed plastics by injection molding.
It also focuses on literature reports describing the influence of process parameters on
its performance and the final properties of products. In addition, interesting research
work carried out in various types of injection molding is discussed; in particular: water-
assisted injection molding; gas-assisted injection molding; microcellular injection molding;
variable mold temperature technologies; microinjection molding; and rapid thermal cycling
molding. The impact of the process on the ecological environment is further discussed and
prospects for further development are presented.
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2. Materials Used in Injection Molding
2.1. Polypropylene

Polypropylene belongs to the polyolefin group and is one of the most widely used
plastics in injection molding [23]. The advantage of using this plastic is its low viscosity
in the molten state, which makes it possible to obtain a smooth and fluid consistency. It
is easily moldable and allows for the molding of products of any shape. It is a material
resistant to erosion, rust, and chemical spills [24–26]. In addition, it is considered a material
with a relatively low price and high availability. Polypropylene is widely used in industry
in the production of packaging and household products, but also in the automotive and
electronics industries, as well as in the manufacture of sporting goods and children’s
toys. This material is used to produce, among others, tanks, medical equipment, syringes,
technical textiles, carpets, enclosures for electrical appliances, wires, cables, car parts,
bathroom fittings, and household goods [27]. In injection molding technology, different
varieties of polypropylene or its blends with other polymers or modifying additives can be
used. The selection of the appropriate material depends on the desired properties of the
material to be produced [28,29].

Research on the use of polypropylene in injection molding techniques was presented
by Farotti et al. The paper presents the results of a study of the mechanical characteristics
of commercial PP. The analysis was aimed at determining the correlation between the
input injection molding parameters and the mechanical behavior of the material. Particular
attention was paid to determining the influence of parameters such as plastic melting point,
mold temperature, injection pressure, and cooling time. Based on the analysis, the influence
of mold temperature and injection pressure on the mechanical properties of the polymer was
confirmed. Increasing the values of these factors can lead, among other things, to distortion
of the obtained product [30]. An interesting study also relates to the results presented by
Andrzejewski et al. The aim of the study was to compare two types of polymer fillers,
which are used during polypropylene processing by injection molding. The possibility of
using buckwheat hulls as an alternative to wood fiber was tested. The potential of this
filler in polypropylene processing technology was confirmed [31]. The injection molding
process of single-polymer composite (SPC) products using PP was presented by Wang
et al. It was found that the sample weight and tensile properties of the PP SPCs varied
in different rules with the variations of these four parameters. Significant effects were
determined for cylinder temperature, injection pressure, and also holding time. A diagram
of the mold cavity and injection molding structure of the PP SPC sample insert is presented
in Figure 2 [32].
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Kosciuszko et al. then proposed an analysis of the change in the value of re-molding
shrinkage and voids formed in PP moldings. The study was carried out by determining the
dependence on the degree of porosity and time after removal of the molded part from the
injection mold cavity. It was proven that the cell injection process, together with a longer
holding phase, allows the reduction in gas pores, which translates into the reduction in
cavities and unevenness of products [33].

2.2. Polyethylene

Polyethylene is one of the most popular and widely used polymers. It is obtained
by polycondensation of ethylene [34]. Due to the complex structural hierarchy, there are
three main types of polyethylene, such as low-density PE (LDPE), high-density PE (HDPE),
and linear low-density PE (LLD-PE). Each variety differs in terms of molecular weight
and chain branching [35,36]. Polyethylene is often used because of its properties. It is
considered a polymer that is easy to process and has relatively good mechanical properties.
In addition, it is characterized by flexibility and ductility as well as resistance to heat,
electricity, chemical agents, and degradation. Polyethylene is widely used in many fields,
including packaging, construction, agriculture, medicine, automotive, and many others.
Its versatile properties make it an extremely useful material in many areas of everyday
life [37,38].

Due to its plasticity and ease of processing, one of the most popular ways of producing
PE products is injection molding. The molten polymer is injected into an injection mold
and then cooled and hardened to obtain the desired shape. The injection molding method
can be used to obtain many different types of products from this plastic. Among other
things, it is used to produce various types of packaging, such as bottles and boxes. It is
also widely used in the production of medical products, such as syringes, but also in the
automotive industry and in household goods. In addition, many toys are obtained from PE
through the use of injection molding [39–41].

PE processing by injection molding is the subject of many scientific studies. Leyva-
Porras et al. were concerned with determining the effects of processing variable parameters
on the microstructure and crystallinity of LDPE samples that were injection molded. The
polymer was injected at different cylinder and mold temperatures. It was proven that the
interaction of the two temperatures has the greatest effect on the size of the spherulite.
In turn, the mold temperature has a significant effect on crystallinity [42]. Subsequently,
Meszaros et al. conducted research on a self-reinforcing composite material that can
be easily processed by injection molding. Again, polyethylene was chosen as the base
material [43]. Kumar Lal et al. studied issues related to PE shrinkage after removal from
the mold. The shrinkage of the polymer is one of the most important issues that affect the
change in dimension during the injection molding process. The purpose of this study was
to develop optimal parameters for injection molding of low-density polyethylene. It was
found that minimum shrinkage of LDPE was obtained at a melting temperature of 190 ◦C,
injection pressure of 55 MPa, filling pressure of 85 MPa, and cooling time of 11 s. The factor
of greatest importance was found to be the cooling time. In contrast, injection pressure
was the least effective parameter [44]. Khan et al. then presented a parameter optimization
design for recycled HDPE products. They used Gray’s relational analysis to determine the
optimal combination of injection molding parameters. The results indicate that the best
set of parameters for recycled HDPE products is as follows: melting temperature 240 ◦C,
clamping pressure 255 N/m2, injection time 0.6 s, and holding time 30 s [45]. In contrast,
Djurner et al. determined the effect of injection pressure on two types of low and high
molecular weight PE. Based on their analysis, the researchers concluded that the use of high
pressures during HDPE injection molding leads to a material with desirable mechanical
properties [46].
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2.3. Polystyrene

Polystyrene is a plastic obtained by polymerizing styrene, and belongs to the polyolefin
group [47,48]. This polymer is widely used in industry as an insulating and packaging
material, as well as in the production of various consumer goods [49]. Polystyrene is
used for the production of, among others, acid-resistant pipes, electrical components,
insulators, household goods, car parts, toys, packaging, haberdashery and everyday prod-
ucts, and foam thermal insulation materials used in construction and refrigeration (e.g.,
polystyrene) [50]. It is one of the most widely used polymers in the world. Polystyrene can
come in various forms, but it is most commonly found as plastic or as expanded polystyrene
(EPS), also known as polystyrene. In its natural state, this polymer is transparent with
a high surface gloss. PS is included in the group of thermoplastics, or materials whose
shape can easily be given during the melting process [51,52]. PS exhibits good electrical
and dielectric properties. It is resistant to moisture, some salts and acids, and also to
abrasion. However, it is flammable and has low heat resistance [53]. It is processed mainly
by injection molding and is another material widely used in this type of processing. Due
to its high ductility and ease of molding, it can be customized into various shapes and
sizes. Considering the injection molding process, it is worth noting that polystyrene has
excellent processing properties that make it easy to mold by injection molding. It has a
low melting point, which means it requires lower processing temperatures and shorter
injection molding cycles [54,55]. However, many parameters determine the quality of the
final product and the efficiency of the process. Among other things, mold coatings were
evaluated to reduce the melt flow resistance of polystyrene through the injection molding
machine [56]. The properties of injection molding PS additionally filled with carbon fiber
to increase the mechanical strength of the resulting products were also investigated [57]. A
comparative analysis of semi-crystalline PP and amorphous PS was also carried out. It was
shown that semi-crystalline materials foamed less due to crystallinity. Amorphous PS, on
the other hand, showed the highest expansion coefficient at high injection speed vs. low
mold temperature [58]. The results of this experiment are presented below in Figure 3.

Materials 2023, 15, x FOR PEER REVIEW 5 of 29 
 

 

2.3. Polystyrene 
Polystyrene is a plastic obtained by polymerizing styrene, and belongs to the poly-

olefin group [47,48]. This polymer is widely used in industry as an insulating and pack-
aging material, as well as in the production of various consumer goods [49]. Polystyrene 
is used for the production of, among others, acid-resistant pipes, electrical components, 
insulators, household goods, car parts, toys, packaging, haberdashery and everyday prod-
ucts, and foam thermal insulation materials used in construction and refrigeration (e.g., 
polystyrene) [50]. It is one of the most widely used polymers in the world. Polystyrene 
can come in various forms, but it is most commonly found as plastic or as expanded pol-
ystyrene (EPS), also known as polystyrene. In its natural state, this polymer is transparent 
with a high surface gloss. PS is included in the group of thermoplastics, or materials whose 
shape can easily be given during the melting process [51,52]. PS exhibits good electrical 
and dielectric properties. It is resistant to moisture, some salts and acids, and also to abra-
sion. However, it is flammable and has low heat resistance [53]. It is processed mainly by 
injection molding and is another material widely used in this type of processing. Due to 
its high ductility and ease of molding, it can be customized into various shapes and sizes. 
Considering the injection molding process, it is worth noting that polystyrene has excel-
lent processing properties that make it easy to mold by injection molding. It has a low 
melting point, which means it requires lower processing temperatures and shorter injec-
tion molding cycles [54,55]. However, many parameters determine the quality of the final 
product and the efficiency of the process. Among other things, mold coatings were evalu-
ated to reduce the melt flow resistance of polystyrene through the injection molding ma-
chine [56]. The properties of injection molding PS additionally filled with carbon fiber to 
increase the mechanical strength of the resulting products were also investigated [57]. A 
comparative analysis of semi-crystalline PP and amorphous PS was also carried out. It was 
shown that semi-crystalline materials foamed less due to crystallinity. Amorphous PS, on 
the other hand, showed the highest expansion coefficient at high injection speed vs. low 
mold temperature [58]. The results of this experiment are presented below in Figure 3. 

 
Figure 3. Simulated and experimental results using medium-level process parameters (i.e., 100 cm3/s 
injection speed, 210 °C melt temperature, and 60 °C mold temperature): (a) simulated result for the 
PP sample, (b) actual experimental result for the PP sample, (c) simulated result for the PS sample, 
and (d) actual experimental result for the PS sample [58]. 

Figure 3. Simulated and experimental results using medium-level process parameters (i.e., 100 cm3/s
injection speed, 210 ◦C melt temperature, and 60 ◦C mold temperature): (a) simulated result for the
PP sample, (b) actual experimental result for the PP sample, (c) simulated result for the PS sample,
and (d) actual experimental result for the PS sample [58].



Materials 2023, 16, 5802 6 of 29

Subsequently, SadAbdai et al. proposed work on the numerical calculation of the fiber
orientation tensor of an injection-molded short glass fiber polystyrene (SGF-PS) composite
part, shaped as a rectangular plate. Again, the effect of selected injection parameters, such
as mold wall temperature, injection flow rate, and also fiber content on the change in
orientation of this sample was checked. Based on simulations, the injection flow rate was
found to have a greater effect on the fiber orientation than the mold wall temperature [59].
Polystyrene was also studied in high-pressure foam injection molding. It was shown that
the cell structure of the resulting foams can be controlled by selecting appropriate injection
molding process parameters [60].

2.4. Acrylonitrile-Butadiene-Styrene

Acrylonitrile-butadiene-styrene copolymer (ABS) is an amorphous polymer obtained
by emulsion polymerization or bulk polymerization of acrylonitrile with styrene in the
presence of polybutadiene [61,62]. This copolymer consists of 15–35% acrylonitrile, 5–30%
butadiene, and 40–60% styrene. The components of the copolymer are presented in Figure 4.
The characteristics of this material are high impact strength, impact resistance, and hard-
ness. In view of this, ABS is often used for the manufacture of covers or housings for
components that require protection from mechanical damage. In addition, ABS has good
insulating properties, high dimensional stability, and low moisture absorption [63–65].
ABS is most commonly used for the manufacture of enclosures of electrical appliances,
electronic devices, automotive components (such as car trusses, wheel arches, and some
body parts) [66].
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ABS is a material eagerly used in injection molding [67]. Many studies were conducted
to optimize the process taking into account the properties of this plastic. Linear models of
the mechanical properties of ABS were determined using the Taguchi method, and through
analysis of variance, the effect of varying process parameters was determined. Relationships
between injection parameters and mechanical properties of ABS moldings, e.g., elastic
modulus, tensile strength, bending modulus, and impact strength, were determined [68].
Next, the re-injection processing capability of two types of ABS with low u high viscosity
was evaluated. Experimental results indicate the significant qualitatively different behavior
of the polymers after reprocessing. As the number of reprocessing cycles increased, a
decrease in viscosity was noted for the low initial viscosity polymer. Conversely, for
a high-viscosity polymer, increasing the number of injection molding cycles led to an
increase in viscosity [69]. The feasibility of ABS reprocessing was also investigated by
Rahimi et al. They determined the mechanical properties of the polymer through five-stage
reprocessing [70]. Research was also conducted to determine the energy intensity of the
ABS injection molding process. For this purpose, direct measurement of equipment energy
and analysis of molding quality were carried out. The parameter of polymer holding time
and mold cooling time played the greatest role in energy consumption [71]. Volpato et al.
then conducted a comparative analysis of the properties of steel and ABS moldings [72].
Sreedharan et al. determined the effect of injection pressure and cooling systems on the
degree of shrinkage of ABS copolymer products as automotive components [73]. On
the other hand, Lay et al. compared the processing of ABS fused deposition modeling
(FDM) and conventional injection molding [74]. Subsequently, surface properties were also
determined in automotive interior components produced by ABS injection molding. They
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discussed the correlations between process parameters and the measured gloss and surface
properties of the resulting products [75].

2.5. Polyvinyl Chloride

Polyvinyl chloride (PVC) is one of the most popular and widely used synthetic poly-
mers. It is a thermoplastic polymer that consists of repeating units of vinyl chloride [76]
PVC is widely used in the construction industry, where it is commonly used to make
pipes and fittings. Thanks to its corrosion resistance, durability, and ease of processing,
PVC is the material of choice for creating sewer systems, water systems, and pipes for
conducting various types of substances. It is also used in the manufacture of windows
and doors, as well as widely in the packaging industry. In addition, PVC is used in the
furniture, medical, and automotive industries [77,78]. PVC fittings obtained by injection
molding were studied by Llado et al. The effect of injection molding parameters on the
formation of efflorescence on the surface of the parts obtained was determined. It was
determined that the main reason for the formation of defects was an incorrectly selected
injection rate. Melt temperature was identified as the second factor of importance [79]. The
identification of parameters affecting the formation of warpage of PVC moldings was also
addressed by Ahmed et al. A mathematical model was developed to regulate warpage
before production and minimize losses [80]. Subsequently, Tsai et al., using Moldex3D
and the Taguchi method, determined the possibility of eliminating imbalanced filling of
multicavity molds for PVC injection molding [81].

2.6. Polymethyl Methacrylate

Polymethyl methacrylate, also known as acrylic glass, is a thermoplastic artificial
polymer with a transparent and glass-like structure. It is one of the most widely used
polymers due to its unique properties, such as high transparency, UV resistance, mechanical
strength, and ease of processing [82]. It is used extensively in optical products, lighting
products, and electronic housings. It plays an important role in orthodontics and den-
tistry [83]. PMMA can be successfully used in obtaining products by injection molding
methods. Two-component products of polycarbonate and polymethylmethacrylate were
obtained [84]. PMMA was then used for injection molding in a nanotube with an aspect
ratio of 2.0. The mechanism of residual stresses was determined using molecular dynamics
simulations [85]. Additionally, Zhang et al. identified residual stresses as having great sig-
nificance in product quality and microstructure properties. PMMA was used to develop an
injection molding simulation model for determining the effect of processing parameters on
residual stresses [86]. Subsequently, it was shown that injection-molded PMMA can have
worse mechanical properties (impact strength and bending strength) than thermally cured
PMMA [87]. However, it is possible to combine PMMA with other additives controlling
the properties of the resulting products [88].

2.7. Polyamide

Polyamide, also known as nylon, is one of the most important thermoplastic en-
gineering materials used in injection molding. It is a versatile polymer with high me-
chanical strength, abrasion resistance, low hardness, and well-defined thermal properties.
Polyamide was repeatedly analyzed as a material that can be processed by injection mold-
ing methods [89,90]. The properties of a composite molding of polyamide 6.6 reinforced
with long glass fibers were determined [91]. The possibility of processing this polymer
together with natural Curauá cellulose fibers [92] was tested. The microstructure and
mechanical properties of injection-molded microporous nanocomposites of polyamide-6
and nanoclay [93] were determined. Attempts were made to combine this polymer together
with polypropylene and nanoclay [94,95]. In addition, studies were conducted to determine
the correlation between the cell size of microstructured nanocomposites with PA and tensile
strength [96].
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3. Injection Molding Techniques
3.1. Water-Assisted Injection Molding

Polymer processing technologies developed significantly in recent years. One of the
new methods is water-assisted injection molding (WAIM). WAIM technology is proving
to be a promising technology due to the lightness of the products produced, shorter
cycle times, and greater potential for hollow product production. Water- or gas-assisted
technologies can be categorized as F-PAIM or fluid projectile-assisted injection molding
methods. The F-PAIM process can be divided into two types: the short-shot method and
the overflow method. These methods differ depending on whether the mold cavity is
filled with molten polymer completely or partially [97]. Figure 5 shows a diagram of the
overflow method. In this case, the cavity is filled completely with polymer. First, the bullet
is placed on the liquid nozzle. Then the mold is filled completely with molten polymer.
Next, the fluid is injected under pressure. A cavity is produced, which is maintained by the
fluid pressure compensating for any shrinkage. Finally, the system is cooled and the fluid
is drained even before the mold is opened. Summary: (1) To begin with, the projectile is
positioned onto the fluid nozzle. (2) Next, the mold is closed, and the molten material is
injected into the mold cavity, covering the projectile until the cavity is completely filled with
the molten material. (3) Subsequently, pressurized fluid is introduced through the fluid
nozzle after a specific gas injection delay time. This pressure propels the projectile through
the molten core, leading it into an overflow cavity. (4) Lastly, the component undergoes
cooling, while the fluid pressure maintains its shape by compensating for any shrinkage.
Once the cooling is complete, the fluid is drained before the mold is opened, allowing the
part to be ejected [98].
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In the case of the short shot method, the cavity is filled with molten polymer only
partially. In the system designed for the WAIM method, an additional water injection
unit is distinguished in addition to the conventional system for injection molding. For the
most part, this unit consists of a water pump, a water tank equipped with a temperature
controller, a pressure accumulator, and automatic circuit control. The control system is
responsible for parameters such as the time and pressure of water injection. Usually, such
a unit has its own hydraulic system, is mobile, and can be adapted to different forms of
machine. Different designs of water pins can be used: immobile pin type [99,100] and
movable pins [101], respectively. Research is also being conducted on the use of water pins
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of different designs, such as ring-type pin and orifice-type pin. After forming the products,
the length of water penetration in the moldings was checked depending on the type of
pin used. Both the shape of the hollow sprues and the length of the hollow cores were
determined by the type of pin used [102]. The phenomenon of water penetration in the
process of injection molding of semi-crystalline PP was studied by Ahmadzai et al. Three
parameters, such as water penetration delay time, holding time, and mold temperature,
were checked. Wall thickness, shrinkage, and degree of homogeneity were checked for
the resulting moldings. The desired properties, i.e., a product with low shrinkage and a
smaller difference in wall thickness, were obtained using a high mold temperature and a
long holding time [103].

The problem with the WAIM method is the phenomenon of “fingering” of water.
This occurs when water bubbles get outside the water channels. It was proven that amor-
phous materials molded by the WAIM method produce less fingering than when using
semi-crystalline polymers. The smallest side effects were also obtained for water channels
with a rib gouged on top. Water pressure and injection size are also important parame-
ters [104]. The phenomenon of fingering was also described. During the injection molding
of composites, worse properties were obtained with fiberglass than with polybutylene
terephthalate materials that were not modified [105]. Next, the mechanical properties of
water-assisted injection-molded products were also studied. Irregular water penetration
in the moldings and the effect of water temperature on the crystallinity of the moldings
were found. However, the correlation of bonding with mechanical properties was relatively
low [106]. The possibility of modifying the WAIM method to mass-produce tubular parts
of high complexity was also tested. Several water injectors, designed in the direction of
the corresponding branches, were used simultaneously. The method is designed to reduce
production time and provide raw material savings. It offers a cost-effective way to produce
large parts with good surface finish, reduced weight, and relatively short cycle times [107].
Studies on the influence of selected parameters on the properties of products obtained by
the WAIM method are also described in [108–111].

3.2. Gas-Assisted Injection Molding

Gas-assisted injection molding (GAIM) is an injection molding method in which gas is
also injected along with the injected plastic [112,113]. Injecting gas into the mold allows for
controlled filling of the molding space and uniform distribution of the plastic. This, in turn,
leads to reduced deformation, stress, and shrinkage of the material. Parts molded using this
technique have higher dimensional precision and better shape stability [114–116]. Example
values of processing parameters using the GAIM technique are presented in Table 1.

Table 1. The processing parameters and the processing parameters’ values for the GAIM method [117].

Parameters Low Level High Level

Melt injection time 1 s 3 s
Gas delay time 1 s 3 s
Melt temperature 220 ◦C 240 ◦C
Mold temperature 50 ◦C 70 ◦C
Gas injection pressure 5 MPa 7 MPa

A significant problem in injection molding is the possibility of scorch marks on parts
of finished products. Reducing scorch marks by reducing the clamping pressure can be
achieved with gas-assisted technology [118]. The use of gas-assisted technology allows
for reduced stresses on molded parts, reduced dropout, and greater design freedom. The
GAIM technique was simulated in the manufacture of a plastic disk holder that will allow it
to be placed in an optical reader. The simulations made it possible to determine the optimal
parameters to ensure a significant reduction in production time and cost [117,119]. The
Phan-Thien Tanner (PTT) constitutive model was also presented for further simulations for
the GAIM technique. The model assumes consideration of the most important viscoelastic
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properties [120]. The use of a gas-assisted method for processing eco-composites was also
proposed. The use of naturally derived polymers in injection molding has limitations due
to the increased shear viscosity of these materials. However, it was demonstrated that the
gas-assisted method can be successfully used in such a case; for example, for rice husk-
filled poplipropylene-based eco-composite polymers [121]. The gas-assisted technique
can also be successfully combined with microcell injection molding. The combination of
these two methods enables significant weight reduction, and also improves the surface
appearance and mechanical properties of the resulting moldings [122]. Importantly, gas-
assisted molding techniques can also be applied to the gas-assisted mold temperature
control method [123–125].

3.3. Microcellular Injection Molding

Microcellular injection molding (MIM) is a technique that enables the production of
lightweight plastic products with a microcellular internal structure. The process in question
allows for a material reduction of 30% to 40%. In addition, the resulting products have
higher impact strength and an internal structure composed of a high density of small
bubbles. In the injection molding process, liquid plastic is injected into the mold under
high pressure, and then the pressure is quickly reduced, which causes the formation of
microcells in the plastic structure [126]. Microcells are very small closed gas bubbles that
are dispersed inside the plastic. These bubbles are formed by the release of dissolved gas in
the plastic during rapid depressurization [127,128]. The structure of a typical miclocellural
system is shown in Figure 6.
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Microcell molding leads to a structure with lower density, increased stiffness, and bet-
ter thermal insulation properties compared to standard injection molding. This technique
may prove useful in the production of fiber-assisted thermoplastic door panels [129]. The
high fiber content can cause difficulties in molding. The use of the microcellular molding
technique ensures that carbon fiber-enhanced polypropylene composites achieve high
electrical and mechanical performance [130]. MIM technology reduces product weight and
energy consumption [131]. MIM products are a frequent subject of research to optimize
the process and obtain products with desired properties. The manufacture of ultralight
polypropylene foams reinforced with high-strength polytetrafluoroethylene microfibrils
was described [132]. The characteristic mofrologi patterns of injection-molded polycarbon-
ate foams were also identified [133]. Subsequently, Chai et al. developed an innovative
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method combining the MIM method along with in situ fibrillation to produce extremely
lightweight and high-strength foams on poly(lactic acid) and polytetrafluoroethylene [134].
The combination of in sita fibrillation and MIM was also proven beneficial for producing
lightweight and sound-absorbing PP and PTFE composite foams [135]. Hou et al. used
talc as a nucleating agent to prepare foamed PP products. When the talc content is 10%
by weight and the part weight loss is 62.1%, the average cell size is 56.5 µm, and the cell
density reaches 1.54 × 107 cells/cm3 [136]. Composites obtained by the MIM method with
the opening of the mold can have a flexural modulus almost 200% higher than that of their
unfoamed counterparts [137]. The study of materials processed by microcellular injection
molding is of recent importance and is being carried out with the aim of determining many
different directions for the application of this method. It is possible to combine the mim
method with the in-mold decorating process. A multiphase heat transfer model with fluid–
solid coupling was developed to study the temic response in the combined process [138].
Similar studies were also conducted by Yang et al., which proved that the temperature range
has a significant effect on the formation of defects and the crystallization of moldings [139].
Wang et al., in turn, confirmed that the development of microcellular foam in a molded
molding leads to significant advances in tensile strength from 44.1 MJ/m3/(g·cm−3) and
111% of neat LCBPP foams to 172.1 MJ/m3/(g·cm−3) and 440% of LCBPP/MD blend
foams in terms of specific breaking energy and elongation at break, respectively [140]. The
MIM technique also works well for processing polyetherether ketone (PEEK), which is
widely used in aviation. Optimization of the MIM process yields microcellular PEEK with
a weight reduction factor of 17.29% and a tensile strength of 74.13 MPa [141]. Reinforced
and lightweight foams obtained by the MIM method were also analyzed in the work by Liu
et al. [142] Lee et al. [143], and Yu et al. [144]. Liu et al. studied lightweight and strong basalt
fiber-reinforced composite foams. They obtained materials with a cell size of 36.38 µm and
increased cell density [142]. In turn, Lee et al. proved that by decreasing the degree of
supersaturation, the activation energy of cell nucleation increases. There is a decrease in
the nucleation rate, and thus, vesicle formation is reduced [143]. On the other hand, Yu
et al. undertook research related to reducing the occurrence of internal defects. The use of
microcellular injection molding technology made it possible to reduce deformation and
deformation of the products [144].

3.4. Variable Mold Temperature Technologies

Injection molding is a widely used process for manufacturing plastic products. Many
parameters of the process determine its efficiency, effectiveness, and also the final properties
of the product. One of the most important aspects is temperature control and distribution.
High temperature is necessary to melt the polymer, while mold cooling is crucial in curing
the finished product. Variable mold temperature technologies include systems that allow
temperature control during the injection molding process. These parameters are optimized
over the years and adjusted to meet specific production and material molding requirements.
One well-known method is heating the mold with water under high pressure. Newly
developed systems can provide temperatures up to about 180–200 ◦C. However, it is
important to properly develop pipe connections that provide the appropriate flow rate of
pressurized hot water [145]. Next, hot oil can be used in mold heating systems. In this case,
mold temperatures can reach up to 300 ◦C with high-powered oil heating. However, the
disadvantage of hot oil is the low heat transfer coefficient, which has an important effect
on reducing the energy efficiency of this medium [146]. Hot steam is also used in heating
systems. Steam heating can increase the mold surface temperature from 35 ◦C to 135 ◦C
in as little as 11 s [147,148]. Electric heating using a heating plate or heating tube system
is also known [149]. Chen et al. proposed electromagnetic induction heating combined
with water cooling. The proposed system made it possible to obtain moldings with smaller
irregularities and improved roughness by 80% [150]. A new temperature concept with
segmented heating ceramics was then developed. The goal of the research was to optimize
the process to ensure that a product with locally different properties was obtained using
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temperature control [151]. Cooling channels produced by 3D printing technology were
also designed. Extended cooling systems can reduce the cooling time by up to 30% [152].
Variable mold temperature technologies and the effects of different parameters were also
studied by Ruzbarsky et al. [153] and Zhang et al. [154]. In order to optimize the process,
Ruzbarsky analyzed four parameters, such as compression time, mold temperature, melt
temperate, and pressure. Statistical analysis showed that the most significant parameter is
the melt temperature, followed by mold temperature, compression time, and pressure [153].
Zhang et al., in turn, studied the effect of changing the high temperature of the mold cavity
wall on the internal morphology of the plastic [154].

3.5. Microinjection Molding

The demand in the production of precision microdetails influenced the emergence of
microinjection molding (µIM) technolgoies. Miniaturization of plastic parts advanced sig-
nificantly in recent years through continuous work on process optimization (µIM) [155,156].
The characteristics of this process are low manufacturing costs, short process times, and
the ability to produce small-sized parts with sufficiently high precision. The processing
parameters of the microinjection molding process are represented in Table 2.

Table 2. Processing parameters of the microinjection molding process [156].

Processing Parameters
Material

PP PMMA

Shot size (mm) 10 10
Nozzle temperature (◦C) 230 230
Injection velocity (mm/s) 158 158
Packing pressure (MPa) 130 130

Packing time (s) 3 3
Mold temperature (◦C) 80 80

Cooling time (s) 30 25

Research on the microforming process is developing at a very intensive pace, leading
to the gradual elimination of the limitations of this process. In the process of injection
microforming, thermoplastic materials are mostly used, and thermosetting materials are
used to a lesser extent [157,158]. However, it should be mentioned that when thermoplastics
are used, mostly those with low viscosity are used. The products obtained by microforming
usually have good dimensional tolerances. In addition, in most cases, there is no need for
finishing work. However, it is very important to properly design the part you want to obtain.
Among other things, it is necessary to take into account the appropriate inclination of the
walls so that the product can be easily removed from the mold. Equally important is the
limitation of sharp corners, which can lead to microtensioning. A problem associated with
microfabricated details can be their further assembly into larger systems. Low-temperature
bonding as well as ultrasonic welding can be used [159–161]. Microinjection molding
is widely used in the production of medical devices. The technique is used to produce
poly(lactic acid)-based microneedle systems as shown in Figure 7 [162].
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Specialized microinjection molds were designed to produce biodegradable micronee-
dles with a drug delivery channel [163]. Subsequently, an attempt was made to process
polydioxanone for medical devices such as sutures, stents, and also small implants. Studies
showed that the use of the microinjection method for PDO processing makes it possible
to obtain samples with high uniformity and shape stability [164]. The technique was also
proven excellent in the high-precision and high-performance fabrication of small-module
plastic gears [165]. Subsequently, Lin et al. used µIM to fabricate light guiding plates (LGPs)
as parts of liquid crystal displays [166]. A limitation of microforming is the occurrence of a
frozen layer due to the rapid cooling of the fusible material when it contacts the surface of
the low-temperature cavity. A solution to this problem was described by Uyen et al., who
proposed an internal gas-assisted mold temperature control system along with a pulsed
cooling system. It was proven that the filling capacity of the composite material increases
from 65.4% to 100% with local heating of the cavity area (gas temperature pattern from 200
to 400 ◦C with a 20 s heating cycle) [167]. Next, uneven cavity temperature distribution
can be a problem when using thin electric heaters. Optimizing the heater’s performance
is achieved by using a transition layer with high thermal conductivity, which provides
increased uniformity of cavity temperature distribution [168]. The use of ultrasound was
also proposed to affect the plasticization rate of polypropylene rods. As the amplitude
of ultrasound increases, it is possible to increase the plasticization rate of PP rods from
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67.25 mg/s to 192.41 mg/s [169]. Satisfactory results can also be obtained using variotherm.
This treatment makes it possible to reduce the residual stresses while maintaining the
accuracy and surface quality of the obtained products [170]. In turn, reducing the thickness
of the cavity walls has a significant effect on the rheological behavior of the melt and the
flow rate with the observation of strong pressure drops [171]. The processing of isotactic
polypropylene filled with β-nucleating agent was also checked. It was shown that as
the content of the nucleating agent increases, the shear layers gradually thicken, which
translates into improved mechanical properties, especially tensile strength [172].

3.6. Rapid Thermal Cycling Molding

The rapid thermal cycle molding method is a technique that involves rapid heating
and cooling of the mold. This method provides improved quality and efficiency in the
molding process. The benefit is to achieve a molded part with very good aspect quality with
high gloss without defects, such as joint lines and collapses. With rapid thermal cycling in
mind, the mold is heated quickly to the thermal deformation temperature of the polymer
before the melt is filled, and then cooled after the packing step [173]. The RTCM method is
gaining great importance in modern processing techniques. During the injection molding
process, we can distinguish five basic phases, such as melting, filling, packing, cooling, and
removal from the mold [174]. It is advantageous to maintain a high temperature during
the filling and packaging stages. Such treatment is aimed at providing optimal conditions
for the melt polymer to flow, which will favorably affect the repeatability of the molded
product [175,176]. In turn, rapid cooling of the finished product can be provided by low
temperature. In view of this, methods of rapid cyclic heating and cooling of the mold
can improve the quality of the products obtained [177]. Rapid heating cycle molding is
presented in Figure 8 [178].
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The analysis of RTCM injection molding technology is the subject of many research
works. The interest is not only in the optimization of process parameters, but also in
the investigation of the mechanisms occurring during plastic processing. The molecu-
lar mechanism of replication ability for conventional injection molding and RTCM was
presented by Zhang et al. It was proved that the high mold temperature in the RTCM
technique ensures that the high teperature is maintained for a long time and Brownian
movements are very active in this case. The melt flow of the polymer is crucially related to
the mold temperature and the pressure there [179]. Another significant aspect in the RTCM
technique is the typical disadvantage of crystalline parts, which is warpage. Multivariate
models were developed to predict warpage of the same thickness in molded products [180].
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Microporous surface defects, on the other hand, can be eliminated by using electric heating
and water cooling controlled over a wide range [181]. A new coating was also proposed
to serve as thin-film power heaters that allow rapid heating of the mold cavity above the
glass transition temperature of the polymer. To this end, they developed a continuous
and dense coating of graphene bonded to carbides on a silicon insert. When the voltage
was 240 V, the coating was heated up to 145.6 ◦C in a short period of 10 s; that is, the
average and transient heating rates were able to be as high as 11.6 ◦C/s and 16.1 ◦C/s,
respectively. The mechanical properties of the resulting products were improved by 37.77%
in tensile strength and 256.11% in elongation at yield with a significant reduction in energy
consumption [182]. Subsequently, it is possible to use a porous insert to ensure maximum
heat transfer between the water and the cavity surface without compromising the structural
integrity of the mold [183]. Importantly, the heating efficiency with steam heating can
be effectively improved by increasing the thermal conductivity of the cavity and core
material, but the situation is completely reversed with electric heating. Therefore, it is
also important to optimize mold design methods for RTCM for steam and electric heating,
respectively [184].

3.7. Multicomponent Injection Molding

Multicomponent injection molding is an advanced plastic injection molding method
that allows different materials to be combined in one simultaneous molding process. This
technique allows you to create products with different colors, chemical properties, hard-
ness, textures, and other characteristics. The main technical challenges are the selection
of process parameters that allow simultaneous processing of two or more components.
Equally important is equipping the injection machine with several injection units [185,186].
Multicomponent injection molding was addressed by Park et al. The researchers attempted
layered molding with a back core and co-injection. The experiments used a co-injection
1800-ton injection molding machine with a maximum injection pressure of 175 MPa and
electrical core-back system. Factors affecting molding were analyzed to obtain parameters
closely related to injection molding technology. Relevant numerical simulations were also
carried out. The simulations, together with experimental results, confirm the feasibility of
multicomponent injection molding by the chosen method [187]. Subsequently, Farias et al.
proposed a resin transfer molding (RTM) method for obtaining multicomponent nanocom-
posites reinforced with carbon fiber and carbon nanotubes. In addition, the epoxy resin
was modified with silsesquioxane oligomers. As a result, the selected method allowed
for obtaining nanocomposites with a tensile strength of 303 ± 41 MPa and an impact
strength of 1.0 ± 0.3 kJ·m−1 [188]. The possibility of economic benefits due to material
savings and the possibility of one-step production of a layered product structure were
also demonstrated. The use of two-component injection molding indicated the increased
quality of the parts obtained as well as the stability of the process described [189]. The use
of the multicomponent approach continued developing in recent years in various plastic
processing methods and is widely studied in many aspects of the selection of appropriate
parameters to eliminate technical problems [190–193].

3.8. Metal Injection Molding

Metal injection molding is an advanced manufacturing technique that allows the
molding of metal parts with complex shapes and precise dimensions using a process sim-
ilar to traditional plastic injection molding [194,195]. Taking a rheological approach, the
feedstock for metal-IM technology is a suspension. This fluid consists of suspended metal
particles and a continuous phase referred to as a binding system [196]. This system usually
consists of various types of polymers, waxes, and other additives that enable metal powder
processing. An extremely important parameter is the viscosity of such a system [197,198].
The development of a binder based on superalloy Inconel-718 was handled by Royer
et al. A combination with poly ethylene glycol (PEG) and polymers of biological origin,
such as polyhydroxyalkanoates (PHA) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
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(PHBV), was proposed. The solution was to obtain an environmentally friendly binder.
The results confirm that the polymer of natural origin PHBV can successfully replace
polypropylene, maintaining similar rheological properties and better maximum volume
fraction of metallic powder [199]. The analysis of the optimal binder formulation was
also addressed by Ibrahim et al. [200] and Yang et al. [201]. Then, using metal-IM tech-
nology, a porous titanium filter media was obtained. It was shown that the microporous
structure of the interface was the same as that of the parent material, and the porosity
of the material reached 32.28% [202]. The Taguchi design method was used by Lin et al.
Metal processing parameters were analyzed with the aim of minimizing black lines on the
surface of the molded products, which were orthodontic brackets. They ranked the control
factors in terms of decreasing effect on powder particle concentration distribution: filling
time > melt temperature > packing pressure > mold temperature > gate size [203]. Stud-
ies on the processing of magnesium alloys in targeted biomedical applications were also
presented. It was demonstrated that magnesium can be sintered into dense parts, pro-
viding mechanical properties equivalent to cast materials (Figure 9). Tensile strength of
142 MPa, yield strength of 67 MPa, elastic modulus of 40 GPa, and 8% elongation were
demonstrated [204].
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3.9. Reaction Injection Molding (RIM)

Reaction injection molding (RIM) is a technology for producing plastic parts by reac-
tive in situ polymerization. The process uses two or more liquid monomers. The technique
is often used; however, its limitation and main challenge is the effective control of mix-
ing between the injected liquid monomers [205–207]. Gomes et al. proposed differential
static pressures in the injected monomers to control their mixing. The mechanical prop-
erties of the injected parts were evaluated. They proved that this parameter correlates
with the properties of the molded part and can be used to obtain materials with desired
properties [208]. The RIM technique was also proposed for obtaining polyurethane foam
with complex geometries. In this case, Seo et al. developed a theoretical model including
chemical reactions, foaming, and mold filling. The energy balance equation was analyzed
and a three-dimensional numerical simulation was carried out based on the resulting
model [209]. The process of manufacturing polyurethane foams using the RIM method
was also addressed by Yacoub et al. They defined the basic problems of the process and
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then conducted multivariate statistical analyses based on principal component analysis
(PCA) and projection to latent structure (PLS) models. The use of these correlated processes
made it possible to reveal the mechanism of the process and the source of the processing
problems [210]. The effect of the RIM process on the thermomechanical properties of
polyuratan was studied by Lehmenkuhler et al. The study analyzed the mutual influence
of various parameters and their overall significance in the behavior of the material. It was
shown that a 20 ◦C increase in mold temperature can increase Young’s modulus by 2% and
constriction stress by 3%. In addition, increasing mass flow and temperature improves
Young’s modulus (Figure 10) [211].
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A summary of references relating to selected injection processing methods is presented
in Table 3.

Table 3. Summary of the discussed injection molding methods references.

Injection Molding Method References

Water-assisted injection molding [97–111]
Gas-assisted injection molding [112–125]
Microcellular injection molding [126–144]

Variable mold temperature technologies [145–154]
Microinjection molding [155–172]

Rapid thermal cycling molding [173–184]
Multicomponent injection molding [185–193]

Metal injection molding [194–204]
Reaction injection molding [205–211]

A summary of the presented injection molding technologies is presented in Table 4.
The table contains information on the main features of individual processes, their advan-
tages and disadvantages, and the branches of industry.

There are many applications of WAIM technology, which is especially recommended
for the injection of pipe and pipe-like elements. The developing technology allows the use
of this method in the production of increasingly complex elements, also branched. Where
there is a need for thin-wall moldings, this method is willingly used. GAIM is a method
similar in principle to WAIM, but it allows for making a much wider range of moldings
without great shape limitations. It is widely used to improve the quality of moldings (air
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traps, flow lines, and burns). Its great advantage is the possibility of reducing the weight of
injected details by gas injection, which results in saving granulate. It can also be used in
other applications to reduce their density, e.g., for the production of oars.

Table 4. Summary of the properties of the discussed methods.

Method Disadventage Adventage Application

WAIM Not for multicavity molds and
transparent parts.

Thiner walls, better
surface quality. Pipes, chers, and rattan baskets.

GAIM Complicated rheology model
and mold.

Reduce warpage, lower
clamping force, thin wall.

Reduce cost of raw material.
Lightwidth products.

Microcellular IM Aspect
Reduce mass and material

consumption,
enviromental friendly.

Aviation, automotive, and
medical industries.

VMTT Cost of equpment, longe
cycle time. Very good quality product. Automotive, households.

MM Parting line and degating issue. Able to produce 0.1 g
components.

Microbearings and pistons,
biodegradable implants,

endoscopics, and surgery.
RTCM Long cycle time. Good quality. High gloss elements.

Multicomponent Complicated mold and
injection machine.

Multicolor and
multifunction elements.

Swimming googles, protectors,
elements for the car body, table

tennis racket

Metal IM High initial investment, size
of parts.

Wide range of complicated
shapes is able to produce.

commercial, medical, dental, and
firearms industry.

RIM Slow cycle time, expensive row
matelials.

High density surface on low
density core.

Automotive bumpers, spoilers,
and fenders.

Microcellular injection molding is another modern plastic processing technology. The
low specific weight of the moldings and significantly improved mechanical properties
allow this injection method to be widely used in the aviation industry. MIM can be con-
sidered as a new process that combines conventional injection molding with microcellular
foaming. The process is considered environmentally friendly, energy-saving, and allows
the production of lightweight foamed parts with complex geometries. The multitude of
additional technologies that can be combined with MIM increases the scale of possible
applications in many applications and indicates a great development potential.

A very intensively developing branch of plastics processing is the MCIM multicom-
ponent injection molding with its various variants. It gives the possibility of producing
details in various colors with different textures and, above all, from materials with different
mechanical properties. The joining of materials takes place during one production cycle. It
is very common to find a combination of a thermoplastic with one or more elastomer, such
as in various types of protectors where the core is hard and the carcass, i.e., the protective
element, is made of a softer material.

The use of forms made in the RTCM technology is becoming more and more popular,
especially in the automotive industry in the production of high gloss details. In particular,
it concerns the production of seat elements, headrests, dashboards, and mirrors. The
greatest benefit of using this technology is the ability to obtain moldings without the typical
disadvantages of other injection technologies, such as dips, hoists, joining lines, and the
ability to obtain a high-gloss aspect surface of the detail without the need for additional
treatment in the form of varnishing.

There are many methods of multicomponent injection, such as on-mold injection with
a rotating half-mold, with a rotary core, and you can also inject a second and third elastomer
after transferring the element from the first mold cavity to the second using a robot. The
possibilities offered by this technology are very large and are used in the production of
automotive components, sports equipment, as well as for the production of masks or diving
glasses. The application possibilities are practically unlimited when we need to obtain an
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element consisting of two, three, or more different plastics. It is most often used for the
production of details with a hard matrix of thermoplastics such as PP or PA with additional
elastomers or to obtain multicolored parts directly from injection molding.

Currently, MIM is not as widespread as the previously presented injection technologies,
but its market share is constantly growing. It is used in the production of complex small
elements whose serial production in the classic version is much more expensive or even
impossible to achieve. The RIM method and its derivatives, such as PU-RIM, are used to
produce thin-walled elements that, thanks to the technology used, can be produced on
smaller machines, which contributes to reducing production costs.

4. Environmental Impact of Injection Molding Method

The environmental impact assessment is a process to identify, predict, and mitigate
the environmental effects of biophysical process proposals. Injection molding technology,
similar to any other processing method, affects the environment. An important parameter
in the environmental assessment is the infrastructure of industrial factories, disposal of the
resulting waste, and electricity consumption [212–214]. The process of injection molding
technology involves the production of byproduct waste; for example, in the form of defec-
tive products, plastic residues, or used molds. In addition, various chemicals may be used
during injection molding to impart desired properties to plastics. Such modifications and
use of toxic chemicals are also environmental hazards. In addition, the injection molding
process leads to the consumption of a large amount of raw materials, which can lead to the
depletion of certain resources and a burden on the environment. Next, injection molding
processes are energy intensive, and energy sources often lead to excessive production of
greenhouse gases and air pollution [215,216]. In order to minimize the negative environ-
mental impact of injection molding, sustainable manufacturing practices can be employed,
such as the use of renewable materials, efficient energy management, optimization of
production processes, and the use of recycling and waste recovery. In addition, pursuing
clean production and manufacturing in an eco-friendly manner is very beneficial to re-
duce environmental burdens. An important aspect is to conduct life cycle analysis for all
products and planned processes. Evaluating the production processes of injection molding
technologies can enable planning and prevention of negative environmental impacts of
the process [217,218]. Life cycle assessment (LCA) is used to determine the environmental
impact of products, but also of services or processes. The results obtained in the LCA are
analyzed to identify areas where special measures should be taken [219,220]. Environ-
mental analysis of the impact of modern processing technologies can be carried out in a
number of ways. One of the most important is to determine the energy consumption of a
process. Plastics are one of the most widely used materials; therefore, analysis of their safe
processing is extremely important [221]. Electricity demand in injection molding processes
was studied by various authors. Muller et al. analyzed the injection molding process using
double the energy with the goal of increasing process efficiency. Subsequently, Mak et al.
pointed to a 20% reduction in energy consumption by reducing the use of petrochemical
polymers and using a gas-assisted injection molding process [222]. The idea of life cycle
engineering was also introduced by Luchetta et al., who focused on minimizing material
consumption in processing while increasing the amount of recycled materials. Monitoring
and controlling energy consumption to reduce negative environmental impacts was also
studied for other processing processes. It was also proven that electricity consumption
can be successfully used as a criterion for assessing the impact of a process, since it causes
some of the highest environmental burdens in the entire processing process [223]. Next,
the energy demand and carbon dioxide emissions for producing samples from polylactide
were analyzed using two methods. The first was additive molding (FDM—Table 5) and
the second was injection molding (PIM—Table 6). Functional unit measurement models
were developed that can be successfully used to predict energy consumption and carbon
emissions in scaled FDM and PIM productions. This can lead to the determination of
sustainable PLA production parameters (Figure 11) [224].
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Table 5. FDM process parameters [224].

Parameter Specification

Nozzle diameter 0.4 mm
Outer shell speed 15 mm/s
100% infill speed 50 mm/s

Speed without extrusion 80 mm/s
Material flow rate 2.5 mm3/s

Table 6. PIM process parameters [224].

Factor Level

Injection pressure 25.5 MPa
Nozzle temperature 185 ◦C
Barrel temperature 176.7 ◦C
Plate temperature 121.1 ◦C

Injection time 11 s
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PLA injection molding was proven to use about 38.2% less energy than FDM technol-
ogy. In addition, less carbon dioxide is generated per kilogram of PLA molded into the
final product compared to additive technology [224].

5. Conclusions and Perspectives

Research related to injection molding focuses on understanding and improving the
process itself, aiming to achieve higher quality and precision of manufactured products
while reducing cycle times and lowering production costs. In this context, researchers
are studying the various materials used in the injection molding process, such as plastics,
elastomers, and composites, in search of new, more efficient, and environmentally friendly
raw materials that can be adapted to specific applications. An important aspect of the
research is identifying key parameters of the injection molding process and analyzing their
impact on the quality of the final products. This makes it possible to optimize the settings
of injection molding machines, leading to better mechanical properties, durability, and
aesthetics of products. Researchers also use numerical models and computer simulations
to better understand the complex phenomena occurring in the injection molding process.
This approach enables faster testing of different scenarios and prediction of results, leading
to more efficient solutions. In addition, the research focuses on developing and evaluating
new technologies related to injection molding. This includes the exploration of new types of
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injection molding machines, innovative molding techniques, the search for new materials,
and the implementation of intelligent quality control systems that contribute to the progress
and development of the field.

Injection molding currently has promising growth prospects in the industry, as au-
tomation and robotization of injection molding processes are becoming more advanced.
This is leading to increased productivity, precision, and production repeatability, while
reducing operating costs. In addition, the introduction of new materials and technologies
is opening up new opportunities for injection molding. Examples include higher-strength
materials, which are finding applications in the automotive and aerospace industries, and
biodegradable plastics, which are responding to the growing demand for greener solu-
tions. Today’s consumers increasingly expect personalized products, and injection molding
enables flexibility in design and production, allowing products to be easily customized
to meet individual customer needs and preferences. In addition, injection molding plays
an important role in sustainable development by reducing raw material consumption,
minimizing waste, and promoting recycling. In the medical industry, injection molding is
extremely important in the production of medical devices, medical packaging, laboratory
instruments, and others. Due to the growing demand for advanced medical technologies,
this field is expected to continue to grow, which will contribute to the further development
of injection molding. In conclusion, the outlook for injection molding in the industry is
promising. Technology development, process flexibility, sustainability, and the growing
demand for personalized solutions are all contributing to the growing popularity of this
manufacturing method.
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