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Abstract: Worldwide, the demand for natural and synthetic sweeteners in the food industry as an
alternative to refined sugar is increasing. This has prompted more research to be conducted to estimate
its safety and effects on health. The gut microbiome is critical in metabolizing selected sweeteners
which might affect overall health. Recently, more studies have evaluated the relationship between
sweeteners and the gut microbiome. This review summarizes the current knowledge regarding the
role played by the gut microbiome in metabolizing selected sweeteners. It also addresses the influence
of the five selected sweeteners and their metabolites on GI cancer-related pathways. Overall, the
observed positive effects of sweetener consumption on GI cancer pathways, such as apoptosis and
cell cycle arrest, require further investigation in order to understand the underlying mechanism.
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1. Introduction
1.1. Natural and Synthetic Sweeteners

Worldwide, the consumption of sugars of glucose or fructose syrup and sucrose has
dramatically increased [1,2]. This prompted scientific discussions about their diverse effects
on health conditions such as obesity, inflammatory responses, and metabolic conditions,
which has motivated people to use natural and zero-caloric sweeteners as alternatives [3].
Sweeteners substitute for sugar, as they mimic their sweet taste [4]. Non-nutritive sweeten-
ers (NNS) are often used to substitute refined sugar in the food industry and the human
diet since they provide the desired sweet taste while having a lower calorie content [5,6].
They can be naturally or synthetically produced, with the former having a higher quality,
sweetness intensity, and quantity [7]. The consumption of NNS is not limited to people
with metabolic conditions such as diabetes, but also to the general population, as they are
commonly found in various food products [8]. As a result, efforts are made to measure
and ensure the safety of those products. For example, the US Food and Drug Adminis-
tration (US FDA) follows a specific process to approve new sweeteners, which includes
determining the appropriate intake amounts, estimating toxicity levels, and evaluating
the cumulative effects of the sweeteners. However, the recent WHO statement that lists
aspartame as a potential carcinogen shows the necessity of investigating the mechanistic
effects of those sweeteners on health and how they are related to cancer [2,9]. Examples
of approved natural and synthetic sweeteners include steviol glycoside and saccharin,
respectively [10].

1.2. Metabolization of Sweeteners by Gut Microbiome

Recent findings have linked the gut microbiome to multiple health implications, from
diabetes to colorectal cancer [11]. The gastrointestinal tract is inhabited by prevalent micro-
bial species such as bacteria, viruses, and fungi [12]. Those communities play an important
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role in the host’s metabolism, growth, and immunity [13]. Diet is an important factor that
modulates the gut flora’s composition, metabolism, and function [14]. Global interest in
NNS products metabolized by the gut microbiome and their potential biological effects
has increased recently [15]. Biological effects such as the administration of acesulfame
K-depleted Akkermansia muciniphilia, which was associated with increased glucose intoler-
ance, have been observed [16]. Additionally, administering 0.3 mg/kg of neotame in mice
reduced the abundance of Firmicutes while enhancing the abundance of Bacteroidetes [17].
Collectively, these results suggest an effect of NNS on the gut microbiome and an impact on
the host’s physiological status. Possible mechanisms of interactions may be: (i) interactions
between NNS and taste receptors with high affinity to gut microbes; and (ii) NNS acting
directly on the gut barrier [18,19]. More efforts are required in order to support those
possible mechanistic interactions.

1.3. Sweeteners and Gastrointetional Cancers

Linking the use of sweeteners in the food industry as alternatives to sugar and the
safety concerns associated with their use is widely debated, with conflicting findings
regarding their role in disease etiology [20]. Various research studies have investigated the
potential risk of using sweeteners for gastrointestinal cancer [21]. A meta-analysis reviewed
the data obtained from eight studies on 1,043,496 individuals, among whom some were
diagnosed with different types of GI cancers (3271 pancreatic, 304 esophageal, 395 gastric,
3008 colorectal, and 598 oropharyngeal). The analysis results indicated a 19% reduction in
the risk of developing luminal GI cancer after consuming sweeteners [22]. Additionally, a
study of 1010 participants from Italy with different types of GI cancers reported an absence
of effects on GI cancer development when using commonly available sweeteners [23].

Moreover, in another meta-analysis study that evaluated 25 observational studies, the
reported results supported the lack of a link between overall cancer incidence and mortality
with the consumption of artificial sweeteners [24]. Despite that, recent findings have
reported an association between sweetener intake and the risk of cancer development. In a
large French cohort, the consumption of sweeteners, especially aspartame and acesulfame-
K, was associated with the risk of cancers according to the Cox proportional hazards models
which they followed [25]. Those controversial results indicate the urgent need for unified
efforts to standardize protocols, develop statistical methods, and reduce confounding
results and biases to advance the field further and re-evaluate food additives’ safety and
quality, as this issue greatly affects people’s life and health.

The literature discusses the role of the gut microbiome in metabolizing selected sweet-
eners and their influence on GI cancer development. Here, we evaluate and analyze
published studies that report the influence of bacterial species on both natural and artificial
sweeteners (steviol glycoside, glycyrrhizin, neohesperidine dihydrochalcone, saccharin,
and sucralose). Furthermore, we assess the impact of the selected sweeteners alone, or,
if supported by the literature, their metabolites, in cancer-related pathways. Finally, we
identify gaps in the current research.

2. Search Strategy and Selection Criteria

Medline, Scopus, and PubMed were searched for manuscripts published from 2000
to 2023 using the search terms “GI cancers”, “microbiota”, “sweeteners”, “microbiome
profile AND sweeteners”, “gut microbiota enzymes”, “Steviol glycoside AND GI cancers”,
“Glycyrrhizin AND GI cancers”, “Neohesperidine dihydrochalcone AND GI cancers”,
“Saccharin AND GI cancers”, and “Sucralose AND GI cancers”. The search yielded a total
of 400 articles. We selected 104 articles and analyzed them in detail for this review. Eligible
studies included in vivo, in vitro, and clinical trial publications addressing the metabolisms
of selected bacteria on sweeteners and their role in the development and complications of
gastrointestinal cancers. Sweeteners that did not address/report such metabolisms were
excluded. Also, the effects of sweeteners on other cancer types were excluded.
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3. Sweeteners and the Gut Microbiome

Throughout our research, the relationships between three natural sweeteners (steviol
glycoside, glycyrrhizin, and neohesperidine dihydrochalcone) and two synthetic sweet-
eners (saccharin and sucralose) and the gut microbiome have been discussed. Here, we
discuss the results and examine these relations in detail in order to provide insight into the
mechanisms and metabolization of these sweeteners.

3.1. Steviol Glycoside

Stevia rebaudiana is a shrub found mainly in South America, specifically in Brazil
and Paraguay [26]. It belongs to the family Asteraceae, and it is used as a natural and
non-caloric sweetener because of its high sweetness intensity, which is caused by steviol
glycosides [27]. Purified steviol glycoside extracts have been used in the food industry
as sweeteners in many regions [28]. The European Food Safety Authority (EFSA) thus
reported the acceptable daily intake of steviol glycosides to be 4 mg/kg/day [29,30]. The
leaves of Stevia rebaudiana contain several diterpene glycosides, such as rubusoside and
steviolbioside [31]. Multiple in vitro studies have supported the metabolization of stevia
extracts by the gut microbiome [32]. Bacteroides species in the gut play an important role in
metabolizing two of the main components of Stevia rebaudiana by hydrolyzing rebaudioside
A and stevioside to steviol in the gut [33]. This suggests that neither component is absorbed
in the upper gastrointestinal tract [34]. Using the portal vein, the absorbed steviol reaches
the liver for further metabolism to steviol glucuronide and is excreted in the urine [35].

3.2. Glycyrrhizin

One of the 300 active licorice compounds is glycyrrhizin, a triterpene saponin gly-
coside [36]. It is used as an herbal product in medicine due to its anticancer and anti-
inflammatory activities [37]. It has a high sweetness intensity (up to 200 times sweeter than
sucrose) [38]. Ingestion of less than 100 mg/day of glycyrrhizin is considered safe [39]. Due
to its poor oral bioavailability, glycyrrhizin is metabolized by the gut microbiome [40]. Both
Eubacterium and Bacteroides species are involved in the de-glycosylation of glycyrrhizin
to a major product, glycyrrhizic acid, and a minor product, 18β-glycyrrhetic acid 3-O-
monoglucuronide [41]. After that, both products reach the liver for further conjugation and
reduction [42]. Both biliary and urinary excretions occur to the major parts of the products,
respectively [43].

3.3. Neohesperidin Dihydrochalcone

Neohesperidin dihydrochalcone (NHDC) is a natural sweetener found mainly in
the skin of citrus fruits; it possesses high stability and solubility [44]. It is obtained
and processed from its parent flavanone, neohesperidin, and has a sweetness intensity
250–1800 times higher than sucrose [45]. Despite that, the usage of NHDC as a replacement
for sucrose is limited in the food industry due to its flavor formulation, texture, and size [46].
Although not widely known, the metabolism of NHDC by the gut microbiome has been
discussed in the literature [47]. The metabolism starts with NHDC being deglycosylated to
hesperidin dihydrochalcone 4′-β-glycoside, transforming into an aglycone. The final step
of NHDC metabolism is the hydrolysis of the aglycone to propionic acid and phlorogluci-
nol [48]. The products are then excreted either through urine or bile [49]. Figures 1 and 2
summarize and provide an overview of the three natural sweeteners and their metabolism
by the gut microbiome.

3.4. Saccharin

Saccharin (1,1-dioxo-1,2-benzothiazol-3-one), also known as E954, is a non-caloric
sweetener used widely in the food industry [50]. It is found either in an acid form or bound
to calcium or sodium (higher stability and solubility) [51]. Saccharin’s sweetness intensity
is 300 times higher than sucrose [52]. The FDA considers saccharin consumption to be
safe due to its inability to be metabolized by the body [53]. Once consumed, most of the
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ingested saccharin (85–95%) is absorbed and bound reversibly to plasma proteins when
excreted in the urine. The rest passes through the GI tract to be eliminated, unchanged,
in the feces [34]. Due to this, studies have investigated the influence of saccharin on gut
microbiome composition. The administration of 90 mg of saccharin in rats did not alter the
total number of anaerobic bacteria, but eliminated specific anaerobic groups in the cecal
contents [54].
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Additionally, rats receiving a 2.5% dose of saccharin inhibited the growth of three
Escherichia coli strains and three Lactobacillus species [55]. These studies may suggest
that even if the body does not metabolize the sweeteners, their consumption impacts the
gut microbiome’s composition and function, which might alter the host’s health status.
However, recent studies using advanced technologies are required in order to assess
saccharin’s safety and effectiveness and to address the controversial results in the literature.
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Figure 2. Overview illustration of natural sweetener consumption and metabolism. The figure
is divided into different sites of metabolism for each of the natural sweeteners. Created with
BioRender.com (accessed on 15 July 2023).

3.5. Sucralose

Sucralose, or E-955, is a low-caloric, non-nutritive synthetic sweetener and is very
similar in structure to sucrose [56]. However, sucralose is formed when the three hydroxyl
groups attached to the sucrose molecule are replaced by chlorine atoms [57]. It is 600 times
sweeter than sucrose [58]. Like saccharin, sucralose is not metabolized by the body;
however, unlike saccharin, most ingested sucralose passes through the GI tract to be
eliminated in the feces. The rest reaches the kidneys for urinary excretion [59]. The
administration of sucralose influences its abundance in the gut microbiome. The relative
abundance of Clostridium cluster XIVa was affected in mice given 15 mg of sucralose/kg [9].

Additionally, sucralose administration for six months influenced the abundance of
14 different taxonomic levels, as well as the regulation of amino acids and chronic inflamma-
tion, in C57BL/6 mice [60]. This shows the urgent need for further research to investigate
the observed effects on humans. Figures 3 and 4 summarize and provide an overview of
the two synthetic sweeteners and their metabolism by the gut microbiome.

BioRender.com
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4. Sweeteners’ Role in Gastrointestinal Cancers

The effect of natural and synthetic sweeteners on the development of organ-specific
cancer has been discussed for years [61]. With the continued rise in the consumption rate of
sweeteners worldwide, several reports have supported the positive influence of sweeteners
on the development and progression of GI cancer [62]. Here, we will discuss the effects of
the five sweeteners and, if available and supported by the literature, their metabolites on
the major pathways impaired in GI cancers (apoptosis, NF-KB, and cellular arrest).

4.1. Apoptosis

Apoptosis is programmed cell death characterized by morphological and biochemical
changes [63]. Its involvement in various processes, such as immune system development,
makes it an essential physiological process [64]. When unregulated, it plays a role in the de-
velopment of several diseases, such as autoimmune diseases, neurodegenerative disorders,
and cancers [65]. Sweeteners have been reported to influence the process of apoptosis in

BioRender.com
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cancers [66]. Steviol, a colonic metabolite, inhibits apoptosis in GI cancer cells as effectively
as 5-fluorouracil (100 ug/mL) through the mitochondrial apoptotic pathway [67]. Addition-
ally, in one study, steviol administration at a 1000 ug/mL concentration effectively reduced
cell viability and induced apoptosis in colon cancer cells [68,69]. The results of a study that
investigated the effect of 17 steviol derivatives on different cancer cell lines showed a potent
cytotoxic effect of those derivatives on the cell lines [70]. Glycyrrhizin is also reported
to possess apoptotic activities on GI cancers [71]. The administration of glycyrrhizin on
SW48 colorectal cancer cells induced apoptosis as the levels of regulator proteins such as
Bax expression increased and Bcl-2 levels decreased [72]. HT-29 colon cancer cells treated
with different concentrations of glycyrrhiza glabra L. reported the induction of apoptosis at
a concentration of 200 µg/mL [73,74]. Additionally, Wister rats administered 15 mg/kg
of glycyrrhizic acid were reported to induce apoptosis, suppress precancerous lesion de-
velopment, and reduce inflammation [75]. In a different study, the oral administration of
glycyrrhizic acid (15 mg/kg) in Wister rats once a week for 15 weeks induced apoptosis by
enhancing the expression of cleaved caspase 3 [76]. The induction of apoptosis through
pro-caspases 3, 8, and 9 was reported in gastric cells treated with glycyrrhizic acid [77].
The sweetener neohesperidin dihydrochalcone, administered to an APC min/+ transgenic
mouse model, inhibited colorectal tumorigenesis and induced apoptosis [78]. Phloroglu-
cinol (PG), a metabolite of NHDC, induced apoptosis in HT-29 cells via overexpressed
caspase-3 and caspase-8, modified Bcl-2 family proteins, and cytochrome c release [79]. In
another study, PG protected mice’s intestinal damage from ionizing radiation by increasing
apoptosis by affecting the p53, Bax, Bak, Bcl-2, and Bcl-XS/L proteins [80] The literature still
lacks the evidence to show the underlying mechanism of the observed effect of sweeteners
on GI cancers. Figure 5 summarizes the effect of sweeteners on the apoptotic pathway.

4.2. The Nuclear Factor-κB Pathway

The nuclear factor-κB (NF-κB) pathway regulates genes that regulate inflammatory
and immune responses [81]. In cancer, NF-κB promotes cellular proliferation and metas-
tasis and suppresses apoptosis [82]. Although not abundantly discussed in the literature,
multiple reports support the role of sweeteners in NF-κB pathway regulation [83]. Ste-
vioside administration to a colon carcinoma cell line (Caco-2) suppressed the expression
of inflammatory cytokines IL-6, TNF-a, and NF-κB [84]. Additionally, the administration
of glycyrrhizic acid inhibited NF-κB expression, which led to the deactivation of inflam-
matory mediators in colon cells [74,85]. In Wister rats, the administration of 15 mg/kg
of oral glycyrrhizic acid reduced the expression of NF-κB, nitric oxide synthase (iNOS),
and cyclooxygenase-2 (COX-2) [76]. Neohesperidin dihydrochalcone, along with the two
other sweeteners, influenced NF-κB expression. Oral administration of neohesperidin dihy-
drochalcone in mice for six days attenuated the expression of NF-κB [86]. Neohesperidin
dihydrochalcone inhibited the induced NF-κB expression in paraquat-induced acute liver
injury [87]. More efforts and standardized steps are required in order to conduct more
research in this field and to understand the underlying mechanism of this effect. Figure 6
summarizes the effects of sweeteners on NF-κB expression.

4.3. Cellular Cycle Arrest

The development and function of every tissue depend on the cellular decision to
transition from a proliferative to an arrested state [88]. Cancerous cells dysregulate cell
cycle arrest and continue to undergo uncontrolled cellular growth [89]. The effect of
sweeteners on cellular cycle arrest is scarcely reported in the literature. In a study that
investigated the effect of steviol on gastric (HGC-27) and colorectal (Caco-2) cancer cells,
it was reported that an increase in the expression of p53 and a decrease in the level of
cyclin D occurred. Additionally, the researcher reported that steviol treatment caused
G1 arrest in both cell lines [67,68]. Glycyrrhizic acid administration to different gastric
cancer cell lines (e.g., MGC-803, BGC-823, SGC-7901) induces cell cycle arrest through the
downregulation of G1 phase proteins such as cyclin D1, D2, D3, E1, and E2 [74,77]. In
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addition, 18β-glycyrrhetinic acid, another metabolite of glycyrrhizin, promoted gastric
cancer cell autophagy and induced cell cycle arrest in the G0/G1 phase in a transplanted
nude mouse model modulating the miR-328-3p/STAT3 signaling pathway [90]. Similar
results were also reported for other cancers, such as cervical cancer [91]. Additional
information regarding the observed effect was not reported for other sweeteners, which
shows that more collaborative efforts are needed in order to pursue more research in this
field. Figure 7 summarizes the effects of sweeteners on cell cycle arrest.
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4.4. Synthetic Sweeteners and GI Cancers

Due to the controversial results available in the literature regarding the effects of
saccharin and sucralose on GI cancer, we decided to discuss them in a separate paragraph.
Discussing those two sweeteners raises many questions about their associated risk with
gastrointestinal cancers. In an Italian cohort comprising 230 patients with histologically
confirmed gastric cancer, after correcting for confounding factors, the researchers reported
a lack of adverse effects of saccharin on the risk of developing neoplasms [23]. Additionally,
a review paper that discussed 22 cohorts and 46 case–control studies on the effects of
sweeteners on different cancers concluded that there was a lack of evidence, but there was a
link between saccharin, sucralose, and other sweeteners and cancer risks [92]. Additionally,
a study that used the intestinal epithelial cell line Caco-2 to investigate the effects of
commonly used sweeteners reported that the administration of saccharin induced apoptosis

BioRender.com
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at a lower concentration (100 uM), while at a higher concentration (1000 uM), it induced
cellular death. The same effect was not observed for sucralose [93]. However, other studies
reported negative effects of sucralose on colorectal cancer. A murine model administered
1.5 mg/mL of sucralose for six weeks reported a significant increase in the number and size
of colorectal tumors. Also, these researchers reported an effect on the gut microbiome and
inflammatory markers (TNFa, IL-1b, IL-6, IL-10, and TLR4/Myd88/NF-kB signaling) [94].
The list of studies discussing this effect is growing. However, more efforts from the research
community are needed in order to address those differences in a systemic and mechanistic
way, as well as to standardize the protocol to be followed and the appropriate dosage used,
as it directly affects people’s health through food intake. Figure 8 illustrates the effects
of synthetic sweeteners on GI cancers. Table 1 summarizes the available literature on the
observed effects of all the sweeteners discussed herein.
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Table 1. Summary of representative sweeteners/their metabolites and their underlying effects on cancer.

Sweetener Type Targeted Metabo-
lites/Proteins/Genes/Pathway

Targeted
Disease/Tissue Mechanism of Action Methods of Testing

Model Used
References

In Vivo In Vitro

St
ev

io
lg

ly
co

si
de

s

Apoptosis
Cellular proliferation

Gastric cancer
Colon cancer

- It inhibited mitochondrial apoptotic
pathway
- Activated p21 and p53
- It increased Bax/Bcl-2 ratio

MTT assay
Western blot

miRNA analysis
Flow cytometry

- HGC-27 cells
- Caco-2 cells
- HCT-8 cells
- HCT 116 cells
- MKN-45 cells
- MGC-803 cells

[67]

Cytotoxic
Apoptosis Stomach cancer - Induced apoptosis cell death

- Increased cytotoxicity

MTT assay
Apoptotic assays
Flow cytometry

- AZ521 cells [70]

Apoptosis Colon cancer - It decreased cell viability in colorectal
cancer cell line

MTT assay
Bicinchoninic acid assay - Wistar rats - Caco-2 cells [69]

N
eo

he
sp

er
id

in
di

hy
dr

oc
ha

lc
on

e

Apoptosis
Angiogenesis Colon cancer

- It induced apoptosis and blocked
angiogenesis
- It altered the gut microbiota

PCR
Western blot

Luciferase assay
Cell survival assay

TUNEL assay

- C57BL/6 J
- APCmin/+ mice

- HCT116 cells
- SW480 cells
- CT26 cells

[78]

G
ly

cy
rr

hi
zi

n

Apoptosis Colon cancer

- Inhibited cellular growth in a
dose-dependent manner
- It also induced apoptosis through
nuclear fragmentation and chromatin
condensation

Transmission electron
microscopy

Apoptotic assay
Cell invasion assay

Western blot

- SW48 cells [72]

Apoptosis
Inflammation Colon cancer

- Treatment with glycyrrhizic acid
suppressed the development of early
markers of colon cancer
- It also suppressed the development of
precancerous lesions
- Suppressed the immunostaining of
NF-Kb and p65

Immunohistochemical
staining
ELISA

Aberrant Crypt Foci
(ACF) assay

- Albino rats [75]

Inflammation Colon cancer

- It reduced the plasma level of IL-6 and
TNF-a
- It significantly reduced the expression
of 8-
NitroG, 8-OxodG, COX-2, and HMGB1

ELISA
Immunohistochemical

staining
- ICR mice [95]
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Table 1. Cont.

Sweetener Type Targeted Metabo-
lites/Proteins/Genes/Pathway

Targeted
Disease/Tissue Mechanism of Action Methods of Testing

Model Used
References

In Vivo In Vitro

Apoptosis
Inflammation Colon cancer

- Treatment with glycyrrhizic acid
reduced the expression of NF-kB and
COX-2
- It enhanced the expression of cleaved
caspase 3
- It also reduced the infiltration of mast
cells

ELISA
Immunohistochemical

staining
Mast cell staining

- Albino rats [76]

Apoptosis
Cellular proliferation Gastric cancer

- Treatment with glycyrrhizic acid
downregulated the level of G1
phase-related proteins in a dose- and
time-dependent manner
- It also upregulated the levels of Bax;
cleaved PARP; and pro-caspase-3, -8, -9

CCK-8 assay
Apoptotic assay

EdU assay
Cell cycle assay

Western blot

- MGC-803 cells
- BGC-823 cells
- SGC-7901 cells

[77]

Sa
cc

ha
ri

n

Apoptosis
Cell viability Intestinal epithelium

- At a lower concentration (up to 100
uM), it induced apoptosis, while at a
higher concentration (<=1000 uM), it
induced cell death
- Decreased cell viability and disrupted
the intestinal epithelial barrier through
binding to the sweet taste receptors

RT-PCR
Annexin V assay

siRNA and cDNA
Transfections

ROS assay
ELISA

- C57BL/6 mice - Caco-2 cells [93]

Su
cr

al
os

e

Inflammation Colitis-associated
colorectal cancer

- Significantly increased the number and
size of colorectal tumors
- Increased expression of TNFa and TLR4
- Increased the abundance of Firmicures,
Clostridium symbiosum, and
Peptostreptococcus anaerobius while
decreasing the abundance of
Solobacterium moorei and Bifidobacteria

Spectrophotometry
qRT-PCR

Western blot
ELISA

- C57BL/6 mice [94]



Nutrients 2023, 15, 3675 15 of 21

5. Discussion
5.1. Safety of Sweeteners and Challenges in the Field

Recently, the discussion about the safety of one of the commonly used sweeteners in
the food industry, “aspartame”, and its possible carcinogenic nature raised more questions
about the safety of other sweeteners. Here, and in most of the reported articles, it has been
shown that these natural and synthetic sweeteners lack genotoxicity and carcinogenicity
and are safe when consumed in moderation [96–99]. Throughout our research in the
literature, most of the utilized concentrations/dosages of the sweeteners did not show
adverse negative effects on the model which was used. However, some reports linked the
consumption of specific sweeteners to cancer development [94]. Those results show the
urgent need to address the field’s main issues. First, protocol standardization, starting from
the model used, mode of administration of the sweeteners, duration of the experiment,
bioinformatics tools to interpret the results, and estimation of safety measures, is critical to
ensure productivity and reproducibility. Second, “recommended dosage” determination,
while considering other factors such as geographical location and age, might help us to
understand those sweeteners’ consumption rates. Third, guidelines and regulatory process
evaluation are crucial to ensure manufacturing safety. Fourth, the possible synergistic
effects of sweeteners need further investigation, as these might occur when consuming
different products that contain different sweetener types and dosages.

Currently, people are more aware of their health in terms of food and always search
for “healthier” and low-caloric options as alternatives while maintaining a sweet taste. The
controversy regarding the safety of sweeteners raises another important question: what
would be the alternative to using sweeteners? Would we go back to refined sugar, or move
toward natural compounds such as flavonoids and phytochemicals? What are the safety
and taste estimates of the consumption of those alternatives compared to sweeteners? We
have reported the positive effects of flavonoids on GI cancers and the gut microbiome
for years. However, more efforts are required in order to evaluate whether they will be a
“better” alternative, considering their bioavailability [100–103]. Additionally, the effect of
this “better” alternative on the gut microbiome needs more attention.

Although we encourage more research to be conducted, there are limitations associated
with this field. First, the misreporting of participants in terms of the amount/type/quantity
of sweeteners consumed might affect the interpretation of the results. Second, selection bias
involved in the conducted experiment/tested population would affect the generalizability
of the results to the general population. Third, residual confounding shows the urgent need
to develop bioinformatics tools that correct for those factors. Fourth, causality concerns
are also prominent, along with how to correctly evaluate causality and differentiate it from
correlation. Other limitations may include the experimental and interpretational challenges
associated with linking specific bacterial species to the metabolism of sweeteners. Address-
ing those limitations in future studies could help us to improve the research outcomes.

5.2. Sweeteners’ Role in Cancer Therapy Development

Based on the results available so far, the consumption of sweeteners in moderation
is considered an alternative to consuming refined sugar. Also, using sweeteners is safe
and positively influences the development and progression of cancer. What about using
these sweeteners to design a therapeutic agent for cancer? A study published in 2014 used
isosteviol, a diterpenoid product of the acidic hydrolysis of steviol glycoside, as a potential
anti-tumor agent [104]. They synthesized novel isosteviol triazole conjugates using the
chemistry method “click”, and they tested the effect of the conjugates on different cancer
cell lines such as colorectal cancer, breast cancer, and prostate cancer. They reported that
the constructed conjugates showed anti-proliferative activities against cancer cell lines.
Although this seems promising, more efforts are required in order to evaluate this method
and ensure the stability and safety of using such an agent.
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5.3. What about Aspartame?

More controversial discussions emerged when the World Health Organization (WHO)
announced aspartame as a possible carcinogen. Aspartame is a sweetener used as a re-
placement for sucrose due to its high sweetness intensity [105]. The effect of aspartame
on the gut microbiome has been reported in limited studies. In mice (C57Bl/6) treated
with different non-caloric artificial sweeteners, including aspartame, some effect on the
gut microbiome abundance and metabolic pathways was reported [16]. Additionally, the
fasting glucose concentrations and the abundances of Enterobacteriaceae and Clostridium
leptum were increased in diet-induced obesity models treated with aspartame for eight
weeks [106]. With gastrointestinal cancers being the focus of this review, using aspartame
(15 and 30 mM) for HT-29 human colorectal carcinoma proved to have a pro-angiogenic
effect [107]. However, consuming artificial sweeteners, including aspartame, was not asso-
ciated with colorectal or stomach cancers [108]. These data show the urgent need to address
those controversial results, putting into perspective the model and the concentration of
aspartame used.

6. Conclusions

Sweeteners are intense substances used in the food industry as alternatives to table
sugar. Debates about the safety and the effect of using those sweeteners on the gut mi-
crobiome and the overall health status have gained attention recently. Throughout our
study, we reported the relationships between three natural sweeteners (steviol glycoside,
glycyrrhizin, neohesperidine dihydrochalcone) and two synthetic sweeteners (saccharin
and sucralose) and the gut microbiome. Although relevant to the recent WHO statement,
we did not include a detailed analysis of “aspartame” in our analysis, as, to our knowledge,
there are limited data on the potential influences of aspartame on the human gut micro-
biome. We also discussed the effect of either the five sweeteners alone or, if supported
by the literature, their metabolites in cancer-related pathways such as apoptosis and cell
cycle arrest.

There are differences between countries regarding the various NNS types that are
considered safe for human consumption; however, on the other hand, there is no proven
linkage to cancer. In this review, we also addressed some of the challenges associated
with the field, as well as the efforts required to improve such aspects, such as protocol
standardization, systemic evaluation, and guideline regulations. Generally, the gut micro-
biome’s involvement in sweetener metabolism might be an interesting and promising field
for futuristic cancer treatments, primarily when combined with the currently available
therapeutics.

Author Contributions: Conceptualization, R.K.A.-I. and D.B.; literature review and resources, R.K.A.-
I.; writing—original draft preparation, R.K.A.-I.; writing—review and editing, R.K.A.-I., P.K. and
D.B.; figure preparation and editing, R.K.A.-I. and D.B.; visualization, R.K.A.-I. and D.B.; supervision,
D.B.; project administration, D.B.; funding acquisition, D.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by a National Priorities Research Program grant (NPRP 14S-0311-
210033; awarded to Dietrich Büsselberg, January 2023-Current) from the Qatar National Research
Fund (QNRF, a member of Qatar Foundation). The statements made herein are solely the responsibil-
ity of the authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the article.



Nutrients 2023, 15, 3675 17 of 21

Abbreviations

NNS non-nutritive sweeteners
GI gastrointestinal
NHDC neohesperidin dihydrochalcone
IL-6 interleukin 6
NF-B nuclear factor kappa-light-chain-enhancer of activated B cells
Bcl-2 B-cell lymphoma 2
TNF tumor necrosis factor
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