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Abstract: In recent years, fused deposition modeling (FDM) based on material extrusion additive
manufacturing technology has become widely accepted as a cost-effective method for fabricating
engineering components with net-shapes. However, the limited exploration of the influence of FDM
process parameters on surface roughness parameters, i.e., Ra (average surface roughness), Rq (root
mean square surface roughness), and Rz (maximum height of the profile) across different sides
(bottom, top, and walls) poses a challenge for the fabrication of functional parts. This research aims
to bridge the knowledge gap by analyzing surface roughness under various process parameters and
optimizing it for nylon carbon fiber printed parts. A definitive screening design (DSD) was employed
for experimental runs. The Pareto chart highlighted the significant effects of layer height, part
orientation, and infill density on all surface roughness parameters and respective sides. The surface
morphology was analyzed through optical microscopy. Multi-response optimization was performed
using an integrated approach of composited desirability function and entropy. The findings of the
present study hold significant industrial applications, enhancing the quality and performance of 3D
printed parts. From intricate prototypes to durable automotive components, the optimized surfaces
contribute to production of functional and visually appealing products across various sectors.

Keywords: fused deposition modeling; surface roughness; nylon carbon fiber; definitive screening
design; composite desirability function; entropy

1. Introduction

Additive manufacturing (AM) is a transformative manufacturing process that builds
objects layer by layer using digital computer-aided design data. It offers several advantages
over traditional manufacturing methods. AM allows for creating complex geometries
that are challenging or impossible to manufacture with conventional techniques. It offers
design freedom, enabling customization, rapid prototyping, and on-demand production. It
facilities reduced material waste, lower tooling costs, and shorter lead times. AM is poised
to revolutionize the manufacturing landscape as technology continues to evolve, enabling
innovation and opening up new possibilities in product development and production [1–3].

Fused deposition modeling (FDM) among AM technologies is a popular choice in
the industry due to its affordability, ease of use, material options, and broad application.
However, achieving a smooth surface finish with FDM may have limitations compared
to other AM technologies like SLA (Stereolithography) or SLS (Selective Laser Sintering).
These technologies often produce smoother surfaces due to their different printing processes
and finer resolutions [4–7]. In FDM printing, surface roughness is influenced by various
factors, including process parameters, material properties, and geometric features. To
optimize surface roughness in FDM printing, different systematic approaches have been
proposed based on statistical methods (namely an experimental design and analysis of
variance (ANOVA)), evolutionary algorithms, and artificial neural networks (ANN). This
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involves adjusting process parameters, such as printing speed, nozzle temperature, layer
height, raster angle, bed temperature, nozzle size, and infill density, etc., to find the
optimal combination that balances surface quality with other performance requirements.
Additionally, selecting filaments with smoother characteristics or exploring specialized
coatings designed for FDM parts can further enhance the surface finish.

The most common surface roughness parameters are Ra (average roughness), Rq (root
mean square roughness), and Rz (maximum height of the profile). Ra, Rq, and Rz are
commonly used surface roughness parameters in additive manufacturing (AM) because
they provide valuable insights into the quality and characteristics of the printed surfaces.
They are internationally recognized parameters standardized in various surface roughness
standards, such as ISO 21920 [8] and ANSI/ASME B46.1 [9]. This standardization facilitates
consistent and reliable measurement and comparison of surface roughness values across
different AM processes and materials. Ra, Rq, and Rz correlate reasonably well with friction,
wear, adhesion, and contact mechanics [10,11]. By quantifying the surface roughness using
these parameters, designers and engineers can assess how the printed part’s surface quality
will affect its functionality and performance in specific applications [11]. Ra, Rq, and Rz are
relatively simple to measure using profilometric or surface roughness measurement devices.
The measurement techniques are widely available and easily implemented, making these
parameters practical for routine quality control and inspection in AM processes [12].

The main objective of the present study is four-fold. Firstly, it aims to investigate
and comprehend the impact of fused deposition modeling (FDM) process parameters
on surface roughness parameters (Ra, Rq, and Rz) across different sides (bottom, top,
and walls) of nylon carbon fiber printed components. Secondly, an experimental design
approach utilizing a definitive screening design (DSD) with three levels is employed
for experimentation, with a specific focus on the printing process parameters. Thirdly,
a comprehensive statistical analysis is performed to assess the effect of various printing
process parameters on the surface roughness parameters. Additionally, surface morphology
is analyzed through the use of optical microscopy. Lastly, the study conducts multi-response
optimization by integrating composited desirability function and entropy methods. The
ultimate goal is to significantly enhance the understanding of surface roughness and its
optimization for functional parts manufactured using FDM technology.

2. Literature Review

The surface roughness of FDM printed parts has been studied in several studies and
has been optimized for different materials based on different process parameters. Mushtaq
et al. [13] conducted an optimization study on the average surface roughness (Ra) and
root mean square roughness (Rq) of acrylonitrile butadiene styrene (ABS) and Nylon-6
(PA-6) and printed parts. They employed Taguchi S/N ratios, an ANOVA, and regression
modeling techniques. The optimized settings resulted in a surface roughness of 1.75 µm for
ABS and 21.37 µm for PA-6. The significant parameters identified for minimizing surface
roughness in ABS were the initial layer height, width of the raster, and temperature of the
bed, while for PA-6, they were the layer thickness, print speed, and extrusion temperature.
Chhabra et al. [14] optimized Ra for nylon carbon fiber composite parts based on an
integrated approach of an artificial neural network and genetic algorithm (ANNGA). The
ANNGA showed promising results for prediction, optimization, and improvement in
various engineering applications. Using response surface methodology (RSM) and a multi-
objective-genetic-algorithm–artificial-neural-network (MOGA-ANN) approach, Gahletia
et al. [15] optimized the Ra, tensile strength, and wear rate of nylon carbon fiber composite
parts. The MOGA-ANN approach demonstrated superior results by maximizing tensile
strength while minimizing the wear rate and Ra. In a study by Rashed et al. [16], FDM
process parameters were compared with Taguchi and full factorial designs of experiments
(DoEs) to assess the effects on mechanical and surface roughness properties of Nylon
6/66. The findings revealed that mechanical and surface properties are influenced by
infill density, while layer height primarily affected the manufacturing time for the specific
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polymer. The Taguchi DoE approach demonstrated its efficiency in determining optimal
process parameters, particularly for linear responses.

Mishra et al. [17] optimized the dimensional errors and surface finish of polyethylene
terephthalate glycol (PETG) parts. The layer height and raster width were found to be
significant. Further, ANFIS models were also developed, outperforming RSM with a low
root mean square error. RSM combined with the NSGA-II algorithm was employed to
identify optimized parameters. For ABS printed parts, Vyavahare et al. [18] performed a
comprehensive investigation on the effect of FDM process parameters on Ra, printing time,
and dimensional accuracy. The layer height, orientation of the part, and printing speed
were found to be significant for all considered responses. The regression model developed
was non-linear quadratic and able to predict these responses accurately. Further, desirability
function was performed to achieve optimal results. Saad et al. [19] utilized RSM along
with symbiotic organism search (SOS) and particle swarm optimization (PSO) techniques
to minimize Ra of PLA printed parts. The layer height, followed by the printing speed,
extrusion temperature, and printing speed of outer shells, were found to be significant. The
results showed that SOS and PSO algorithms performed better than the RSM alone.

Nagendra et al. [20] optimized Ra for nylon and Aramid printed parts. They em-
ployed a Taguchi experimental design approach. The findings indicated that optimal
surface smoothness was achieved. The validated part demonstrated a combined objective
error of 2.45%, attributed to potential hardware or operating condition variations. The
results of Chand et al. [21] showed that dimensional accuracy and surface roughness were
significantly altered by changing the print orientation of the part. The most suitable ori-
entation for achieving the desired surface quality and dimensional accuracy is the part
lying on the base. According to Chohan et al. [22], the Ra was predominantly impacted by
printing speed, while nozzle temperature had a minor effect in ABS parts. In their study,
Chinchanikar et al. [23] developed an ANN model for Ra prediction of PLA parts. The
best prediction accuracy was obtained and validated. The study found that increasing
infill density reduces surface roughness, while increasing layer thickness, printing speed,
and extrusion temperature causes an increase in surface roughness. Buj-Corral et al. [24]
concluded that dimensional error and surface roughness are significantly influenced by
the layer height and flow rate, while impact porosity is only influenced by the layer height.
Cerro et al. [25] employed machine learning algorithms to predict Ra of polyvinyl butyral
printed parts. The best-performing model was developed using bagging and Multilayer
Perceptron (BMLP). The layer height and wall angle were found to be significant for Ra.
Venkatraman and Raghuraman [26] performed a parametric analysis of ABS printed parts
using a Box–Behnken design (BBD). The study found that the percentage of infill, layer
thickness, and temperature of the bed significantly impacted the processing time, part
density, micro-hardness, and surface roughness. Nugroho et al. [27] indicated that layer
height significantly affects printed samples’ surface finish and dimensional accuracy. Kholil
et al. [28] demonstrated that an increase in the orientation angle and layer height causes an
increase in surface roughness. Higher surface roughness was observed at an orientation an-
gle of 60◦ and a layer thickness of 0.15 mm. According to a study of Khunt et al. [29], higher
printing temperature and lower printing speed and layer thickness were found to improve
the surface finish and density of polyetheretherketone (PEEK) parts. The surface roughness
of PETG printed parts was optimized by Ulkir and Akgun [30] using a combined approach
of a conventional feedforward neural network (CFNN) and a genetic algorithm (GA). Their
research demonstrated the hybrid CFNN-GA approach, in combination with a Box–Behken
design (BBD), and effectively predicted and minimized the surface roughness, achieving
error rates below 10%. Additionally, the study revealed that thinner layers contributed to
reduced roughness, while an increased wall thickness and nozzle temperature resulted in
higher roughness levels. A combined approach of an artificial neural network (ANN) and
whale optimization algorithm (WOA) was used by Kumar et al. [31] to improve the surface
roughness of PLA printed parts. Results showed that the model performed better in terms
of prediction. According to their study, nozzle temperature and layer thickness have a
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significant impact on surface roughness. Increasing layer thickness increased roughness,
while reducing layer thickness reduced roughness.

The literature review identified that minimizing the surface roughness in FDM printed
parts is challenging. This difficulty arises primarily due to its dependency on process
parameters, the material type, and the anisotropic nature of printed parts. It is challenging
to determine the optimal combination of process parameters for different types of materials,
since each material has its own flow characteristics, cooling rates, and adhesion properties,
all of which have an effect on surface roughness and require process adjustments. FDM
printed parts exhibit anisotropic behavior, meaning their mechanical properties and surface
quality can vary depending on the printing direction. A limited amount of literature is
available regarding the effect of FDM process parameters on the surface roughness param-
eters, namely Ra (average surface roughness), Rq (root mean square surface roughness),
and Rz (maximum height of the profile) of nylon carbon fiber printed parts, as it is one of
the challenging materials to print through due to its unique characteristics. Optimizing
print settings based on filament manufacturer guidelines, an experimental design, and
artificial intelligence (AI) based on nature-inspired metaheuristic approaches is vital to
address these challenges. There is a lack of studies that specifically investigate the impact
of FDM process parameters on the surface quality of different sides of printed parts, such
as the bottom, top, and walls. The top surface is directly exposed to the environment and is
the last layer printed in the vertical direction. The bottom surface is typically in contact
with the build platform and is the foundation for the rest of the print. Walls refer to the
vertical sides of a printed object. Additionally, in the literature, the combination of FDM
process parameters such as the layer height, print speed, infill density, part orientation,
number of shells, fill angle, extrusion temperature, and bed temperature are given limited
attention for a nylon carbon fiber composite, so it suggests potential research opportunities
to explore the synergistic effects of these parameters on surface roughness parameters of
different-side printed parts. Further investigations in this area can contribute to a deeper
understanding of process optimization for printing with nylon carbon fiber composites.
Finally, an integrated approach of composite desirability function (CDF) and entropy is
employed for multi-response optimization. In a nutshell, this study can contribute to
the existing body of knowledge and help bridge the current gaps in understanding the
influence of FDM process parameters on surface roughness for nylon carbon fiber printed
parts.

3. Materials and Methods

In the present study, the filament used for printing is nylon carbon fiber supplied
by Machines-3D®, Valenciennes, Nord-Pas-de-Calais, France. According to manufacturer
specifications, it is derived from a monomer, polyamide 12 (PA12), with the addition
of a 20% carbon fiber component. The diameter of the filament is 1.75 mm. It has a
heat distortion/deflection temperature of 155 ◦C, a 1.00 g/cm3 density, and a melting
temperature of 180 ◦C. It is an engineering polymer composite that offers an excellent
balance of strength, stiffness, and heat resistance, making it suitable for various industrial
applications. It is commonly used in aerospace, automotive, robotics, and prototyping
industries, requiring parts with high mechanical performance and durability [32,33].

The parts were printed using a Voron Trident 3D (Voron Design, Guangdong, China)
printer and are commonly used for impact testing, according to ASTM E23-23a [34], as
shown in Figure 1. Each test sample was fabricated on the printer bed individually to have
similar values and properties as recommended in previous studies [35,36].
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Figure 1. (a) Schematic of test specimen. (b) FDM printed specimen from nylon carbon fiber.

Process parameters considered were the layer height, print speed, infill density, part
orientation, number of shells, fill angle, extrusion temperature, and bed temperature.
Three levels were set for each process parameter based on the recommendation of the
material manufacturer and literature review [13,37–39], as presented in Table 1.

Table 1. Printing parameters with three levels.

Printing Parameters Units Symbol
Levels

−1 0 1

Layer height mm LH 0.1 0.2 0.3
Printing speed mm/s PS 50 60 70

Number of shells - NS 2 4 6
Infill density % ID 20 35 50

Part orientation ◦ PO 0 45 90
Fill angle ◦ FA 0 45 90

Extrusion temperature ◦C ET 240 250 260
Bed temperature ◦C BT 70 80 90

3.1. Experimental Design

The experiments employ the three-level definitive screening design (DSD) approach.
The DSD, pioneered by Jones and Nachtsheim [40], is a powerful approach that combines
screening, response surface investigation, and optimization in a single experimental design.
This design stands out from traditional screening designs by providing estimates not only
for main effects but also for interaction and quadratic effects, all while using a relatively
small number of experimental runs. Compared to traditional screening designs, which
often require a more significant number of experimental runs, the three-level DSD offers
exceptional efficiency. With only one additional run, the number of experimental runs
is just twice that of factors. Reducing the number of runs makes the design particularly
advantageous when the resources are limited. An essential feature of this design is its
ability to estimate the main effects independently of the interaction and quadratic effects.
This independence allows for a clear understanding of the impact of each factor on the
response variable without confounding effects from other interactions or quadratic terms.
Furthermore, the design’s two-factor interaction and quadratic effects are not entirely
confounded with each other or with other two-factor interactions. This means that the
design allows for the separate estimation of these effects, enabling a comprehensive analysis
of the system under investigation. The three-level definitive screening design streamlines
the experimental process by incorporating screening and response surface investigation
into a single design. It efficiently identifies significant factors, quantifies their effects, and
explores potential interactions and quadratic relationships. This valuable information
serves as a solid foundation for subsequent optimization efforts.



Polymers 2023, 15, 3633 6 of 28

So, in the present study, considering eight process parameters at three levels, a total of
17 experimental runs were planned based on DSD. However, recognizing the significance of
repeatability and robustness, we took an extra step by randomly repeating each experiment
three times. By incorporating these repetitions, the inherent variability of the printing
process can be captured efficiently, and the results can be more reliable and precise. The
final design, therefore, encompasses a total of 51 experimental runs, as tabulated in Table 2,
providing a comprehensive dataset for an analysis. It enables us to gain deeper insights
into the effects of the process parameters and their interactions and optimize the printing
process more effectively.

Table 2. Experimental runs based on definitive screening design.

Exp.
No LH NS ID FA PS NT BT PO Exp.

No LH NS ID FA PS NT BT PO

1 0.2 6 50 90 70 260 90 90 27 0.2 2 20 0 50 240 70 0
2 0.1 2 50 90 70 250 70 0 28 0.1 4 20 90 50 260 90 0
3 0.3 6 20 90 70 240 80 0 29 0.3 6 50 45 50 260 70 0
4 0.1 6 35 90 50 240 70 90 30 0.1 2 50 90 70 250 70 0
5 0.3 6 50 45 50 260 70 0 31 0.2 4 35 45 60 250 80 45
6 0.3 6 20 0 50 250 90 90 32 0.2 2 20 0 50 240 70 0
7 0.3 6 20 90 70 240 80 0 33 0.1 6 50 0 60 240 90 0
8 0.1 2 50 0 50 260 80 90 34 0.3 2 50 90 50 240 90 45
9 0.3 2 20 90 60 260 70 90 35 0.3 6 50 45 50 260 70 0
10 0.3 6 20 0 50 250 90 90 36 0.3 4 50 0 70 240 70 90
11 0.1 2 50 0 50 260 80 90 37 0.3 4 50 0 70 240 70 90
12 0.1 6 50 0 60 240 90 0 38 0.2 6 50 90 70 260 90 90
13 0.1 2 20 45 70 240 90 90 39 0.3 2 50 90 50 240 90 45
14 0.1 6 20 0 70 260 70 45 40 0.1 4 20 90 50 260 90 0
15 0.1 6 20 0 70 260 70 45 41 0.2 6 50 90 70 260 90 90
16 0.1 2 50 90 70 250 70 0 42 0.3 2 35 0 70 260 90 0
17 0.1 6 50 0 60 240 90 0 43 0.1 6 35 90 50 240 70 90
18 0.3 2 35 0 70 260 90 0 44 0.2 2 20 0 50 240 70 0
19 0.1 6 20 0 70 260 70 45 45 0.3 2 50 90 50 240 90 45
20 0.1 2 50 0 50 260 80 90 46 0.1 2 20 45 70 240 90 90
21 0.1 2 20 45 70 240 90 90 47 0.2 4 35 45 60 250 80 45
22 0.1 6 35 90 50 240 70 90 48 0.3 6 20 0 50 250 90 90
23 0.2 4 35 45 60 250 80 45 49 0.3 2 20 90 60 260 70 90
24 0.1 4 20 90 50 260 90 0 50 0.3 4 50 0 70 240 70 90
25 0.3 2 35 0 70 260 90 0 51 0.3 2 20 90 60 260 70 90
26 0.3 6 20 90 70 240 80 0

3.2. Surface Roughness Measurement

A Mitutoyo surface roughness tester (SJ-201, Mitutoyo Corporation, Kanagawa, Japan)
was used to measure Ra, Rz, and Rq using the stylus method, as shown in Figure 2. The
measurement procedure followed the guidelines outlined in the ISO 21920 [8] industrial
standard. Five readings perpendicular to the printed payers of each specimen were taken
to ensure reliable and representative measurements. This approach helps account for any
variations in surface roughness within the printed layers. The Mitutoyo surface roughness
tester had specific settings, including an evaluation length of 4 mm, a tip angle of 90◦, a tip
radius of 2 µm, a tracing speed of 0.25 mm/s, and a cut-off wavelength of 0.8 mm. These
settings were standardized to maintain consistency and accuracy across all measurements.
Finally, based on collected measurements, the average values of Ra, Rz, and Rq were
computed for each specimen from the top, wall, and bottom surfaces. The resulting
average values are presented in Table 3, providing an overview of the surface roughness
characteristics of the printed specimens.
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Figure 2. Surface roughness measurement of a printed specimen using a Mitutoyo surface roughness
tester.

Table 3. Measured surface parameters based on definitive screening design.

Exp. No
Wall Top Bottom

Ra Rz Rq Ra Rz Rq Ra Rz Rq

1 17.05 59.68 20.29 12.12 41.21 14.67 2.95 11.21 3.54
2 9.17 32.19 11.10 6.55 22.27 7.86 2.55 9.69 3.14
3 17.42 61.32 21.08 12.44 42.30 15.05 3.65 13.87 4.38
4 16.55 58.42 20.03 12.45 42.33 15.06 2.52 9.60 3.02
5 13.86 48.51 16.77 9.92 33.93 12.20 3.88 14.74 4.77
6 22.67 79.34 28.11 16.19 55.05 19.59 3.58 13.60 4.30
7 18.07 63.25 21.86 12.91 43.89 15.62 3.62 13.79 4.34
8 10.39 36.37 12.57 7.42 25.23 8.76 2.32 8.82 2.78
9 19.39 67.87 23.46 13.85 47.37 16.76 3.85 14.63 4.74

10 23.41 81.94 28.33 16.75 56.95 20.27 3.55 13.56 4.26
11 10.02 34.97 12.52 7.06 24.00 8.54 2.29 8.70 2.75
12 4.97 17.39 6.01 3.55 12.07 4.22 2.16 8.21 2.64
13 16.53 57.86 20.00 11.81 40.15 14.29 2.15 8.17 2.58
14 12.42 43.47 15.03 8.87 29.98 10.73 2.49 9.54 2.99
15 12.75 44.63 15.43 9.11 30.97 11.11 2.51 9.54 3.01
16 9.87 34.35 12.44 7.05 23.97 8.53 2.51 9.54 3.09
17 5.12 17.92 6.20 4.06 13.80 4.95 2.17 8.27 2.60
18 19.50 68.25 23.59 13.93 48.06 16.86 3.42 13.00 4.10
19 11.98 41.93 14.50 8.56 29.10 10.53 2.53 9.61 3.04
20 11.14 38.99 13.15 7.96 27.06 9.63 2.34 8.94 2.88
21 16.39 56.71 19.83 11.72 39.85 14.18 2.17 8.25 2.60
22 18.08 63.28 21.88 13.13 45.30 15.89 2.58 9.80 3.10
23 14.70 51.45 17.49 10.52 35.77 12.73 3.08 11.80 3.79
24 8.67 30.34 10.49 6.19 21.05 7.49 2.12 8.06 2.54
25 19.51 68.29 23.61 13.95 47.43 16.88 3.43 13.08 4.06
26 17.29 60.52 20.92 12.35 41.99 14.94 3.68 13.98 4.42
27 12.80 44.80 15.49 9.14 31.08 11.06 3.17 11.76 3.80
28 9.16 32.06 11.08 6.54 22.24 7.91 2.14 8.13 2.57
29 14.69 51.41 17.77 10.49 35.67 12.69 3.92 14.90 4.70
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Table 3. Cont.

Exp. No
Wall Top Bottom

Ra Rz Rq Ra Rz Rq Ra Rz Rq

30 8.75 30.63 10.59 6.25 21.25 7.56 2.57 9.77 3.08
31 15.22 53.27 18.42 10.87 36.96 13.15 3.06 11.63 3.67
32 12.49 43.72 15.11 8.92 30.33 10.79 3.15 12.13 3.78
33 4.37 15.29 5.29 3.12 10.61 3.78 2.16 8.21 2.59
34 19.07 66.75 23.07 13.62 46.31 16.48 3.38 12.84 4.06
35 13.59 47.56 16.44 9.71 33.01 11.75 3.90 14.82 4.68
36 23.14 80.99 28.00 16.53 56.37 20.00 4.01 15.24 4.81
37 23.35 81.73 28.25 16.68 56.71 20.18 3.97 15.09 4.76
38 17.60 61.60 21.30 12.57 43.12 15.21 3.01 11.44 3.61
39 17.95 61.93 21.72 12.82 43.59 15.51 3.36 12.77 4.03
40 9.60 33.60 11.62 6.86 23.32 8.30 2.13 8.09 2.56
41 16.67 58.35 20.17 11.91 40.49 14.41 2.97 11.29 3.56
42 19.50 68.25 23.59 13.93 47.36 16.86 3.45 13.13 4.14
43 18.18 64.18 20.91 13.10 43.75 16.38 2.53 9.61 3.04
44 12.11 42.38 14.65 8.65 29.41 10.47 3.18 12.08 3.85
45 17.75 62.13 21.48 12.68 43.11 15.85 3.40 12.92 4.08
46 16.27 56.95 19.69 11.62 39.51 14.06 2.18 8.28 2.62
47 14.20 49.70 17.32 10.14 34.68 12.27 3.10 11.78 3.75
48 22.67 80.03 27.43 16.19 55.05 19.75 3.57 13.67 4.32
49 18.61 65.51 22.52 13.31 45.25 16.11 3.83 14.67 4.60
50 23.55 82.90 28.50 16.82 57.52 20.35 4.02 15.28 4.82
51 19.08 66.78 23.28 13.66 46.58 16.94 3.84 14.71 4.72

3.3. Methodology for Multi-Response Optimization
3.3.1. Composite Desirability Function

Derringer [41] developed the composite desirability function for multi-response op-
timization. The idea behind this approach is to convert estimated response models into
individual desirability functions (d) and to aggregate them into a composite desirability
function (D). Depending upon the objective function, it can be divided into three main
categories: larger-the-best, nominal-the-best, and smaller-the-best. As the present study
focuses on minimizing the surface roughness, the smaller-the-best objective function was
used, as expressed in Equation (1) [41].

di =

 0, yi ≤ min(yi) ,[
yi−max(yi)

min(yi)−max(yi)

]g
min(yi) ≤ yi ≤ max(yi)

1, yi ≥ min(yi)

 (1)

where di is the desirability value of the response at experiment i. yi is the measured
response at experiment i. Max yi and min yi are the maximum and minimum. g is the
weight that governs the desirability function distribution on the interval 0.1 to 10. For
g < 1, it shows that lower importance is assigned to the target, and the desirability function
becomes exponential (concave down and increasing). For g = 1, the desirability function
becomes linear and equal importance is assigned to upper and lower limits and targets. For
g > 1, the desirability function becomes exponential (concave up), and it demonstrates that
more importance is assigned to the target, and the response moves closer to the desired
target value.

The desirability values fluctuate between 0 and 1. If the desirability value for a
particular experimental run becomes equal to or near 0, then it shows that the desired
experimental run is unacceptable. If the desirability value for a specific experimental run
becomes equal to or near one, it shows that the expected experimental run is acceptable
and that the experimental run will be considered optimal with that highest desirability
value.
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Further, the desirability functions (d) are combined into a composite desirability func-
tion (D) using the geometric mean for multi-response optimization using Equation (2) [41].

Di =
r

∏
j=1

dj
wj (2)

where wj is the individual weight of response j.
CDF was used because it allows for incorporating multiple, potentially conflicting

objectives and constraints into the optimization process consistently and intuitively and is
recommended for second-order optimization problems based on response surface method-
ology (RSM) [42].

3.3.2. Entropy

The entropy method was employed to calculate the criteria weights due to its broad
applicability in real-time data analyses. It is known for effectively handling diverse datasets
and providing reliable weight allocation results [43].

The following steps were deployed to calculate the weights of responses based on
entropy.

Step 1: Compute the entropy of each desirability function of the response using
Equations (3)–(5) [43].

ej = −k
m

∑
i=1

(
µij × ln

(
µij
))

(3)

k =
1

ln(m)
(4)

µij =
xij

m
∑

i=1
xij

(5)

where µij is the normalized value, xij is the original value in the decision matrix, and m is
the number of experiments.

Step 2: Determine the redundancy of entropy (degree of diversity) using Equation (6) [43].

dj = 1 − ej (6)

Step 3: Finally, compute the weight of the response using Equation (7) [43].

wj =
dj

n
∑

j=1
dj

(7)

Figure 3 summarizes the methodology adopted for multi-response optimization.
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4. Results and Discussion
4.1. Analysis of Variance (ANOVA)

Table 3 shows that the Ra, Rq, and Rz of walls are relatively higher than the top
surface while lowest for the bottom surface. So, a statistical analysis based on ANOVA was
conducted at a 95% confidence interval to determine if there are significant differences in
the mean values of surface roughness parameters for the top, wall, and bottom surfaces
of printed parts. Two hypotheses were set, including null and alternative hypotheses,
at a significance level/alpha value of 0.05. The null hypothesis assumes that all means
are equal (if the p-value of the test is greater than the alpha value of 0.05). In contrast,
the alternative hypothesis states that not all means are equal or that there is a difference
in at least one group mean (if the p-value of the test is less than or equal to the alpha
value of 0.05). This analysis allows for a comprehensive assessment of the differences in
mean values, helping to identify any significant variations in surface roughness parameters
between the top, wall, and bottom sides. The results are summarized in Table 4. It shows
that the p-values of the test are less than the alpha value of 0.05, depicting that at least
two group means are significantly different. So, for this purpose, a statistical test based
on the Tukey Simultaneous test is performed. In Figure 4, if an interval does not contain
zero, the corresponding means are significantly different. It shows that all the groups are
away from the reference line and are found to be significant, i.e., the mean values of Ra, Rz,
and Rq for walls vary significantly from the mean values at the top and bottom surface.
Similarly, mean values of Ra, Rz, and Rq of the top surface vary considerably from the
bottom surfaces.

Table 4. Analysis of Variance (ANOVA).

Source F-Value p-Value

Ra (Walls, Top, and Bottom) 157.81 <0.001
Rz (Walls, Top, and Bottom) 151.28 <0.001
Rq (Walls, Top, and Bottom) 157.6 <0.001
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In Figure 4a, Ra_Walls exhibits a positive mean difference (4.33) over Ra_Top, sug-
gesting a higher mean value for Ra_Walls. The 95% confidence interval (2.68, 5.98) adds
confidence in the likely range of this difference. Conversely, Ra_Bottom shows a nega-
tive mean difference (−7.89) compared to Ra_Top, implying a lower average value for
Ra_Bottom. The 95% confidence interval (−9.54, −6.24) reinforces this observation. Simi-
larly, Ra_Bottom has a negative mean difference (−12.22) against Ra_Walls, pointing to a
lower average value for Ra_Bottom. The 95% confidence interval (−13.87, −10.57) supports
this finding.

In Figure 4b, Rz_Walls shows a positive mean difference (16.22) over Rz_Top, indi-
cating a higher mean value for Rz_Walls. The relatively wide 95% confidence interval
(10.47, 21.97) emphasizes this difference with reasonable certainty. On the other hand,
Rz_Bottom displays a substantial negative mean difference (−25.64) compared to Rz_Top,
suggesting a significantly lower mean value for Rz_Bottom. The 95% confidence interval
(−31.39, −19.89) highlights the likely range of this difference. Moreover, Rz_Bottom ex-
hibits a negative mean difference (−41.86) against Rz_Walls, reinforcing its lower average
value. The 95% confidence interval (−47.61, −36.12) supports this contrast.

In Figure 4c, Rq_Walls reveals a positive mean difference (5.20) over Rq_Top, indicating
a higher average value for Rq_Walls. The 95% confidence interval (3.20, 7.20) provides
an estimated range for this difference. Conversely, Rq_Bottom shows a negative mean
difference (−9.59) against Rq_Top, implying a lower average value for Rq_Bottom. The
95% confidence interval (−11.60, −7.59) describes the probable range of this difference.
Similarly, Rq_Bottom exhibits a negative mean difference (−14.79) compared to Rq_Walls,
indicating a lower mean value for Rq_Bottom. The 95% confidence interval (−16.80, −12.79)
substantiates this likely difference.
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These findings will guide us to explore the underlying factors contributing to those
variations in surface roughness of different sides of FDM printed parts (as discussed in the
following Section 4.2).

4.2. Mean Interval Plots

Based on data presented in Table 3, the pooled standard deviation is used to compute
the mean intervals of surface roughness parameters, i.e., Ra, Rz, and Rq for the top, wall,
and bottom surface of printed parts. It allows for a more accurate assessment of the
variability across different sides of printed parts, as illustrated in Figure 5. The mean values
of Rz at walls are higher, i.e., 53 µm with an interval of 51 to 55 µm followed by Rz at the
top surface having a mean value of 37 µm with an interval of 35 to 39 µm, Rq at walls with
mean values of 18.44 µm having an interval of 16.30 to 20.56 µm, and Ra at walls with mean
values of 15.24 µm having an interval of 13.10 to 17.28 µm. This suggests that the walls
and top surface of the printed parts tend to exhibit higher roughness depths than other
sides. The reason may be that the FDM printers build objects layer by layer; as the filament
is extruded onto the previous layer, it may slightly deform or flatten against the surface,
resulting in variations in the surface texture. These variations can contribute to increased
surface roughness, particularly on the walls and top surfaces where the layers are more
exposed [21]. Further, after each layer is deposited, it undergoes a cooling and solidification
process. The cooling rates can vary across different sides of a printed object, resulting in
differential shrinkage and stress [44]. Being more exposed and subject to faster cooling,
the walls and top surface may experience more pronounced thermal effects, leading to
increased surface roughness [20,21]. Nylon carbon fiber filament materials typically have
different thermal expansion coefficients from the base thermoplastic material (such as
nylon) and the embedded carbon fibers. As the filament is heated and deposited layer by
layer during printing, the thermal expansion mismatch between the two components can
result in uneven layer adhesion. This mismatch may lead to delamination or imperfect
bonding between the layers, causing surface roughness on the side walls [45]. Further,
carbon fibers in nylon carbon fiber filaments introduce anisotropic properties to the printed
parts. The orientation and alignment of the carbon fibers can create textured surfaces,
leading to higher surface roughness on the side walls. These fibers can protrude or cause
surface unevenness, impacting the printed part’s smoothness [46].
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On the other hand, it is observed that the mean values of Ra at the bottom (i.e., 3.02 µm
with an interval of 0.89 to 5.2 µm) and Rq at the bottom surface (i.e., 3.65 µm with an interval
of 1.52 to 5.78 µm) are relatively smaller compared to the surface roughness parameters
computed for other sides. This indicates that the bottom surface of the printed parts tends
to have a more consistent or less irregular surface compared to the other sides. The bottom
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surface, which is in contact with the print bed or support structures, may experience more
uniform pressure and less disturbance during printing. This can result in more consistent
surface roughness with smaller mean intervals. In addition, the heat from the print bed can
help improve the first layer’s adhesion and smoothness. The heated bed can melt the plastic
slightly, causing it to fuse and create a strong bond with the bed surface [47,48]. However,
the support structure’s removal process can sometimes leave minor imperfections, marks,
or roughness on the walls and top surface, leading to increased surface roughness.

4.3. Regression Models

Regression models are developed to establish quantitative relationships and provide
insights into achieving desired surface characteristics of nylon carbon fiber FDM printed
parts. Further, the models will enable quantitative predictions of surface roughness. The
regression models developed for each surface roughness parameter (Ra, Rz, and Rq) against
different sides (i.e., top, walls, and bottom) are expressed in Equations (8)–(16). It shows
that the models are non-linear and quadratic.

RaWalls = 119.49 + 32.57LH + 0.96ID + 0.003FA − 4.29PS − 0.013ET + 0.311PO − 0.0146ID2

+0.036PS2 + 0.142LH × PO − 0.001ET × PO
(8)

RqWalls = 151.1 + 39.73LH + 1.141ID − 5.391PS − 0.0187ET + 0.334PO − 0.0172ID2

+0.0457PS2 + 0.178LH × PO − 0.00027ID × PO − 0.001135ET × PO
(9)

RzWalls = 422.2 + 113.49LH + 3.424ID + 0.0112FA − 15.16PS − 0.049ET + 1.065PO
−0.0519ID2 + 0.1286PS2 + 0.5137LH × PO − 0.00378ET × PO

(10)

RaTop = 340.3 − 48.0LH + 2.444ID + 0.009FA − 11.140PS − 0.153ET + 0.675PO − 0.037ID2

+0.094PS2 + 0.499LH × ET + 0.386LH × PO − 0.0024ET × PO
(11)

RzTop = 340.3 − 48.0LH + 2.44ID + 0.0088FA − 11.140PS − 0.153ET + 0.675PO − 0.037ID2

+0.094PS2 + 0.499LH × ET + 0.387LH × PO − 0.0024ET × PO
(12)

RqTop = 340.3 − 48.0LH + 2.44ID + 0.0088FA − 11.140PS − 0.153ET + 0.675PO − 0.037ID2

+0.094PS2 + 0.499LH × ET + 0.39LH × PO − 0.0024ET × PO
(13)

Rabottom = 1.953 + 11.690LH + 0.218NS + 0.0012ID − 0.00015FA + 0.010PS − 0.0192BT
−0.0023PO − 7.27LH2 − 0.025NS2 + 0.000049PO2 − 0.034LH × PS

−0.000024PS × PO
(14)

RzBottom = 14.757 + 25.586LH + 0.484NS + 0.004079ID − 0.0278PS − 0.1402BT − 0.01246PO
−0.0851NS2 − 0.00318NS × PS + 0.0057NS × BT + 0.00061PS × BT

+0.00019BT × PO
(15)

RqBottom = 4.099 + 8.0643LH + 0.0970NS − 0.00091ID + 0.0067PS − 0.0355BT − 0.00511PO
−0.0239NS2 + 0.000605NS × ID − 0.00115NS × PS + 0.00198NS × BT

+0.000074BT × PO
(16)

The regression models’ adequacy is evaluated by considering various metrics such as
the normality plot for residuals, coefficient of determination (R2), adjusted R2, predicted
R2, and lack of fit, as summarized in Figure 6 and Table 5. The normal residual plots
depicted in Figure 6 demonstrate that the residuals for each surface parameter closely align
with the fitted line, suggesting a normal distribution. Ray Joiner’s (RJ) normality test is
conducted with a 95% confidence interval to assess the residuals’ normality further. The
test’s null hypothesis assumes that the residuals follow a normal distribution. In contrast,
the alternate hypothesis contradicts this assumption by suggesting a p-value less than or
equal to 0.05. The results of the test indicate that the p-value exceeds 0.05. Therefore, the
residuals do follow a normal distribution. This reaffirms the developed models’ validity
and suitability for making predictions.
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Table 5. Summary of regression model adequacy.

Responses R2 (%) Adjusted R2 (%) Predicted R2

(%)
Lack of Fit Based on

p-Value

Ra_Walls 99.26 99.07 98.8 0.637
Rz_Walls 99.24 99.06 98.78 0.51
Rq_Walls 99.53 99.42 99.24 0.802
Ra_Top 99.28 99.07 98.77 0.43
Rz_Top 99.26 99.05 98.74 0.539
Rq_Top 99.33 99.09 98.71 0.898

Ra_Bottom 99.92 99.89 99.85 0.816
Rz_Bottom 99.88 99.85 99.79 0.271
Rq_Bottom 99.78 99.72 99.64 0.575

The results in Table 5 indicate that the regression models developed for the surface
roughness parameters are suitable and effectively represent the experimental data. This
conclusion is supported by the high R2 values, which approach 100%. The p-values obtained
from the lack-of-fit test are greater than the significance level of 0.05, indicating that the
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model fits well with the response data and has no missing terms. The models exhibit
satisfactory predictive accuracy, as evidenced by the proximity of the adjusted R2 and
predicted R2 values, with a percentage difference of less than 20%.

4.4. Pareto Chart of the Standardized Effects

The effect of process parameters on surface roughness parameters was analyzed based
on the Pareto chart of the standardized effects. It is an effective tool for identifying the
significant factors affecting surface roughness parameters. The results are illustrated in
Figure 7a–i. The parameters that crossed the reference line (2 to 2.03) are considered
significant at an alpha value of 0.05. Figure 7a–i shows that layer height is the most
influential factor that affects the average surface roughness, maximum height of the profile,
and root mean square roughness at the top, wall, and bottom surface of nylon carbon fiber
printed parts. Part orientation is the second most significant process parameter for Ra, Rz,
and Rq at the top and walls (Figure 7a–f). Meanwhile, bed temperature is the second most
significant process parameter for Ra, Rz, and Rq at the bottom surface (Figure 7g–i). The
other important process parameters commonly found for Ra, Rz, and Rq at the top and
walls are infill density and its quadratic term, print speed and its quadratic term, extrusion
temperature, the interaction of layer height and part orientation, and a main effect of fill
angle. The significant parameters for Ra, Rz, and Rq at the bottom surface are the part
orientation, number of shells and their quadratic term, print speed, and infill density.

4.5. Surface Plots

Surface plots were generated to study the relationship between the process parameters
and the responses.

Figure 8a–i shows that the average surface roughness (Ra), maximum height of the
profile (Rz), and root mean square roughness (Rq) of the top, wall, and bottom surface
increase with an increase in the layer height. This may be attributed to a decrease in surface
contact between the nozzle and the previous layer with an increase in layer height. That
results in less efficient flattening and smoothing of the molten filament during deposition,
leading to higher surface roughness at the top, wall, and bottom surface, as illustrated
in Figure 9a–c obtained using an optical inverted metallurgical microscope (Model No.:
M-41X, Lab Testing Technology Shanghai Co., Ltd., Shanghai, China). Further, in larger
layer heights, a greater volume of material is deposited in each layer. The deposition
of a larger volume of material can lead to more pronounced ridges and valleys on the
top surface, contributing to an increase in the maximum height of the profile (Rz) [49].
The surface roughness can be influenced by the carbon fiber reinforcements within the
nylon matrix, where a larger layer height may cause variations due to the impact on fiber
alignment and distribution within the printed part [50].

There is an increase in Ra, Rz, and Rq at the top and wall surface, with an increase in
infill density from 20 to 35%, followed by a decrease from 35 to 50% (Figure 8a,b,d,e,h).
At low infill density, there is less material filling the internal regions, resulting in pores
and warping during the printing process, leading to increased Ra at the top and walls [51].
However, an increase in infill density minimized the visibility of individual layer lines.
As more material is deposited, the surface irregularities caused by the distinct layers may
blend, resulting in a perceived decrease in surface roughness at the top and walls [52]. This
can be justified further from the microscopic images shown in Figure 9d–f; at a 20% infill
density, the layers are more visible than 35% and are blended at 50%.
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Figure 7. Pareto chart of the standardized effects for surface roughness parameters at different
sides; (a) average surface roughness at the top surface; (b) maximum height of the profile at the top
surface; (c) root mean square roughness at the top surface; (d) average surface roughness of walls;
(e) maximum height of the profile of walls; (f) root mean square roughness of the walls; (g) average
surface roughness of bottom surface; (h) maximum height of the profile of bottom surface; (i) root
mean square roughness of a bottom surface.
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Figure 8. Surface plots for surface roughness; (a) effect of layer height and infill density on Ra_Top; 
(b) effect of layer height and infill density on Ra_Walls; (c) effect of the number of shells and layer 
height on Ra_Bottom; (d) effect of layer height and infill density on Rz_Top; (e) effect of layer height 
and infill density on Rz_Walls; (f) effect of the number of shells and layer height on Rz_Bottom; (g) 
effect of the number of shells and layer height on Rq_Top; (h) effect of layer height and infill density 
on Rq_Walls; (i) effect of the number of shells and layer height on Rq_Bottom. 

Figure 8. Surface plots for surface roughness; (a) effect of layer height and infill density on Ra_Top;
(b) effect of layer height and infill density on Ra_Walls; (c) effect of the number of shells and layer
height on Ra_Bottom; (d) effect of layer height and infill density on Rz_Top; (e) effect of layer height
and infill density on Rz_Walls; (f) effect of the number of shells and layer height on Rz_Bottom;
(g) effect of the number of shells and layer height on Rq_Top; (h) effect of layer height and infill
density on Rq_Walls; (i) effect of the number of shells and layer height on Rq_Bottom.

Ra, Rz, and Rz at the bottom surface increase steadily and then decrease with an
increase in the number of shells from 2 to 4 and 4 to 6 (Figure 8c,f,g,i). When more contours
or shells are used, the printer creates more layers and fills in more material, resulting in
a finer resolution and improved surface quality. The additional contours provide better
coverage and fill gaps between the layers, reducing the visibility of the stair-stepping effect,
as shown in Figure 9g–h.

Regarding the fill angle, no pronounced effect is observed on Ra, Rz, and Rq at the
top and walls with an increase from 0◦ to 90◦ (Figure 10a,b,d,e,g). However, Ra at the
bottom (Figure 10c) surface decreases with an increase in the fill angle. This is in line with
previous studies [53,54] that highlight with the rise in fill angle, the printed layers have
a larger contact area between adjacent lines and this allows for better adhesion between
layers, resulting in smoother surface finishes.
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Figure 9. Optical microscopy images; (a) top surface of part printed with 0.3 mm layer height; (b) 
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layer height; (d) top surface of part printed at 20% infill density; (e) top surface of part printed at 
35% infill density; (f) top surface of part printed at 50% infill density; (g) bottom surface of part 
printed with the number of shells of 2; (h) bottom surface of part printed with the number of shells 
of 6. 
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top and walls with an increase from 0° to 90° (Figure 10a,b,d,e,g). However, Ra at the 
bottom (Figure 10c) surface decreases with an increase in the fill angle. This is in line with 
previous studies [53,54] that highlight with the rise in fill angle, the printed layers have a 
larger contact area between adjacent lines and this allows for better adhesion between 
layers, resulting in smoother surface finishes. 

However, there is a significant decrease in Ra at the top and wall surface with an 
increase in print speed from 50 mm/s to 60 mm/s, while an increase is observed from 60 
to 70 mm/s (Figure 10a,b,d–f,h,i). When the print speed increases, the filament is deposited 
onto the previous layer more quickly. This faster deposition can lead to better fusion and 
adhesion between layers, resulting in a smoother surface with reduced surface roughness 
[55]. However, if the print speed becomes too high, the cooling time for each layer may 
become insufficient. Inadequate cooling time can cause uneven cooling, resulting in 

Figure 9. Optical microscopy images; (a) top surface of part printed with 0.3 mm layer height;
(b) wall surface of part printed with 0.3 mm layer height; (c) bottom surface of part printed with
0.3 mm layer height; (d) top surface of part printed at 20% infill density; (e) top surface of part printed at
35% infill density; (f) top surface of part printed at 50% infill density; (g) bottom surface of part printed
with the number of shells of 2; (h) bottom surface of part printed with the number of shells of 6.
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the top and wall surface (Figure 10h). Increasing the extrusion temperature enhances the 
melt flow characteristics of the filament. As the filament melts more thoroughly, it has 
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Figure 10. Surface plots for surface roughness; (a) effect of print speed and fill angle on Ra_Top; (b) 
effect of fill angle and print speed on Ra_Walls; (c) effect of fill angle and infill density on Ra_Bottom; 
Figure 10. Surface plots for surface roughness; (a) effect of print speed and fill angle on Ra_Top;
(b) effect of fill angle and print speed on Ra_Walls; (c) effect of fill angle and infill density on
Ra_Bottom; (d) effect of fill angle and print speed on Rz_Top; (e) effect of print speed and fill angle
on Rz_Walls; (f) effect of infill density and print speed on Rz_Bottom; (g) effect of infill density and
fill angle on Rq_Top; (h) effect of extrusion temperature and print speed on Rq_Walls; (i) effect of the
amount of infill density and speed on Rq_Bottom.

However, there is a significant decrease in Ra at the top and wall surface with an
increase in print speed from 50 mm/s to 60 mm/s, while an increase is observed from
60 to 70 mm/s (Figure 10a,b,d–f,h,i). When the print speed increases, the filament is
deposited onto the previous layer more quickly. This faster deposition can lead to better
fusion and adhesion between layers, resulting in a smoother surface with reduced surface
roughness [55]. However, if the print speed becomes too high, the cooling time for each
layer may become insufficient. Inadequate cooling time can cause uneven cooling, resulting
in higher residual stresses, warping, or distortions in the printed part. These effects can
manifest as increased surface roughness [56]. According to a study [57], high print speed
disrupts the continuous flow of material that causes layer distortion, and results in the
formation of pores and poor bonding. Figure 11a shows the layer distortion at a high print
speed of 70 mm/s, while it was relatively uniform at 60 mm/s, as shown in Figure 11b.
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Figure 11. Optical microscopy images; (a) layer distortion at a high print speed of 70 mm/s; (b) uni-
form layers at 60 mm/s; (c) overflow of material at 50% infill density for part printed at a layer height 
of 0.1 mm; (d) overflow of material at 50% infill density for part printed at a layer height of 0.3 mm. 

On the other hand, there is a drastic increase in Ra, Rz, and Rq at the top, wall, and 
bottom surface with an increase in part orientation from 0° to 90° (Figure 12a,b,d–f,i,j). 
This may be attributed to the support structure that leaves behind small imperfections, 
marks, or roughness on the bottom surface, leading to increased surface roughness, as 
evident from a microscopic structural analysis as illustrated in Figure 13a. The top surface 
of a printed part is exposed to the air, which can result in faster cooling compared to other 
surfaces in contact with the print bed or support structures. Rapid filament cooling can 
cause uneven solidification and increase surface roughness, as shown in Figure 13b. When 
printing in vertical orientations, the reduced contact with the print bed restricts heat dis-
sipation, leading to less effective cooling and higher surface roughness [60,61]. When 
printing vertically (90° orientation), the layers are stacked on top of each other, and the 
deposition direction is perpendicular to the top surface. This orientation can result in step-
like features, layer mismatches, and reduced surface quality, increasing Rz [62,63]. 

However, there is a sharp decrease with an increase in bed temperature from 70 to 
90 °C (Figure 12c,f,j). Increasing the bed temperature improves adhesion between the 
printed part and the build platform. Adequate bed adhesion ensures that the bottom lay-
ers of the print remain firmly attached during the printing process, reducing the chances 
of warping or shifting. This improved adhesion results in a smoother and more uniform 
bottom surface with reduced surface roughness, as evident from Figure 13d. According to 

Figure 11. Optical microscopy images; (a) layer distortion at a high print speed of 70 mm/s;
(b) uniform layers at 60 mm/s; (c) overflow of material at 50% infill density for part printed at
a layer height of 0.1 mm; (d) overflow of material at 50% infill density for part printed at a layer
height of 0.3 mm.

In contrast to the top surface and walls, Ra, Rz, and Rq at the bottom surface increase
with an increase in infill density (Figure 10c,f,g,i). This may be attributed to heat transfer
and cooling dynamics within the part change. Higher infill densities can result in slower
cooling rates and increased shrinkage forces, leading to internal stresses and potential
surface roughness, contributing to increased surface roughness at the bottom [58]. The
other possible reason is that, as the infill density increases, it becomes more challenging to
maintain fine details and intricate features on the bottom surface. Excessive infill density
can lead to overfilling, where the material overflows and extends beyond the intended
boundaries of the bottom surface. This overflow can create irregularities, protrusions, and
a rougher bottom surface, contributing to an increase in surface roughness, as shown in
Figure 11c,d.

Increasing the extrusion temperature from 240 to 260 ◦C decreases Rq, Ra, and Rz
at the top and wall surface (Figure 10h). Increasing the extrusion temperature enhances
the melt flow characteristics of the filament. As the filament melts more thoroughly, it
has better adhesion and fusion with the previously deposited layers. Improved fusion
results in a more cohesive structure and smoother interlayer transitions, reducing surface
roughness [59].

On the other hand, there is a drastic increase in Ra, Rz, and Rq at the top, wall, and
bottom surface with an increase in part orientation from 0◦ to 90◦ (Figure 12a,b,d–f,i,j).
This may be attributed to the support structure that leaves behind small imperfections,
marks, or roughness on the bottom surface, leading to increased surface roughness, as
evident from a microscopic structural analysis as illustrated in Figure 13a. The top surface
of a printed part is exposed to the air, which can result in faster cooling compared to



Polymers 2023, 15, 3633 21 of 28

other surfaces in contact with the print bed or support structures. Rapid filament cooling
can cause uneven solidification and increase surface roughness, as shown in Figure 13b.
When printing in vertical orientations, the reduced contact with the print bed restricts heat
dissipation, leading to less effective cooling and higher surface roughness [60,61]. When
printing vertically (90◦ orientation), the layers are stacked on top of each other, and the
deposition direction is perpendicular to the top surface. This orientation can result in
step-like features, layer mismatches, and reduced surface quality, increasing Rz [62,63].
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Figure 12. Surface plots for surface roughness; (a) effect of extrusion temperature and part orienta-
tion on Ra_Top; (b) effect of extrusion temperature and part orientation on Ra_Walls; (c) effect of 
bed temperature and print speed on Ra_Bottom; (d) effect of extrusion temperature and part orien-
tation on Rz_Top; (e) effect of extrusion temperature and part orientation on Rz_Walls; (f) effect of 
bed temperature and part orientation on Rz_Bottom; (g) effect of extrusion temperature and print 
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Figure 12. Surface plots for surface roughness; (a) effect of extrusion temperature and part orientation
on Ra_Top; (b) effect of extrusion temperature and part orientation on Ra_Walls; (c) effect of bed
temperature and print speed on Ra_Bottom; (d) effect of extrusion temperature and part orientation
on Rz_Top; (e) effect of extrusion temperature and part orientation on Rz_Walls; (f) effect of bed
temperature and part orientation on Rz_Bottom; (g) effect of extrusion temperature and print speed
on Rq_Top; (h) effect of extrusion temperature and print speed on Rq_Walls; (i) effect of extrusion
temperature and part orientation on Rq_Walls; (j) effect of bed temperature and part orientation on
Rq_Bottom.
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Figure 13. Optical microscopy images; (a) marks and flaws of support structure on the bottom sur-
face; (b) uneven solidification process at the top surface; (c) uneven solidification process at the wall 
surface; (d) smooth bottom surface. 

By analyzing the trends, it is evident that the choice of printing parameters signifi-
cantly influences surface roughness. For optimal results, it is recommended to carefully 
consider the desired surface quality requirements for each specific surface. Adjusting pa-
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guide manufacturers and 3D printing enthusiasts in making informed decisions when se-
lecting printing parameters to achieve the desired surface roughness for their specific ap-
plications. Further research and experimentation may be required to fully explore the in-
teractions between different printing parameters and their impact on surface roughness. 
Nevertheless, the presented trends serve as a valuable starting point for optimizing the 
printing process and enhancing the surface quality of 3D printed objects. 
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parameter across different levels, as presented in Table 8. The highest average WCDF 
value among the three levels for each parameter indicates the optimal level for that specific 
parameter. The optimal level for the layer height and number of shells is the low level (−1), 
showing the highest WCDF averages of 0.706 and 0.467, respectively, having values of 0.1 

Figure 13. Optical microscopy images; (a) marks and flaws of support structure on the bottom
surface; (b) uneven solidification process at the top surface; (c) uneven solidification process at the
wall surface; (d) smooth bottom surface.

However, there is a sharp decrease with an increase in bed temperature from 70
to 90 ◦C (Figure 12c,f,j). Increasing the bed temperature improves adhesion between the
printed part and the build platform. Adequate bed adhesion ensures that the bottom layers
of the print remain firmly attached during the printing process, reducing the chances of
warping or shifting. This improved adhesion results in a smoother and more uniform
bottom surface with reduced surface roughness, as evident from Figure 13d. According to
studies [64,65], higher bed temperatures can help to mitigate part distortions, particularly
at the bottom surface. When the bed temperature increases, the layers in contact with
the build platform experience less differential cooling and shrinkage. This reduces the
likelihood of warping, curling, or other deformations contributing to surface roughness.

By analyzing the trends, it is evident that the choice of printing parameters signifi-
cantly influences surface roughness. For optimal results, it is recommended to carefully
consider the desired surface quality requirements for each specific surface. Adjusting
parameters such as layer height, infill density, print speed, and extrusion temperature
can help achieve the desired surface roughness characteristics. Furthermore, the findings
highlight the importance of considering different surfaces, such as the top, walls, and
bottom surfaces, as their responses to printing parameters may vary. This knowledge can
guide manufacturers and 3D printing enthusiasts in making informed decisions when
selecting printing parameters to achieve the desired surface roughness for their specific
applications. Further research and experimentation may be required to fully explore the
interactions between different printing parameters and their impact on surface roughness.
Nevertheless, the presented trends serve as a valuable starting point for optimizing the
printing process and enhancing the surface quality of 3D printed objects.

4.6. Multi-Response Optimization

The desirability function (DF) of individual responses (in Table 3) is computed using
Equation (1), as shown in Table 6. To calculate the weights of responses, determine the
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entropy for each DF using Equations (3)–(5). Determine the redundancy of entropy using
Equation (6) and compute the weights based on Equation (7). The results are summarized
in Table 7. It shows that the highest weight is attributed to Rq B (0.132) followed by Rz B
(0.126), Ra B (0.124), and Rq T (0.106), while the least weight is assigned to Rz w (0.132).
Finally, the weighted composite desirability function (WCDF) is determined using Equation
(2) and is tabulated in Table 6. Finally, to determine the optimal levels, the average values of
the Weighted Cumulative Distribution Function (WCDF) are calculated for each parameter
across different levels, as presented in Table 8. The highest average WCDF value among the
three levels for each parameter indicates the optimal level for that specific parameter. The
optimal level for the layer height and number of shells is the low level (−1), showing the
highest WCDF averages of 0.706 and 0.467, respectively, having values of 0.1 mm and two
shells. Similarly, for infill density, the highest WCDF average obtained is 0.487 at the high
level (1), corresponding to a 50% infill density. For the infill angle, the optimal level is the
low level (−1), yielding a WCDF average of 0.461, denoting a 0◦ fill angle. For print speed,
the medium level (0) prevails with a WCDF average peak of 0.532, equating to 60 mm/s.
Notably, nozzle temperature’s high level (1) showcases the highest WCDF average (0.466)
at 260 ◦C, while bed temperature’s medium level (0) excels with a 0.495 WCDF average
at 80 ◦C. Lastly, print orientation’s optimal level is the low level (−1), capturing the
highest WCDF average of 0.544 at a 0◦ orientation. The optimized values obtained for the
specimens printed at optimal levels are the (Ra, Rz, Rq) walls of (3.95, 13.83, 4.74) µm, for
(Ra, Rz, Rq) Top, they are (2.82, 10.03, 3.38) µm, and for (Ra, Rz, Rq) Bottom, they are (1.92,
6.72, 2.31) µm.

Table 6. Desirability function (DF) and weighted composite desirability function (WCDF).

Exp. No
Wall (DF) Top (DF) Bottom (DF)

WCDF
Ra Rz Rq Ra Rz Rq Ra Rz Rq

1 0.339 0.343 0.354 0.343 0.348 0.343 0.563 0.564 0.561 0.416
2 0.75 0.75 0.75 0.75 0.751 0.754 0.774 0.774 0.737 0.755
3 0.32 0.319 0.32 0.32 0.324 0.32 0.195 0.195 0.193 0.265
4 0.365 0.362 0.365 0.319 0.324 0.319 0.789 0.787 0.789 0.470
5 0.505 0.509 0.505 0.504 0.503 0.492 0.074 0.075 0.022 0.206
6 0.046 0.053 0.017 0.046 0.053 0.046 0.232 0.233 0.228 0.079
7 0.286 0.291 0.286 0.285 0.291 0.285 0.211 0.206 0.211 0.254
8 0.686 0.688 0.686 0.686 0.688 0.699 0.895 0.895 0.895 0.761
9 0.217 0.222 0.217 0.217 0.216 0.217 0.089 0.09 0.035 0.137

10 0.007 0.014 0.007 0.005 0.012 0.005 0.247 0.238 0.246 0.029
11 0.705 0.709 0.688 0.712 0.715 0.713 0.911 0.911 0.908 0.779
12 0.969 0.969 0.969 0.969 0.969 0.973 0.979 0.979 0.956 0.970
13 0.366 0.37 0.366 0.366 0.37 0.366 0.984 0.985 0.982 0.535
14 0.58 0.583 0.58 0.58 0.587 0.581 0.805 0.795 0.803 0.657
15 0.563 0.566 0.563 0.563 0.566 0.558 0.795 0.795 0.794 0.642
16 0.713 0.718 0.692 0.713 0.715 0.713 0.795 0.795 0.759 0.737
17 0.961 0.961 0.961 0.931 0.932 0.929 0.974 0.971 0.974 0.956
18 0.211 0.217 0.212 0.211 0.202 0.211 0.316 0.316 0.316 0.246
19 0.603 0.606 0.603 0.603 0.606 0.593 0.784 0.785 0.781 0.666
20 0.647 0.649 0.661 0.647 0.649 0.647 0.884 0.878 0.851 0.727
21 0.373 0.387 0.374 0.372 0.377 0.372 0.974 0.974 0.974 0.541
22 0.285 0.29 0.285 0.269 0.26 0.269 0.758 0.759 0.754 0.406
23 0.461 0.465 0.474 0.46 0.464 0.46 0.495 0.482 0.452 0.468
24 0.776 0.777 0.776 0.776 0.777 0.776 1 1 1 0.855
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Table 6. Cont.

Exp. No
Wall (DF) Top (DF) Bottom (DF)

WCDF
Ra Rz Rq Ra Rz Rq Ra Rz Rq

25 0.211 0.216 0.211 0.209 0.215 0.209 0.311 0.305 0.333 0.247
26 0.326 0.331 0.327 0.326 0.331 0.326 0.179 0.18 0.175 0.260
27 0.56 0.564 0.561 0.561 0.564 0.561 0.447 0.488 0.447 0.520
28 0.75 0.752 0.751 0.75 0.752 0.751 0.989 0.99 0.987 0.834
29 0.462 0.466 0.462 0.462 0.466 0.462 0.053 0.053 0.053 0.202
30 0.772 0.773 0.772 0.772 0.773 0.772 0.763 0.763 0.763 0.769
31 0.434 0.438 0.434 0.434 0.438 0.435 0.505 0.506 0.504 0.461
32 0.577 0.58 0.577 0.577 0.58 0.577 0.458 0.436 0.456 0.525
33 1 1 1 1 1 1 0.979 0.979 0.978 0.992
34 0.234 0.239 0.234 0.234 0.239 0.234 0.337 0.338 0.333 0.270
35 0.519 0.523 0.52 0.519 0.522 0.519 0.063 0.064 0.061 0.232
36 0.021 0.028 0.022 0.021 0.025 0.021 0.005 0.006 0.004 0.013
37 0.01 0.017 0.011 0.01 0.017 0.01 0.026 0.026 0.026 0.016
38 0.31 0.315 0.31 0.31 0.307 0.31 0.532 0.532 0.531 0.381
39 0.292 0.31 0.292 0.292 0.297 0.292 0.347 0.348 0.346 0.314
40 0.727 0.729 0.727 0.727 0.729 0.727 0.995 0.996 0.991 0.820
41 0.359 0.363 0.359 0.358 0.363 0.358 0.553 0.553 0.553 0.424
42 0.211 0.217 0.212 0.211 0.217 0.211 0.3 0.298 0.298 0.242
43 0.28 0.277 0.327 0.272 0.294 0.24 0.784 0.785 0.781 0.415
44 0.596 0.599 0.597 0.596 0.599 0.596 0.442 0.443 0.425 0.530
45 0.302 0.307 0.302 0.302 0.307 0.272 0.326 0.327 0.325 0.309
46 0.38 0.384 0.38 0.38 0.384 0.38 0.968 0.97 0.965 0.544
47 0.487 0.491 0.482 0.488 0.487 0.488 0.484 0.485 0.469 0.484
48 0.046 0.042 0.046 0.046 0.053 0.036 0.237 0.223 0.219 0.083
49 0.258 0.257 0.258 0.256 0.262 0.256 0.1 0.084 0.096 0.175
50 0 0 0 0 0 0 0 0 0 0.000
51 0.233 0.238 0.225 0.231 0.233 0.206 0.095 0.079 0.044 0.144

Table 7. Weights of responses based on entropy.

Responses (Raw) (Rzw) (Rqw) (RaT) (RzT) (RqT) (RaB) (RzB) (RqB)

ej 0.949 0.951 0.948 0.949 0.950 0.947 0.939 0.938 0.935
dj 0.051 0.049 0.052 0.051 0.050 0.053 0.061 0.062 0.065
wj 0.103 0.100 0.104 0.104 0.101 0.106 0.124 0.126 0.132

Table 8. Optimal levels based on average values of weighted composite desirability function (WCDF).

Process
Parameters

Levels
Optimal Levels

−1 0 1

Layer height 0.706 0.468 0.177 −1 (0.1 mm)
Number of shells 0.467 0.439 0.429 −1 (2)

Infill density 0.433 0.382 0.487 1 (50%)
Fill angle 0.461 0.408 0.448 −1 (0◦)

Print speed 0.446 0.532 0.410 0 (60 mm/s)
Nozzle

temperature 0.434 0.429 0.466 1 (260 ◦C)

Bed temperature 0.391 0.495 0.480 0 (80 ◦C)
Print orientation 0.544 0.475 0.337 −1 (0◦)

5. Conclusions

Fused deposition modeling (FDM) is a cost-effective method for creating engineering
components through additive manufacturing. However, controlling surface roughness
poses challenges for functional part fabrication due to numerous process parameters that
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need to be considered during printing. So, the present study performed optimization and
detailed investigation and comprehended the impact of FDM process parameters on surface
roughness parameters (Ra, Rq, and Rz) across different sides (bottom, top, and walls) of
nylon carbon fiber printed components. Based on experimental results and statistical
investigation, the following conclusions are drawn:

• The surface roughness (Ra, Rq, and Rz) is higher for walls than the top, while the
bottom has the lowest roughness as per results obtained using an analysis of variance.

• The Pareto chart analysis revealed that layer height is the most influential factor affect-
ing surface roughness parameters, followed by part orientation and bed temperature.
Other significant factors include the infill density, print speed, extrusion temperature,
fill angle, number of shells, and their respective quadratic terms, affecting surface
roughness at different parts of nylon carbon fiber printed parts.

• Higher layer heights increase roughness, while more infill density and shells improve
surface quality. Adjusting fill angle and print speed impacts roughness on differ-
ent parts—the bottom or top. Part orientation, especially from 0◦ to 90◦, increases
roughness due to overhangs. Bed temperature (70–90 ◦C) improves bottom surface
smoothness via enhanced adhesion and minimized distortions.

• The optimized level obtained based on an integrated approach of composite desirabil-
ity function (CDF) and entropy is the layer height of 0.1 mm, number of shells of two,
infill density of 50%, print speed of 60 mm/s, extrusion temperature of 260 ◦C, bed
temperature of 80 ◦C, and print orientation of 0◦. The optimized values obtained for
(Ra, Rz, Rq) walls are (3.95, 13.83, 4.74) µm, for (Ra, Rz, Rq) Top, they are (2.82, 10.03,
3.38) µm, and for (Ra, Rz, Rq) Bottom, they are (1.92, 6.72, 2.31) µm.

Limitations and Future Prospects

The implications of the present study can be extended beyond nylon carbon fiber
composites, with principles applicable to diverse FDM materials. Although optimal pa-
rameter values may differ per material, the systematic approach to a parameter analysis
and optimization remains valid. However, an atomic force microscopy (AFM) and scan-
ning electron microscopy (SEM) analysis will provide better understanding of roughness
parameters that will be used in future studies. As additive manufacturing evolves, surface
quality’s importance for function and aesthetics persists. Our study offers a foundational
understanding, empowering practitioners to enhance surface quality across materials like
PLA, ABS, PETG, and more, fostering superior 3D printing outcomes.

Future research can further explore additional factors and techniques to enhance
surface quality in additive manufacturing processes.
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List of Abbreviations

AM Additive manufacturing
FDM Fused deposition modeling
Ra Average surface roughness
Rq Root mean square surface roughness
Rz Maximum height of the profile
DSD Definitive screening design
ANOVA Analysis of variance
ABS Acrylonitrile butadiene styrene
PLA Poly-lactic acid
PA Polyamide
PETG Polyethylene terephthalate glycol
PEEK Polyetheretherketone
CDF Composite desirability function
WCDF Weighted composite desirability function
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