
Citation: Li, S.; Liu, M.; Cao, S.;

Liu, B.; Li, D.; Wang, Z.; Sun, H.;

Cui, Y.; Shi, Y. The Mechanism of the

Gut-Brain Axis in Regulating Food

Intake. Nutrients 2023, 15, 3728.

https://doi.org/10.3390/nu15173728

Academic Editor: Young-Eun Cho

Received: 24 July 2023

Revised: 16 August 2023

Accepted: 23 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nutrients

Review

The Mechanism of the Gut-Brain Axis in Regulating Food Intake
Shouren Li 1, Mengqi Liu 1, Shixi Cao 1, Boshuai Liu 1,2,3, Defeng Li 1,2,3, Zhichang Wang 1,2,3, Hao Sun 1,2,3,
Yalei Cui 1,2,3 and Yinghua Shi 1,2,3,*

1 College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China;
lsraaa577@163.com (S.L.); 2019110376@sdau.edu.cn (M.L.)

2 Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
3 Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
* Correspondence: annysyh@henau.edu.cn

Abstract: With the increasing prevalence of energy metabolism disorders such as diabetes, cardiovas-
cular disease, obesity, and anorexia, the regulation of feeding has become the focus of global attention.
The gastrointestinal tract is not only the site of food digestion and absorption but also contains a
variety of appetite-regulating signals such as gut-brain peptides, short-chain fatty acids (SCFAs),
bile acids (BAs), bacterial proteins, and cellular components produced by gut microbes. While the
central nervous system (CNS), as the core of appetite regulation, can receive and integrate these
appetite signals and send instructions to downstream effector organs to promote or inhibit the body’s
feeding behaviour. This review will focus on the gut-brain axis mechanism of feeding behaviour,
discussing how the peripheral appetite signal is sensed by the CNS via the gut-brain axis and the role
of the central “first order neural nuclei” in the process of appetite regulation. Here, elucidation of the
gut-brain axis mechanism of feeding regulation may provide new strategies for future production
practises and the treatment of diseases such as anorexia and obesity.

Keywords: gut-brain axis; food intake regulation; gut-brain peptides; gut microbes; bacterial
metabolites; appetite

1. Introduction

As one of the basic physiological activities of humans, feeding is essential for maintain-
ing the body’s vital activities and energy homeostasis. If the organism’s long-term energy
intake is less than its energy expenditure, a number of dysfunctions can be triggered, which
in severe cases can be life-threatening. The regulation of body feeding is influenced by
a variety of factors, including (i) Food quality, freshness, and composition, which affect
intake; even the simplest salt requirement can affect feeding by influencing food salinity.
(ii) External environmental pressures: approximately 35 to 60 percent of people reported
that stress increased their food intake, while 25 to 40 percent reported that stress decreased
their food intake, depending on the type of stress they were under [1]. (iii) The physiologi-
cal state of the organism, such as the late gestation period of the mother, where the uterine
contents compress the gastrointestinal tract, causing contraction of the gastrointestinal tract,
resulting in a decrease in feeding and a significant increase in food intake after delivery.
Previous studies may have focused more on the effects of external factors on foraging and
lacked an in-depth investigation of the mechanisms.

For the past few years, the gut-brain axis involved in food intake regulation has
increasingly become a leading research issue, and great progress has been made at the
genetic, metabolic, and neural pathway levels involved in the regulation of food intake. The
intestinal tract is able to fully perceive the nutritional status of the organism after ingestion
and transmit it via the gut-brain axis to the brain, which in turn regulates food intake
and maintains the body’s energy metabolism [2]. As key appetite signalling molecules,
gut-brain peptides, gut microbes, and their metabolites play an important role in this
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process [3]. This review explains the role of “first-order neural nuclei” in the brain’s feeding
regulatory circuit and details how gut-brain peptides, gut microbes, and their metabolites
control the organism’s feeding behaviour.

Compared to previous articles that focused solely on the effects of gut-brain peptides
on food intake [4], this article provides a more comprehensive review of the pathways
involved in the regulation of feeding behaviour through microbe-gut-brain interactions.
We believe that this analysis will lay the foundation not only for future research aimed at
exploring new mechanisms of appetite regulation by the gut-brain axis but also for future
livestock production practices.

2. The Role of “First-Order Neural Nuclei” in Food Intake Regulation

The gut-brain axis is a bidirectional communication system formed by the CNS and
the gastrointestinal tract, involving humoral pathways such as gut-brain peptides, gut
microbial metabolites, and cytokines, and neural pathways such as the vagus nerve, spinal
nerve, and autonomic nervous system, which can condition many physiological functions
such as behavioural regulation and immune response [5]. As the starting point of the
brain’s feeding regulation circuit, the “first-order neural nuclei“ play an indispensable role
in energy homeostasis mediated by the gut-brain axis.

2.1. Arcuate Nucleus (ARC)

The ARC of the hypothalamus, as one of the most important nuclei for sensing the
energy levels of the organism, contains two peptide-producing neurons responsible for
appetite regulation: The neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons and
the pro-opiomelanocortin (POMC) neurons [6]. Because of the abundant blood supply and
the weak blood-brain barrier in the third ventricle, NPY/AgRP neurons and POMC neurons
can directly sense a variety of signalling molecules in body fluids involved in appetite
regulation; hence, the ARC is often considered the ‘first-order neural nuclei’ in humoral
regulatory pathways [7].The ARC integrates appetite-regulating signalling molecules from
the circulation and then sends hunger or satiety signals via neural projections to other
nuclei within the CNS, which together form a complex feeding regulatory circuit that in
turn stimulates or inhibits feeding behaviour in organisms [8].

In addition to producing AgRP, 90% of AgRP neurons co-express the neuropeptide
NPY, which is why they are also called NPY/AgRP neurons. Activation of AgRP neurons
promotes feeding behaviour even under conditions of appetite suppression and decreases
neural activity in the anorexigenic Parabrachial nucleus (PBN) [9]. Dopamine receptor
D1 (Drd1) is also expressed on AgRP neurons, and upregulation of Drd1 activity induces
the ingestion of high-fat and high-sugar foods [10]. Dynamin-related protein1 (Drpl), a
key protein, mediates mitochondrial fission and fatty acid oxidation in AgRP neurons as
an important mechanism for AgRP neurons to promote food intake [11]. Killing AgRP
neurons in adult mice using diphtheria toxin by Luquet et al. resulted in decreased appetite,
whereas knocking out these neurons in young mice did not affect feeding [12], elaborating
that a compensatory mechanism is formed in young mice to maintain food intake.

POMC proteins act as precursors for a wide range of functional peptides [13], which are
converted to α-Melanocyte-stimulating hormone (α-MSH), β-MSH, γ-MSH, β-endorphin
and Adrenocorticotropic hormone (ACTH) by the cleavage of Prohormone convertase
2 (PC2) and 1/3 (PC1/3) [14]. Among these, MSH acts as an important activating ligand for
melanocortin receptor-4 (MC4R) and MC3R, and activated MC3/4R can reduce appetite
and increase energy expenditure [15]. In contrast, during energy deprivation, AgRP
peptides secreted by AgRP neurons act as inverse agonists of MC4R, reducing MC4R
activity and promoting feeding behaviour [16]. It is widely accepted in the field that POMC
neurons reduce appetite and induce satiety; however, it is noteworthy that cannabinoid-
activated POMC neurons promote ingestion by inducing the release of appetite-stimulating
β-endorphin rather than α-MSH [17].
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POMC neurons, NPY/AgRP neurons, and downstream neurons expressing MC3/4R
together form the well-known central melanocortin system, which plays an important role
in the maintenance of organismal energy homeostasis [16] (Figure 1).

Nutrients 2023, 15, x FOR PEER REVIEW 3 of 20 
 

 

activity and promoting feeding behaviour [16]. It is widely accepted in the field that 
POMC neurons reduce appetite and induce satiety; however, it is noteworthy that canna-
binoid-activated POMC neurons promote ingestion by inducing the release of appetite-
stimulating β-endorphin rather than α-MSH [17]. 

POMC neurons, NPY/AgRP neurons, and downstream neurons expressing MC3/4R 
together form the well-known central melanocortin system, which plays an important role 
in the maintenance of organismal energy homeostasis [16] (Figure 1). 

 
Figure 1. Central melanocortin system. AgRP, agouti-related peptide; NPY, neuropeptide Y; 
MC3/4R, melanocortin receptor-3/4; POMC, pro-opiomelanocortin. 

2.2. Nucleus Tractus Solitarii (NTS) 
The vagus nerve is an important link between the peripheral organs and the brain-

stem NTS, connecting the gut and other organs at one end, sensing the energy state of the 
organism, and the NTS at the other end, integrating nutritional signals from the gastroin-
testinal tract and thus regulating feeding behaviour and energy metabolism [18]. The gas-
trointestinal system releases nutritional signals such as glucagon-like peptide-1 (GLP-1), 
Ghrelin, and cholecystokinin (CCK), depending on the nutritional status of the body, 
while the vagal afferent nerve terminals express GLP-1 receptors, Ghrelin receptors, and 
CCK receptors, and the appropriate nutrient signals bind to these receptors, which are 
then transmitted to the brain via the vagus nerve to control appetite [19], so the NTS is 
often referred to as the “first-order nuclei” of the vagal afferent nerve to the CNS. Due to 
research innovations, researchers discovered neuropod cells in the intestinal wall, which 
form synaptic connections with the vagus nerve and transfer with the help of glutamate 
as a neurotransmitter, allowing the brain to respond more quickly and accurately to in-
testinal signals [20,21]. In addition to vagal connections, the NTS also directly senses nu-
trient molecules in the humoral circulation as well as neural signals projected from the 
forebrain, which integrate multiple energy state signals and transfer them to other nuclei 
to jointly control energy metabolism [22]. Upregulation of calcitonin receptor neuron ac-
tivity in the NTS was found to induce non-aversive feeding inhibition [23]; stimulation of 
NTS POMC neurons also rapidly enhanced organ satiety [24]; chemical activation of NTS 
A2 neurons via projections to the paraventricular nucleus of the hypothalamus (PVN); 
however, not the bed nucleus of the stria terminalis (BNST), reduced food intake [25]. 
Overall, it is generally accepted that the vagal-brain neural circuit mediates postprandial 
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2.2. Nucleus Tractus Solitarii (NTS)

The vagus nerve is an important link between the peripheral organs and the brainstem
NTS, connecting the gut and other organs at one end, sensing the energy state of the organ-
ism, and the NTS at the other end, integrating nutritional signals from the gastrointestinal
tract and thus regulating feeding behaviour and energy metabolism [18]. The gastrointesti-
nal system releases nutritional signals such as glucagon-like peptide-1 (GLP-1), Ghrelin,
and cholecystokinin (CCK), depending on the nutritional status of the body, while the vagal
afferent nerve terminals express GLP-1 receptors, Ghrelin receptors, and CCK receptors,
and the appropriate nutrient signals bind to these receptors, which are then transmitted
to the brain via the vagus nerve to control appetite [19], so the NTS is often referred to as
the “first-order nuclei” of the vagal afferent nerve to the CNS. Due to research innovations,
researchers discovered neuropod cells in the intestinal wall, which form synaptic connec-
tions with the vagus nerve and transfer with the help of glutamate as a neurotransmitter,
allowing the brain to respond more quickly and accurately to intestinal signals [20,21].
In addition to vagal connections, the NTS also directly senses nutrient molecules in the
humoral circulation as well as neural signals projected from the forebrain, which integrate
multiple energy state signals and transfer them to other nuclei to jointly control energy
metabolism [22]. Upregulation of calcitonin receptor neuron activity in the NTS was found
to induce non-aversive feeding inhibition [23]; stimulation of NTS POMC neurons also
rapidly enhanced organ satiety [24]; chemical activation of NTS A2 neurons via projections
to the paraventricular nucleus of the hypothalamus (PVN); however, not the bed nucleus of
the stria terminalis (BNST), reduced food intake [25]. Overall, it is generally accepted that
the vagal-brain neural circuit mediates postprandial satiety signals, which cause feeding
behaviour to cease [26]. However, Chen et al. recently found that upregulation of the
activity of neurons co-expressing NPY and catecholamines in the NTS occurs in response
to hunger signals that elicit food intake [27].

In summary, the ARC and NTS, the two “first-order neural nuclei” that are the starting
point of the appetite control loop in the brain, can respond to satiety/hunger signals from
the gastrointestinal tract to regulate the body’s food intake and energy balance (Figure 2).
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3. The Effect of Typical Gut-Brain Peptides on Food Intake Regulation

In the gut-brain axis, the gastrointestinal tract plays an essential role, directly con-
tacting and digesting food, sensing changes in the body’s nutritional needs, and releasing
gut-brain peptides, a signalling molecule that is transferred into the circulation to ma-
nipulate the activity of the associated appetite neurons, thereby maintaining the energy
homeostasis of the organism (Figure 3).
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3.1. Orexin

Orexin A (OXA) and OXB, a pro-feeding gut-brain peptide, are formed by enzymatic
cleavage of the precursor molecule prepro-orexin (PPO) and secreted mainly from the
lateral hypothalamic area (LHA) [28]. Molecular and immunohistochemical techniques
have demonstrated that the orexin receptor (OXR) is widely distributed throughout the
brain, with the most abundant expression in the hypothalamus [29]. OXR is a member of
the G protein-coupled receptor (GPR) family and has two receptor subtypes, OX1R and
OX2R. OX1R has a higher affinity for OXA, while OX2R has a similar affinity for both [28].
OXR binds to its corresponding ligand and initiates intracellular signalling pathways that
regulate feeding, neuroendocrine, and sleep/wake behaviour in mammals [30]. Experi-
ments have shown that ventricular injections of both OXA and OXB stimulate food intake;
however, OXA has a significantly greater feeding effect than OXB [31], a process that is
blocked by OXR antagonists, inducing satiety and reducing body weight [32]. Microinjec-
tion of exogenous OXA into the Central amygdala (Cea) increases the intake of high-fat
foods without affecting the normal food intake; however, this effect is partially blocked by
Drd1 antagonists [33], suggesting that OXA (Cea) is also involved in the composition of
the hedonic feeding loop. Endogenous androgens, possibly testosterone, reduce glucose-
deprivation-induced feeding behaviour in animals by down-regulating the activity of OXA
neurons [34]. The researchers found that orexin-induced feeding behaviour is mainly
mediated by the NPY system in the ARC and that the use of NPY receptor antagonists
to some degree reversed the feeding-promoting effects of Orexin [29]. Furthermore, a
study by Morello et al. showed that there is a significant negative correlation between
OXA and α-MSH in obese mice due to OXA binding to the OX1R on POMC neurons
and inhibiting POMC gene transcription through a series of signalling events, which in
turn reduces α-MSH production [35]. The central function of Orexin has been extensively
studied; however, its role in peripheral tissues such as the gut, fat, and liver are becoming
a source of discoveries and new research. In the future, a deeper understanding of the
mechanism of action of orexin and its downstream effects will bring different insights into
improving the health and nutrition of the organism.

3.2. Ghrelin

Ghrelin, also known as growth hormone secretagogue peptide, is produced by X/A-
type (rodents) and P/D1-type (humans) digestive tract mucosal cells [36] and plays a wide
range of roles in food intake control, gastrointestinal inflammation, and cardiovascular reg-
ulation [37]. The Ghrelin gene encodes for the production of Ghrelin precursor proteinogen
(Preproghrelin), consisting of 117 amino acids, and this peptide produces different sub-
products in response to a series of enzymes, of which acylated Ghrelin (Acyl-ghrelin, AG)
and deacylated Ghrelin (Des- acyl-ghrelin, DAG) are the most abundant, both consisting of
28 amino acids [38]. Ghrelin’s N-terminal serine-3 (Ser-3) is acylated with n-octanoic acid
under the mediation of Ghrelin O-acyltransferase (GOAT), a modification that is essential
for Ghrelin to recognise and activate relevant receptors [39]. The Ghrelin receptor (Growth
hormone secretagogue receptor, GHSR), a member of the GPR family, can heterodimerize
with other weight-regulating GPRs such as MC3R, Drd1, and OX1R, which interact to
jointly regulate the energy homeostasis of the organism [40].

Under normal physiological conditions, ghrelin levels in the body increase gradually
during fasting, peaking before feeding and decreasing rapidly after feeding, and there is
considerable evidence that this change is closely related to circulating nutrients [41], such as
glucose, amino acids, fatty acids, and trace elements. Studies have shown that Ghrelin has
the ability to promote food intake, increase body weight, and accelerate energy expenditure
in animals. Mice injected subcutaneously with the GHSR agonist JMV 1843 for 10 days
showed a significant increase in food intake and a significant increase in body weight
compared to mice injected with saline [42]. Feeding tryptophan to weanling pigs resulted
in increased plasma Ghrelin levels as well as significantly enhanced feeding activity at 2 h,
8 h, and 24 h [43]. It was found that Ghrelin’s appetite-stimulating mechanism is achieved
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mainly through two feeding regulatory pathways: humoral and neural [7]. Secreted ghrelin
reaches the ARC via the humoral circulation and activates the GHSR on NPY/AgRP
neurons, significantly increasing the activity of these neurons and inhibiting the activity
of anorexigenic neurons, thereby increasing food intake and body weight [44]. Notably,
however, GHSR was not expressed on POMC neurons, suggesting that inhibition of POMC
neurons is achieved indirectly via the inhibitory neurotransmitter γ-aminobutyric acid
(GABA) released by NPY/AgRP neurons [45]. Ghrelin also binds to the GHSR on vagal
afferent nerves, transmitting hunger signals to brain regions involved in energy regulation
and stimulating feeding behaviour in animals [7]. In addition, Bruschetta et al. reported
that Ghrelin reduces hypothalamic α-MSH levels by stimulating AgRP neurons to secrete
prolyl carboxypeptidase (PCRP), which in turn produces a stronger appetitive drive [46].

3.3. CCK

CCK is mainly secreted by type I cells of the small intestinal mucosa in amounts pro-
portional to dietary protein and lipid levels and is widely distributed in the gastrointestinal
tract and the central and peripheral nervous systems. Researches has shown that CCK acts
as a satiety signal and can perform a variety of biological functions, including stimulating
pancreatic secretion, contracting the gallbladder, and delaying gastric emptying [47]. CCK
exists in a variety of active molecules due to differences in translation and processing, with
CCK-58, CCK-8, and CCK-33 being the major molecular forms [48]. The presence of two
CCK receptor subtypes, the CCK-1 receptor (CCK-1R) and the CCK-2R, can be observed in
the organism. In rats, CCK-1R is distributed in the pancreas, gallbladder, vagal afferent
nerve, and certain areas of the brain and is mainly involved in the regulation of feeding;
CCK-2R is expressed in the gastric mucosa, CNS, and vagus nerve [49]. In a study by
L. Wang et al., dietary soy protein may trigger the secretion of CCK through activation of
the calcium-sensing receptor (CaSR) and intracellular Ca2+/TRPM5 pathway, resulting in a
decrease in appetite [50]. A more rapid release of CCK was observed when spinach extract
was given orally to rats, which in turn induced an earlier sensation of satiety, an effect that
may arise from the higher content of flavonoids in spinach [51]. As well, intraperitoneal
injection of CCK in blind cavefish, Astyanax fasciatus mexicanus, significantly reduced feed
intake compared to the saline-injected group [52].

In previous reports, peripheral CCK-mediated decreases in feeding activity were
mainly mediated via the vagal pathway [53]. Decreasing vagal sensitivity to CCK in
rats can cause dysregulation of food intake [54]. One hour after peripheral injection of
CCK-8 in goldfish, the researchers found significantly higher levels of POMC mRNA in
brain tissue, indicating that peripheral CCK signalling mediates appetite loss via vagal
afferent neurotransmission to the hindbrain and subsequently through the POMC signalling
pathway [55]. Fan et al. also demonstrated that POMC neurons are also expressed in the
caudal part of the NTS and can be activated by electrical or CCK-induced stimulation of the
vagal afferent nerve [56]. In addition, optogenetic activation of CCK-expressing neurons
in the NTS, which send axonal projections to the PVN, induces satiety and reduces body
weight in mice [57]. In short, CCK can be used as a general gastrointestinal hormone to
regulate gastrointestinal motility, and it can also act as a neurotransmitter in the CNS. At
present, there are many studies on the mechanism of CCK in regulating animal feeding
but fewer reports on the application of CCK in production practice, so it is undoubtedly of
great practical importance to intensify research in this area.

3.4. GLP-1

GLP-1, a product encoded by the proglucagon gene, is mainly synthesised and secreted
by distal L-cells of the small intestine. Research has reported that GLP-1 is also produced
in the brain by preproglucagon (PPG) neurons in the NTS and that this region serves as the
major source of central endogenous GLP-1 [58]. In mouse models, GLP-1 receptor (GLP-1R)
expression is observed in both the peripheral (pancreas, gastrointestinal tract, kidney, etc.)
and CNS (hypothalamus, hippocampus, brainstem, etc.) [59]. It has been reported that
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active GLP-1 secreted from the small intestine crosses the blood-brain barrier but is rapidly
degraded to inactive fragments in the circulation [60], demonstrating that only a minority
of peripherally active GLP-1 reaches the CNS. The researchers then measured GLP-1 levels
in brain tissue and found that GLP-1 levels in the brain were many times higher than in
the circulation [58]. These examples all support the view that centrally active GLP-1 is
predominantly derived from NTS PPG neurons and not from the peripheral circulation.

Intracerebroventricular injection of Exendin-4 (Ex-4), a GLP-1R-specific agonist, signif-
icantly reduced food intake and decreased body weight as well as hypothalamic and gastric
ghrelin levels in rats [61], consistent with Hong et al., finding that Ex-4 inhibits Ghrelin
secretion via the Mammalian target of Rapamycin (mTOR) signaling pathway [62]. GLP-1
analogues were found to increase POMC neurons’ activity in a time-dependent manner
after intraperitoneal and subcutaneous injections in mice [63]. Moreover, NTS PPG neurons
can send dense projections to multiple regions of the brain, e.g., dense mapping to the
ARC region increases the frequency of action potential discharges of POMC neurons [64];
reverse tracing and immunohistochemical techniques have shown that inputs from NTS
PPG neurons to the PVN mediate the generation of satiety in the organism [65]; and that
central GLP-1 reduces the excitability of dopamine neurons in the ventral tegmental area
(VTA) of the midbrain and decreases the intake of high-fat foods by inhibiting the hedonic
pathway [66]. In conclusion, GLP-1R-expressing neuronal nuclei in the brain respond to
both NTS PPG neurons and GLP-1 signals from the gastrointestinal tract to induce a feeling
of satiety in the body.

3.5. Peptide YY (PYY)

PYY is an anorexigenic brain-gut peptide that is released in response to food intake,
primarily by L-cells in the small intestine, and is distributed in sequentially increasing
concentrations from the foregut to the hindgut [67]. Keire et al. found that PYY1–36, as the
major form secreted from the distal small intestine of rats, is enzymatically converted in the
circulation by dipeptidyl peptidase-4 (DPP4) to the more active molecular form PYY3–36 [68],
which induces an enhanced feeling of satiety after a meal. However, when the C-terminus
of PYY3–36 is removed, PYY-induced anorexia also disappears [69], demonstrating that the
integrity of the C-terminus may be essential for PYY to maintain its biological activity. Five
GPR isoforms of PPY have been identified, of which the Y2 receptor (Y2-R) has a higher
affinity for PYY3–36 [70]. Adrian et al. observed low basal levels of PYY in the circulation;
however, with the onset of feeding, its secretion is consistent with the nutrients in the diet
and remains high for several hours after meal times [71].

Trials have revealed that oral administration of L-arginine upregulates the concentra-
tion of PYY in the postprandial circulation and reduces appetite as well as lipid intake [72].
Administration of PYY3–36 to mice significantly diminished food consumption, and the
effect of injection at night is more obvious than during the day [73]. Co-administration
of PYY3–36 with Ex-4 subcutaneously resulted in a significant increase in the number of
c-fos-positive neurons in the brain compared to when the drugs were administered sepa-
rately or alone [74], implicating that PYY and GLP-1 may modulate food intake in some
synergistic manner [75]. Immunohistochemistry and in situ hybridization have revealed
that hypothalamic Y2-R mRNA is abundant in NPY-expressing neurons [76], which can be
activated by NNC0165-1273 (an analogue of PYY3–36), inducing a decrease in NPY/AgRP
neurons activity and causing organismic satiety [77], an effect that is resisted when Y2-R
is knocked out [78]. PYY3–36 also upregulates POMC neuronal activity by decreasing the
activity level of NPY nerve terminals [79]. In addition, the vagus nerve partially mediates
the satiety signalling of PYY, and PYY3–36 induces reduced appetite in rats by stimulating
Y2-R on the vagal afferent nerve [80], and the anorexigenic effect of PYY is subsequently
attenuated when the bilateral subphrenic vagus nerve is ablated [81].
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3.6. Leptin

Leptin is an anorexigenic gut-brain peptide encoded by the ob gene and secreted mainly
in white adipose tissue. The diverse distribution of the leptin receptor (LepR) allows leptin
to exert pleiotropic effects, including regulation of food intake, pro-inflammatory immune
response, cognition, reproduction, and many other functions [82]. LepRb, a subtype of the
receptor, is abundantly expressed in brain regions associated with energy regulation [83]
and causes a down-regulation of appetite in the organism. Evidence shows that POMC
neurons and NPY/AgRP neurons in the ARC are one of the main targets of Leptin in the
brain and that Leptin reduces food intake and increases the body’s energy expenditure by
depolarising POMC neurons and hyperpolarising NPY/AgRP neurons [84]. Researchers
have further investigated the signalling mechanism of Leptin and found that when Leptin
binds to its corresponding receptor, it sequentially phosphorylates and activates Janus-
activated kinase 2 (JAK2) and Signal transducer and activator of transcription 3 (STAT3),
then pSTAT3 dissociates from LepR and enters the nucleus to bind to POMC and AgRP
genes, promoting transcription of POMC mRNA and reducing levels of AgRP mRNA [85].
In addition, the LepRs are also expressed on the vagus nerve, and when these receptors are
knocked out, increased food intake and weight are observed in animals [86].

Weight gain due to Leptin deficiency can be treated by exogenous injections of Leptin.
However, in many people with obesity, Leptin levels are abnormally high compared to nor-
mal levels, and this has been attributed to the development of “leptin resistance” [87], i.e.,
impairment of the Leptin signalling pathway [88]. Moreover, Leptin is potentially associ-
ated with gastrointestinal hormones such as Grehlin, CCK, and GLP-1, which collectively
exhibit synergistic or opposing appetite-regulating effects [89]; however, the complex
feeding mechanisms involved need to be further investigated.

4. The Influence of Gut Microbes and Their Metabolites in Food Intake Regulation

As the largest and most complex micro-ecosystem in the human body, gut microbes
play a variety of important roles in the host. There is increasing evidence that gut microbes
can communicate with the brain and play a key function in regulating the host’s feeding
behaviour and energy homeostasis [90], with functional metabolites such as Indole, SCFAs,
and BAs, as well as cellular components and bacterial proteins, serving as intermediate
messengers to mediate the communication between the two (Figure 4).
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caseinolytic peptidase B; FGF15, fibroblast growth factors 15; FXR, farnesoid X receptor; FFAR2/3,
free fatty acid receptor 2/3; GLP-1, glucagon-like peptide-1; LPS, lipopolysaccharide; MDP, muramyl
dipeptide; NOD2, nucleotide-binding oligomerization domain containing 2; NTS, nucleus tractus
solitarii; PYY, peptide YY; SCFAs, short-chain fattyacids; TGR5, takeda G-protein-coupled receptors 5;
TLR, Toll-like receptor; Trp, tryptophan; 5-HT, 5-hydroxy tryptamine; 5-HPT, 5-hydroxytryptophan;
5-HTR, 5-HT receptor.

4.1. SCFAs

Researchers have found that adding dietary fibre to meals could suppress appetite
and improve body weight [91,92], and these changes were subsequently confirmed to be
associated with SCFAs, a fermentation product of the colon [93]. In the study by Brown et al.,
although all three major SCFAs (acetic, propionic, and butyric) activated the free fatty acid
receptor 2 (FFAR2)/GPR43 and FFAR3/GPR41, FFAR2 had a higher affinity for acetic
acid, whereas propionic and butyric acids were potent FFAR3 agonists [94]. Both receptors
are expressed in enteroendocrine L cells, while FFAR3 is also observed in the peripheral
nervous system [95].

The available evidence suggests that SCFAs maintain energy homeostasis in the body
either by entering the brain via the somatic circulation, stimulating the secretion of gut-
brain peptides, or mediating the afferent transmission of appetite signals via the vagus
nerve [96]. PET-CT scans of mice injected intraperitoneally with 11C-acetate solution
show that acetate crossed the blood-brain barrier to reach the ARC region and induced
elevated neuronal activity in POMC as well as decreased AgRP neuronal activity [97].
At the same time, acetate also stimulates Leptin secretion from the white adipose tissue
through a FFAR2-dependent mechanism [98], causing changes in the activity of appetite-
related neurons in the brain. Psichas et al., injected propionate into the colon, which
caused activation of FFAR2 on intestinal L cells, and observed elevated levels of PYY and
GLP-1 in plasma from the rat jugular vein and mouse portal vein [99]. In research by
Larraufie et al., butyric acid, the most potent agonist of anorexigenic peptides in SCFAs,
increased the expression of the PYY gene 120-fold, whereas propionic acid and acetic acid
increased it by 40-fold and 2-fold, respectively [100]. Oral (not intravenous) butyric acid
significantly reduced the excitability of hypothalamic NPY-expressing neurons and the
number of c-fos-positive neurons in the NTS and dorsal vagal complex (DVC); however,
had no effect on the activity of POMC neurons [101]. In addition, the vagal afferent nerves
are an important aspect of appetite regulation, and the researchers found that knocking
out FFAR3 on the terminals of the vagal afferent nerve led to an increase in food intake
in mice [102]. Failure of butyric acid-treated groups to reduce cumulative food intake in
comparison with controls after subdiaphragmatic vagus nerve transection in mice [101],
implying that the vagus nerve is essential for butyrate-induced satiety in the organism. At
present, there is no doubt that SCFAs act as a satiety signal in vivo; however, the signal
transduction mechanisms mediated by them are still at the primary research stage, and
exploring the detailed mechanisms of SCFAs will help us better understand their effects on
appetite regulation.

4.2. BAs

Elementary BAs are converted from cholesterol in the liver, released into the intestinal
lumen during the digestion of chyme by the organism, and converted to secondary BAs
such as deoxycholic acid (DCA) and lithocholic acid (LCA) by uncoupling and dehydroxy-
lation in the presence of bile salt hydrolase-expressing intestinal microorganisms such as
Clostridium spp., Lactobacillus spp., Enterococcus spp., and so on [103]. Recent research has
revealed that in addition to affecting lipid metabolism and inflammatory response, BAs
also play a role in regulating appetite and energy homeostasis [104], where farnesoid X
receptor (FXR) and takeda G-protein-coupled receptor 5 (TGR5) act as crucial receptors to
mediate BAs’ function.
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The research demonstrated that BAs are potent agonists that promote the release
of GLP-1 and PYY, which upregulate the activity of TGR5 in intestinal L-cells, signifi-
cantly increasing colonic levels of GLP-1 (a 3.5-fold increase compared to control) and
PYY (a 2.9-fold increase compared to control) [105]. While knocking out TGR5, small
intestinal perfusion with BAs did not induce secretion of the anorexigenic peptides GLP-1
and PPY [106]. Meanwhile, BAs also triggers FXR in the distal small intestine to secrete
fibroblast growth factor (FGF) 15 into the circulation and cross the blood-brain barrier to
interact with AgRP/NPY neuronal FGF receptors, subsequently leading to a series of signal
transduction events to diminish AgRP/NPY gene expression [107], which indicates that
the BAs-FXR-FGF15 pathway is an instrumental part of maintaining energy homeostasis
in the organisation. Additionally, the presence of BAs in the brain was also observed by
Higashi et al. and was positively correlated with the level of BAs in the plasma [108],
leading to the hypothesis that BAs in the peripheral circulation could cross the blood-brain
barrier into the brain. Using RNA Scope brain expression profiling, TGR5 mRNA was
found to be highly expressed in the ARC area of the hypothalamus, and oral or intravenous
administration of the TGR5 agonist INT-777 to mice abolished feeding behaviour by in-
hibiting AgRP/NPY mRNA expression and neuropeptide release [109]. Furthermore, the
vagus nerve is also involved in BAs mediating satiety, and TGR5 on it transduces afferent
DCA anorexic signals that specifically trigger the activation of POMC anorexic neurons in
the hypothalamus, causing a reduction in food intake [110].

4.3. Tryptophan-Derived Metabolites

Tryptophan (Trp) is an essential amino acid and the only one with an indole structure,
mainly provided by dietary protein. Agus et al. reported that Trp in the gut, under the
direct or indirect regulation of the flora, can generate various active molecules mainly
through three metabolic pathways (the serotonin pathway, the indole pathway, and the
kynurenine pathway), which in turn mediate the body’s metabolism, immunity, and
gastrointestinal function [111].

Tryptophan hydroxylase (TPH) serves as the key rate-limiting enzyme in the sero-
tonin pathway, with two isoforms, TPH1 (mainly found in enterochromaffin cells, ECs)
and TPH2 (mainly found in the brain), in which the enzyme hydroxylates Trp to produce
5-hydroxytryptophan (5-HTP), which is then converted through a series of metabolic path-
ways to serotonin (5-hydroxy tryptamine, 5-HT) [112]. Meanwhile, gut microbes are also
major participants in regulating 5-HT production [113], e.g., SCFAs produced by the flora
increase the expression level of ECs TPH1 mRNA, which in turn accelerates the biosynthesis
of 5-HT [114], and other studies have demonstrated that spore-forming microbes from mice
and humans can also promote 5-HT production [115]. The fact that 5-HT, whether of gut
or brain origin, induces satiety in the organism has long been undisputed [116]. In vitro
assays showed that 5-HT (30 µM or 100 µM) significantly upregulated the ability of the
mouse small intestinal endocrine cell line STC-1 to release GPL-1 compared to control,
whereas it did not induce the above changes when a non-specific 5-HT receptor antagonist
was used [117], suggesting that there may be a reciprocal mechanism by which 5-HT may
be involved in the secretion of GLP-1. Although gut-derived 5-HT does not cross the blood-
brain barrier, its precursors, Try and 5-HTP, do, indirectly influencing central 5-HT function
and production [118]. Existing studies have shown that the ARC, PVN, and neuronal nuclei
expressing 5-HT1A receptor(5-HT1AR), 5-HT1BR, 5-HT2AR, and 5-HT2CR are the main
targets of 5-HT in the brain, mediating the feeding behaviour of the organism. Activation
of 5-HT1BR significantly inhibits the ingestive effects of NPY/AgRP neurons and increases
the feeling of satiety in the body [119]. In total, 5-HT also binds to 5-HT2CR on anorexigenic
neurons, POMC, upregulating the level of central α-MSH biosynthesis [120]. In addition,
the vagus nerve acts as a sensory transducer that transmits 5-HT signals from the gut to the
brain [121]. The diversity of 5-HT receptors and their widespread distribution mean that
5-HT has a wide range of biological functions. Current research points to a number of 5-HT



Nutrients 2023, 15, 3728 11 of 19

receptors being involved in the regulation of feeding, but which receptors play a major role
and how they work together need to be further confirmed.

Previous research has shown that up to 85 strains can encode tryptophanase genes, and
tryptophan can be fermentatively produced in these colonies to form indole, a ligand for
aromatic hydrocarbon receptors (AHR) [122]. Enhanced GLP-1 secretion was observed
after stimulation of the mouse GLUTag cell line using Ficz, an AHR agonist [123]. This
is consistent with the results of Chimerel et al., that indole induces a rapid release of
GLP-1 from intestinal L-cells in the short term but inhibits its secretion in the long term, a
phenomenon that appears to be related to the production and use of adenosine triphosphate
in the cells [124]. The above results indicate that indole may mediate host appetite by
affecting the secretion of gut-brain peptides. In addition, indole and its derivatives may
affect the balance of human gut microbes by inhibiting fungal growth and modulating flora
motility, colonisation and biofilm formation [122]; however, it is not clear whether this flora
balance is relevant to host appetite regulation.

4.4. Bacterial Proteins and Cellular Components of Gut Microbe

Further research has shown that gut microbes produce bacterial proteins that affect
brain areas involved in energy regulation, as caseinolytic peptidase B (Clpb) protein ho-
mologs act as conformational antigen-mimetic of α-MSH [125], i.e., Clpb has homology
with the amino acid sequence of α-MSH. Clpb protein homologs can be produced by flora,
which includes E. coli [126,127]. Measurement of Clpb levels in healthy and anorexic popu-
lations using immunoassays showed that Clpb levels were higher in anorexic patients and
did not differ significantly between patient subgroups [128], and reduced levels of anti-Clpb
immunoglobulin M (IgM) and IgG were observed in patient plasma, so it was hypothesised
that the enhanced satiety sensation mediated by Clpb may result from decreased levels of
humoral immunity [129]. Macrogene sequencing has shown that the relative abundance of
the Clpb-producing phylum and family is decreased in obesity patients [130]. Treatment of
ob/ob mice with Hafnia alvei, a potential probiotic that secretes Clpb protein, significantly
decreased food intake as well as weight and fat gain [131,132]; however, did not produce
the above changes when given to a Clpb-deficient strain [133]. Manon Dominique et al.
added equal calories of bovine serum proteins, D-fructose, and oleic acid to E. coli cultures
and found that the supplementary protein group upregulated bacterial Clpb mRNA expres-
sion [134], suggesting that protein-mediated satiety may be related to bacterial secretion of
Clpb. The researchers then explored the mechanism of Clpb-induced anorexia and found
that Clpb increased PYY secretion in primary cultured cells of rat intestinal mucosa in a
dose-dependent manner [134,135], demonstrating that Clpb activates the appetite signalling
pathway mediated by PYY to suppress food intake. Moreover, the presence of Clpb in the
hypothalamus of rodents and humans can be observed using protein immunoblotting [136].
Clpb injected intraperitoneally reaches the hypothalamus via the systemic circulation and
increases the number of c-fos-positive neurons in anorexic neurons, with repeated injections
causing a reduction in food intake in mice [137].

In parallel, other trials have demonstrated that Lipopolysaccharide (LPS) and Muramyl
dipeptide (MDP) serve as modulators of food intake. As a major component of the outer
membrane of Gram-negative bacteria, LPS binds to Toll-like receptors (TLRs) and then
undergoes a series of signalling pathways that ultimately trigger metabolic dysfunction
and disease development in the body [138]. It was found by Breen et al. that LPS reduced
appetite and body weight and increased the incidence of inflammation and mortality in
mice [139], whereas injection of agmatine into the brain ventricles normalised LPS-mediated
disorders, including anorexia nervosa [140]. In broiler chickens injected intraperitoneally
with LPS, a decrease in the levels of AgRP mRNA and NPY mRNA was clearly observed,
while the expression of anorexigenic neuropeptides was unchanged [141], implying that
the decrease in the expression levels of AgRP and NPY genes might be one of the main
reasons for the anorexia induced by LPS. Further studies uncovered that blockade of the
mTOR signalling pathway with rapamycin attenuated LPS-induced appetite reduction and
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suppression of AgRP gene expression [142], demonstrating that LPS can exert its anorectic
effects through the mTOR-AgRP pathway. LPS can also increase the excitability of vagal
afferent nerves through a TLR4-dependent mechanism [143], yet cutting subphrenic vagal
afferent nerves did not increase food intake [144]. These findings provide support for the
idea that LPS can co-regulate the energy metabolism of the organisation through both
neural and humoral pathways. As an agonist of the nucleotide-binding oligomerization
domain-containing 2 (NOD2) pattern recognition receptor, MDP is considered a marker
of bacterial proliferation in the host organism. In previous reports, MDP was shown to
significantly increase satiety [145], which was attributed to the presence of NOD2 receptor
expression on mouse intestinal L-cells, leading to a significant increase in GPL-1 secretion
when treated with MDP derivatives under normoglycaemic conditions [146]. Additionally,
Gabanyi et al. observed that certain regions of the brain can be targeted by radioisotope-
labelled MDP and that specific knockout of the hypothalamic NOD2 receptor upregulates
appetite and body weight in mice [147], confirming that hypothalamic neurons can directly
sense changes in gut microbes and adjust the organism’s appetite accordingly.

5. Conclusions and Prospect

In general, the gut-brain axis serves as an inevitable chain in regulating the food
intake of organisms, in which the gut-brain peptides, intestinal microorganisms, and their
metabolites perform significant actions (Figure 5). Gut-brain peptides such as Ghrelin,
CCK, and Leptin can enter the CNS directly through the humoral pathway to influence the
function of appetitive neurons or indirectly via the vagus nerve to regulate the organism’s
feeding behaviour. Gut microbes, however, rely mainly on their functional metabolites
and cellular components, such as SCFAs, MDP, and BAs, to cross the blood-brain barrier to
reach the brain, pass through vagal afferent neural pathways, or stimulate enteroendocrine
cells to release the PPY and GPL-1 pathways, which work together to regulate food intake
and energy homeostasis in the body.

As technology advances, research into the gut-brain axis involved in appetite reg-
ulation is becoming increasingly popular; however, there are three points that deserve
particular attention in future research: (i) The majority of existing studies have focused
on gut-brain peptides working separately, and there is a lack of exploration to unify them.
Trials have indicated that greater anorexic impulses are produced when PYY and GLP-1 are
co-administered [75]; in the meantime, Blanco et al., also noted that Ghrelin attenuates the
satiety mediated by CCK, PYY, and GLP-1 [148]. Enhancing the study of gut-brain peptide
interactions and uncovering the complex mechanisms involved may have unexpected
effects on the regulation of appetite. (ii) Bacterial flora is one of the most abundant in
the organism, with a mass of about 1–1.5 kg and a number of 1013–1014, which is about
10 times the number of cells in the human body. Many articles have reported that gut
microbes affect the CNS; however, the mechanisms involved are lacking. Future research on
flora and appetite will not only simply show whether gut microbes regulate ingestion but,
more importantly, analyse the pathways through which they influence appetite regulation.
(iii) Fecal microbiota transplantation (FMT) can be used to intervene and adjust the com-
position of the gut microbiome to regulate the host’s feeding behaviour; however, clinical
trials of FMT are still in the exploratory stage and face significant challenges. To begin
with, the use of FMT has been associated with toxic side effects and even fatalities [149];
furthermore, the structural composition of the feacal flora is complex, and studies have
shown that only specific flora in the donor are functioning, so it is essential to tap into the
key flora [150]; and lastly, from a moral, ethical, and psychological standpoint, the use of
FMT is not acceptable to the general public. FMT research is an inevitable trend; finding
the “potential probiotics” in FMT may be an effective strategy for microbial-based appetite
treatment. In conclusion, there is no doubt that a significant role is played by the gut-brain
axis in the organism, and further exploration of the gut-brain mechanism will be of great
revelation and application value.
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