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Abstract: Unmanned underwater vehicles (UUVs) are becoming increasingly important for a variety
of applications, including ocean exploration, mine detection, and military surveillance. This paper
aims to provide a comprehensive examination of the technologies that enable the operation of UUVs.
We begin by introducing various types of unmanned vehicles capable of functioning in diverse
environments. Subsequently, we delve into the underlying technologies necessary for unmanned
vehicles operating in underwater environments. These technologies encompass communication,
propulsion, dive systems, control systems, sensing, localization, energy resources, and supply. We also
address general technical approaches and research contributions within this domain. Furthermore,
we present a comprehensive overview of related work, survey methodologies employed, research
inquiries, statistical trends, relevant keywords, and supporting articles that substantiate both broad
and specific assertions. Expanding on this, we provide a detailed and coherent explanation of the
operational framework of UUVs and their corresponding supporting technologies, with an emphasis
on technical descriptions. We then evaluate the existing gaps in the performance of supporting
technologies and explore the recent challenges associated with implementing the Thorp model for
the distribution of shared resources, specifically in communication and energy domains. We also
address the joint design of operations involving unmanned surface vehicles (USVs), unmanned
aerial vehicles (UAVs), and UUVs, which necessitate collaborative research endeavors to accomplish
mission objectives. This analysis highlights the need for future research efforts in these areas. Finally,
we outline several critical research questions that warrant exploration in future studies.

Keywords: unmanned underwater vehicle; propulsion and dive system; sensing; localization; energy
resources and supply; thorp model; USV–UAV–UUV joint-design operation

1. Introduction

Unmanned vehicles are developed to operate in various environments, including those
operating on the surface of the water, known as unmanned surface vehicles (USVs) [1],
those operating in the air as unmanned aerial vehicles (UAVs) [2], and those that operate
underwater as unmanned underwater vehicles (UUVs). Currently, UUVs are growing
in communication, control systems, and automation, and are even using Machine Learn-
ing processes such as setting trajectories, sensing, and managing flocks of unmanned
vehicles [3].

As compared to unmanned vehicles that operate on the ground and those that operate
in the air, which are able to access wireless communication systems properly, the conditions
for unmanned vehicles that operate on the ground are different. This is due to the reliability
of air in transmitting communication signals, especially with relay technology and shared
resource management [4]. In spite of the fact that there are several disturbances, fault
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handling, recovery, and fault management can still be used to handle them [5]. Meanwhile,
UUVs are affected by fluid properties, which interfere with signal propagation [6]. Further-
more, the energy required to transmit the signal is relatively high [7], whereas the signal
received is lower, resulting in the loss of large data [6,8].

The underwater communication technologies can be categorized into five models:
(1) acoustic communication that uses sound waves as a communication signal [9]; (2) optical
communication uses visible and invisible light waves [10]; (3) wireless communication
via radio waves [11]; (4) Satellite communication communicates with devices in the water
through intermediary relays on the surface [12]; (5) direct electrical communication used
for UUV charging docks [13,14].

There are four indicators that can be used to measure communication effectiveness:
bit-error-rate (BER); signal-to-noise ratio (SNR) in decibels (dB); spectral efficiency, which
is decrypted as the number of bits per second that can be transmitted through a specific
bandwidth unit (bps/Hz); and energy efficiency. Specific propagation loss coefficient and
noise floor are employed for different signal frequencies, as well as water characteristics
(such as temperature, salinity, and depth) [6]. The signal-to-noise ratio measures the
strength of the signal compared to the background noise. Better communication conditions
are indicated by a higher SNR.

The propulsion system and dive system allow the UUV to move and control its depth
in the water [15]. To propel the vehicle through the viscosity of water, one or more thrusters
are used [16,17]. The propulsion system also controls the vehicle’s buoyancy, usually using
a ballast system, which absorbs or releases water to regulate the vehicle’s buoyancy, as well
as control systems to control dives and ascents [18]. UUVs can also be propelled by wings,
fins, and hydrojets [19–22].

Five types of UUVs are considered in the control system, which focuses on control
algorithms: the first is proportional–integral–derivative (PID) [23], which utilizes sensor
feedback and processes it proportionally, integrally, and derivatively. Integrational means
accumulating the errors over time and adjusting the control output based on those errors,
while proportional means comparing; for example, comparing the output with the desired
output. Derivative means calculating the error rate and adjusting the output based on that
rate. The second type, model predictive control (MPC), predicts the future behavior of the
system [24]. It uses a mathematical technique called sliding mode to achieve robust control
of a system, regardless of variations in its dynamics or disturbances in the environment.
Sliding mode control or SMC is a third method [25]. Fourth, adaptive control (AC) uses a
mathematical model of the system to estimate the current state of the system [26] and then
adjusts the control inputs accordingly. Last but not least, adjusting UUV trajectory [27] or
UUV herd localization uses Artificial Intelligence and Machine Learning (ML) [28]. Control
algorithms are chosen based on the application and the requirements given, but there are a
number of testing models that can be used, including (1) simulation; (2) closed-loop testing;
(3) comparison with other algorithms; and (4) measuring key performance indicators (KPIs).

UUV uses several sensor devices in environmental sensing and recognition systems,
and they are grouped based on how they work into four types: acoustic-sensors, such
as sound navigation and ranging (SONAR) [29] and hydrophones [30], that detect and
locate objects in water using sound waves; optical sensors, such as cameras and light
detection and ranging (LiDAR) [31,32], that use light waves to capture images and gather
data on the surface of the water; chemical-sensors [33], which can detect and measure
the concentration of dissolved gases, pollutants, and other substances in the water [34];
and physical-sensors [35], which can detect and measure the properties of water and its
surroundings. Using these four types of sensors together can provide a comprehensive
picture of the underwater environment for navigation, object detection, and environmental
monitoring. As a result of the sensing function, UUV operations can be conducted to
collect various types of data, such as bathymetry [36], water quality [32], images of the
seafloor [32], etc., depending on the mission and the sensors and instruments installed on
the vehicle.
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Several types of navigation systems can be used by unmanned vehicles underwater,
including inertial navigation systems (INS) which use accelerometers and gyroscope sensors
to measure linear and angular motion, and once the angular position and orientation are
known, the location of the UUV can be estimated [37,38]. Another application using similar
measurement data is the Doppler velocity log (DVL), which measures the relative velocity
of UUV to water by using the theory of the Doppler effect [39–42]. Furthermore, the third
system is the use of the global navigation satellite system (GNSS) and global positioning
system (GPS) which utilize satellite signals to determine UUV position and speed [43]
based on the difference between a signal transmitted by a satellite and a signal received
by a GPS receiver. In addition, the GNSS system transmits longitude, latitude, altitude
and time signals simultaneously [44–46]. Currently GPS/GNSS technology can only be
used for vehicles operating in the sea surface environment, such as the Vessel UUV, and
further research is needed in order to apply it to the underwater environment. Furthermore,
the fourth system introduced in this paper is the use of sound waves to determine the
position and speed of the UUV using an acoustic navigation system (ANS) [47]. Acoustic
signals can be measured by measuring the time delay or the Doppler shift [48]. To track the
position and orientation of the UUV, the last or fifth system is the use of visual odometry
(VO) [49]. UUV localization optimization can be improved by integrating navigation
systems, various sensors, and other data sources, as mentioned above. In summary, the key
point is that GNSS can provide absolute position measurements, while INS and DVL can
provide accurate speed measurements. This integration is referred to as sensor fusion, i.e.,
when sensors and data sources are integrated in one unit.

The primary source of energy for most unmanned underwater vehicle is batteries [50].
Depending on the specific application and mission requirements, these batteries can be
rechargeable or disposable. UUVs have also used fuel cells [51], hydrogen [52], and solar
panels [53], which require cooperative control systems to harvest solar energy continuously
if the energy source battery backup is low. The UUV’s energy requirements and supply will
be determined by the specific mission and operating conditions, such as mission duration,
water depth, and payload type.

Additionally, several studies predict an increase in demand for underwater vehicles in
the future [54,55]. The underwater wireless sensor network (UWSN) [56] infrastructure is
also being utilized to support the continuity of operation of the UUV which has limitations
when operating in water. Because it is supported by air–water boundary communication
technology (AWBC) [57,58] and underwater cyber physical system (UCPS) for data collec-
tion needs [59,60], it is possible to collaborate on communication and control systems [57,58]
for multi-environmental unmanned vehicles. Internet of Underwater Things or (IoUT)
localization techniques based on reinforcement learning [61] can be used in collaboration
with vessel-based UUVs to collect marine survey information [62]. Several other studies,
such as those based on controversy adjudication (CATM) [63], are expected to further
improve the effectiveness of UUV operations underwater and eliminate its limitations [64].

While the poor supporting technology in the underwater environment has implications
for many things, including difficulties controlling the UUV, reduced situational awareness,
difficulty executing missions, and the risk of losing the UUV [54], reliable supporting
technology is urgently needed. Furthermore, the entire discussion outlined above opens
this survey paper and invites readers to better understand the concept of unmanned
vehicles operating underwater, as well as the importance of technological support.

This paper employs state-of-the-art writing, which flows and makes it easy for readers
to read, including an introduction, which provides information about unmanned vehicles,
their types, communication technology, propulsion and dive systems, control systems,
sensors, localization, energy resources, and supplies that support the operation of UUVs
under water. It explains the workings of the supporting technology from a technical and a
mathematical perspective. We also explain how the literacy survey was conducted, starting
with frequently asked research questions, statistical trends, and the keywords used to find
articles that support the general and specific statements.
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An integrated mathematical approach is then used to discuss the work system of each
UUV-supporting technology, including communication technology, propulsion, control
systems, sensing, localization, and energy resources. Next, through simulations, the
performance of technology supporting UUV operations is simulated. Then, we examine the
performance gaps found in research in supporting technology performance, discussing the
latest issues such as the implementation of the Thorp model for the distribution of shared
resources for communication and energy, as well as a joint-design of USV–UAV–UUV
operations for completing a mission that requires future research contributions. Finally, we
outline several critical open research challenges for future studies.

The paper is organized as follows: an introduction that covers types of unmanned
vehicles, UUV support technology, research contributions, and the state of the art. This is
followed by a discussion of related works, including research questions, existing surveys,
and statistical trends. Next, a coherent and mathematical approach is used to discuss the
UUV work system and conduct a performance simulation. The paper concludes with a
discussion on future research directions and a summary of the performance gaps found.

Recent research advances in the field of underwater vehicles encompass various
aspects, including sensing, cross-boundary cooperation patterns of autonomous vehi-
cles, optimization of cross-boundary communication utilizing signal propagation theories
within water and signal modulation engineering, the adoption of successful models from
autonomous vehicle types operating in terrestrial-aerial environments, and the incorpora-
tion of deep learning and deterministic Artificial Intelligence technologies. Collectively,
these aspects represent future research avenues that can be developed based on what the
researcher has presented in this review.

Figure 1 shows the structure of this survey paper more detail.

Figure 1. Organization of the paper.
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2. Related Works

In addition to using a correlational method, this survey considers literacy novelty. In
order to perform this task, we follow the following steps.

1. Identifying research topics by considering the need for survey contributions, summa-
rizing questions that are frequently asked in similar surveys, etc.;

2. Examining similar survey papers to identify subtopics that have not been reviewed;
3. Searching for answers using general and specific keywords;
4. Identifying future research directions by looking at trends statistically.

3. Research Questions

In this field of research, we are motivated to explore and answer some frequently
asked questions (FAQ). These questions are clearly summarized in Table 1.

Table 1. FAQ about UUV surveys and their supporting technologies.

S. No Related Research Questions Answer

RQ1 How can UUVs be used to collect data?

Depending on the mission and the sensors and instruments
installed on the vehicle, UUVs can collect a variety of data
such as bathymetry, water quality, imagery of the seafloor,

and other types [28,31,32,36,41,42,49].

RQ2 How do UUVs navigate and control their movements in
water?

To move through water, UUVs use navigation and control
systems. An inertial navigation system, a GPS system, and

a sonar system are a few
examples [20,21,23,28,37,43,44,54,55,59].

RQ3 What are the ways in which UUVs communicate and store
data?

UUVs have wireless communication systems for
transmitting data and storage devices for storing data, such

as hard drives or solid-state drives [6,29,31,59,65].

RQ4 How do UUVs obtain power? Alternative energy sources such as fuel cells, batteries, and
lithium-ion batteries are used to power UUVs [54,62,63,66].

RQ5 How can UUVs be equipped with payloads?
UUVs can be equipped with various payloads to perform

specific tasks such as sampling, imaging, and
mapping [23,28,32,44,49,54,55,59].

RQ6 What are the steps involved in planning and controlling a
UUV survey?

In order to plan and control their missions, UUVs and
UAVs use mission planning and control software. The

software can be used for navigation, sensor control, and
data analysis [23,28,37,44,49,54,55,59].

RQ7 Why should UUVs be used for surveys?

UUVs provide many advantages over traditional survey
methods, such as flexibility, cost-effectiveness, and the
ability to access areas that are difficult or dangerous for

divers [31,32,56,62,64,65].

RQ8 How do UUV surveys present challenges?

UUV surveys can be challenging due to the need for
specialized equipment and expertise, as well as the inability

to operate in poorly lit or difficult-to-access underwater
environments [60].

3.1. Existing Surveys

By comparing FAQs with answers, we provide a summary of statements in other
research articles that answer the questions raised, which can be seen clearly in Table 2.
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Table 2. Using existing surveys as references, mindmaps are compiled, comparisons are made,
research approach models are applied, future trends are examined, and contributions are determined.

Research Year RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8

Al Guqhaiman et al. [7] 2021
√

Wang et al. [20] 2022
√

Zhang et al. [21] 2022
√

Shi et al. [23] 2020
√ √

Wu et al. [28] 2020
√ √ √

Hong et al. [31] 2020
√ √ √ √

Nakath et al. [32] 2022
√ √

Karmozdi et al. [37] 2020
√ √

Klein et al. [41] 2022
√

Braginsky et al. [42] 2020
√

Perea-Storm et al. [43] 2020
√

Jiang et al. [44] 2022
√ √

Yin et al. [49] 2022
√ √ √

Sezgin et al. [52] 2022
√

Hou et al. [54] 2023
√ √

Neira et al. [55] 2021
√ √ √

Luo et al. [56] 2021
√

Lindsay et al. [59] 2022
√ √ √

Purser et al. [60] 2022
√

Luo et al. [56] 2022
√

Yan et al. [62] 2020
√ √ √

Fang et al. [64] 2022
√ √ √

Jiang et al. [65] 2023
√ √ √

3.2. Keyword Used

As part of this research, general and specific keywords are used to locate supportive
references, compile mindmaps, compare studies, search for appropriate research approach
models, examine future trends, and determine what contribution is needed in this area
of research. References used have a publication year limit of 2017–2023 with a minimum
citation level of 2 and are from reputable journals. Keywords are used to identify research
directions and support general theoretical and technical statements. For technical discus-
sions, special formulations, and simulations, special keywords are used. As shown in
Figure 2, the search results based on general and specific keywords in the field of UUV and
its supporting technology are illustrated in a branching graph.

Figure 2. Survey taxonomy based on general to specific keywords.
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3.3. Statistics Trends

We classify acronyms used as unique identifiers for several studies using search
engines and reference management applications. To understand trends in this field of
research, we also identify publications by the publisher in the second table. The grouping
data is shown in Tables 3 and 4:

Table 3. List of acronyms.

Acronym Definition Acronym Definition

USV Unmanned Surface Vehicle GPS Global Positioning System
UAV Unmanned Aerial Vehicle ANS Acoustic Navigation System
UUV Unmanned Underwater Vehicle VO Visual Odometry
EC Energy Consumption UWSN Underwater Wireless Sensor Network
TX Tranceiver ROV Remotely Operated Vehicle
RX Receiver AWBC Air–Water Boundaries Communication System
SS Spherical Spreading UCPS Underwater Cyber–Physical System

BER Bit Error Rate IoUT Internet of Underwater Things
SNR Signal-to-Noise Ratio CATM Controversy-Adjudication-Based Trust Management
PID Proportional Integral Derivative MPC Model-Predictive Control
SMC Sliding Mode Control AWBC Air–Water Boundaries Communication System
AC Adaptive Control UCPS Underwater Cyber–Physical System
AI Artificial Intelligence IoUT Internet of Underwater Things
ML Machine Learning CATM Controversy-Adjudication-Based Trust Management
KPI Key Performance Indicators CDV Cross-Domain Vehicle

SoNAR Sound Navigation and Ranging DOF Degrees of Freedom
LiDAR Light Detection and Ranging ITSM Integral Terminal Sliding Mode

INS Inertial Navigation System FITSM Fast Integral Terminal Sliding Mode
DVL Doppler Velocity Log AUV Autonomous Underwater Vehicle

GNSS Global Navigation Satellite System DRL Deep Reinforcement Learning
RGB Red Green Blue HSV Hue Saturation Value
DVL Doppler Velocity Log UTM Universal Transverse Mercator
WGS World Geodetic System RIS Reconfigurable Intelligence Surface

Table 4. List of publishers and the number of publications surveyed.

Database Number of Papers

IEEE Xplore 49
ScienceDirect-Elsevier 4

MDPI 7
SpringerLink 8

Hindawi 5
Wiley 4

Inder Science Online 1

4. UUV Work System

A mission scenario illustrates how an unmanned vehicle works in an underwater
environment.

4.1. Underwater Commmunication

In communication systems that use the hexagonal model for localization (buoy) as a
ground station transmitter relay, the hexagonal model represents the sphere-shaped Earth,
which is mathematically divisible by the hexagonal model. Relay placement by measuring
the effective beacon distance is calculated as follows [67]:

C =
∪N

i=1Vn(i)
V

, (1)
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Network coverage ratio is represented by C, summazation volume monitoring area is
denoted by V, and monitoring area of node Vn(i) is denoted as ni. It is assumed that the
nodes are equipped with an omidirectional antenna that monitors in all directions (sphere
area) which has a radius and is denoted in rs.

The signal transmission system uses a combination of acoustic communication for
long-distance transmission at sea depth [9], optical for fast short-range communication
in the depths of the sea [10], and radio waves for communication at sea level between
the USV, relay station, and ground transmitting station [11]. Additionally, the USV is
equipped with a direct electrical [13,14] system that allows for the recharging of UUV
swarms operating underwater and a swarm drone carrier with an air–water boundary
communication system [29]. Repeating the previous statement that a higher SNR ratio
indicates better communication conditions, to calculate the SNR value [29], we proceed
with the following:

SNR =
(Ir)2

σ2
n

, (2)

where Ir is the received light intensity and σ2
n is the variance of noise within the system. Ir

can be represented as
Ir = I · Lt · Lch · A · Is cos ψ. (3)

In the context of the study, the following terms are defined: I represents turbulence-
induced channel fading, following a lognormal distribution; Lt and Lch denote temperature
and channel loss, respectively; Is represents irradiance in the pattern of ideal emission; ψ is
the incident angle of the receiving plane; and A represents the active area of the photodiode.

σ2
n = 2q<PnB (4)

In the given context, the following terms are defined: q is the charge of an electron; Pn
represents the solar noise power, B denotes the signal bandwidth; and < is the responsivity
of the photodiode.

4.2. Dive System

A herd of UUVs in the mission scenario consists of three types, each distinguished
by its propulsion and dive system. The first UUV is propelled by propellers on all sides,
referred to as omnidirectional [15–17], and is able to move in any direction to maximize its
efficiency. The Buoyancy force generated by the object expressed in newton (N),4Bouyancy
can be represented as:

4Bouyancy = π × ρwater ×
(Dout)2

4
× L, (5)

where π is the mathematical constant pi, approximately equal to 3.14159; ρwater is the density
of water expressed in (kg/m3); Dout is the outer diameter of the submerged object expressed in
meters (m); and L is the length of the submerged object expressed in meters (m).

The origin axis of the vehicle is located at the middle of the x–y axis and at the bottom
of the z-axis. To calculate the center of gravity with respect to the origin axis, the following
formula can be used:

Mx =
i=n

∑
i=0

WiχXi + WaiχXai (6)

My =
i=n

∑
i=0

WiχYi + WaiχYai (7)

Mz =
i=n

∑
i=0

WiχZi + WaiχZai. (8)

The following terms are defined in the context of the study: Wi, Wai, Xi, Yi, Zi, and Xai,
Yai, Zai represent the weight component, added weight by ballast water, offset of the center
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of weight component, and added weight component, respectively. For UUVs that utilize an
omnidirectional dive system, a visual representation of the system can be observed in Figure 3a.

The second type of UUV uses a hydrojet propulsion system and diving system [22].
Known as a cross-domain vehicle (CDV), this vehicle can operate in both surface and
underwater environments because it is equipped with a ballast tank, propulsion system,
and rudder. The buoyancy law [68] is used in this approach, which is based on:

∆B = (FB − FG)/g = M−∇ρ. (9)

In the given context, the following terms are defined: ∆B represents the net buoyancy
in kg; FG denotes the gravitational force; FB represents the buoyant force exerted by the
fluid on the floating object; M is the total mass of the object; ∇ denotes the volume of the
fluid displaced by the object; and ρ is the density of the fluid. The rudder is responsible for
directing the CDV into three modes of motion, as outlined below.

1. Dynamic model of surface state:

mUi =P cos θ − F cos(α− θ) (10)

− Ff cos(β− θ)− Fr cos(γ− θ),

mUj = F sin(α− θ) + Ff sin(β− θ)

+Fr sin(γ− θ) + P sin θ − G,
(11)

Jkθ = M + Ff l f sin β− Frlr sin γ. (12)

2. Dynamic model of the underwater state:

mUi =P cos θ − F cos(α + θ) (13)

− Ff cos(β− θ)− Fr cos(γ− θ),

mUj =Fv cos θ + Ff sin(β− θ) + Fr sin(γ− θ) (14)

+ P sin θ + G− F sin(α + θ),

Jkθ = Fvlv + Ff l f sin β− Frlr sin γ−M. (15)

3. Underwater and surface transition state:

mUi = P cos θ − F cos(α− θ)− Ff cos(β− θ) (16)

− Fr cos(γ− θ)− Fv sin θ,

mUj =Fv cos θ + Ff sin(β− θ) + Fr sin(γ− θ) (17)

+ P sin θ + F sin(α + θ)− G,

Jkθ = Fvlv + Ff l f sin β + M− Frlr sin γ. (18)

Table 5 provides detailed information regarding each symbol and unit. An illustration
of a UUV that uses a propulsion system and hydrojet diving is shown in Figure 3b, while
Figure 3c illustrates movement maneuvers resulting from the three equations above.
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Table 5. The definitional variable furnishes comprehensive insights into every symbol and unit
employed to elucidate the equations within a cross-domain vehicle (CDV) motion system [22].

Symbol Explanation

θ The angle of pitch
Ff The force exerted by the front hydrofoil
I f The distance between the front hydrofoil and the center of gravity
Ir The distance between the rear hydrofoil and the center of gravity
Fr The force applied by the rear hydrofoil
P The thrust generated by the water jet propeller
F The combined buoyancy and drag force of the CDV
G The force of gravity
Fv The force generated by the vertical propeller
M The moment caused by buoyancy
α The angle between F and the axial direction of the CDV
β The angle formed between Ff and the axial direction of the CDV
γ The angle included between Fr and the axial direction of the CDV
ϕ The angle of roll

Ui,j The velocity components in the i and j directions
Iv The distance between the vertical propeller and the center of gravity
Jk The moment around the k axis

The pitch angle (θ) of the cross-domain vehicle (CDV) induces lift forces (Ff ) on the hull through the action of
the front hydrofoil. The magnitudes of these forces are determined by considering the distances (l f and lr) from
the center of gravity to the front and rear hydrofoils, respectively. The angle β represents the included angle
between the lift force (Ff ) and the axis direction of the CDV. This angle is calculated through inverse trigonometric
functions based on the lift and drag components of the front hydrofoil. A similar analysis can be performed for
the lift force (Fr) generated by the rear hydrofoil on the hull. This interplay of pitch angles, hydrofoil forces, and
geometric considerations contributes to the dynamic equilibrium and motion characteristics of the CDV in its
operational environment.

Futhermore, a third type of UUV is the undulating UUV; this means that the UUV is
equipped with fins that function simultaneously as a propulsion and diving system. In
their study, the authors provided a comprehensive account of the intricate six-degrees-
of-freedom (DOF) motion exhibited by the manta ray robot [21]. This encompassing
movement involves a spectrum of displacements including longitudinal, sideways, and ver-
tical shifts, in addition to the nuanced roll, pitch, and yaw rotations. The manta ray robot’s
overall motion finds representation through elegant flowing vectors: η = [x, y, z, ϕ, θ, ψ]T ,
v = [u, v, w, p, q, r]T , and τ = [X, Y, Z, K, M, N]T . Here, η captures the vector describing the
robot’s position and attitude in the earth-fixed frame, while v characterizes the body-fixed
linear and angular velocity vector. The intricate interplay of forces and moments acting on
the robot within the body-fixed frame is succinctly described by τ, as depicted in Figure 4.
By assuming the robot’s movement takes place in an ideal fluid at a consistent velocity of
V0 and by disregarding the effects of water’s viscosity and inertia, the equations governing
the robot’s motion are elegantly simplified, particularly in the vertical plane.

mu =(G− B) sin θ − FX (19)

mw =(G− B) cos θ − FZ (20)

B =B0 + ∆B (21)

G =G0 + ∆G (22)

FX =
1
2

ρu2SxCx (23)

FZ =
1
2

ρw2SyCy (24)

The intricate interplay of forces and factors influencing the manta ray robot’s behav-
ior is encapsulated by a set of key variables. These include G, representing the robot’s
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gravitational force; G0, which captures the robot’s gravity in the absence of the mass block;
and ∆G, signifying the gravitational impact of the mass block itself. Furthermore, the
buoyant forces at play are delineated by B, indicating general buoyancy; B0, reflecting
the buoyancy when equated to the robot’s gravity; and ∆B, representing an adjustable
buoyancy component. Within this fluid dynamic context, FX and FZ step forward as vital
descriptors of fluid resistances acting along the x-axis. The fundamental physical attributes
of the robot and its environment are given voice by m denoting the robot’s mass and ρ
standing for the water density. The geometric characteristics of the robot are encapsulated
by Sx and Sy, the maximum transverse and longitudinal cross-sectional areas, while the
nuanced hydrodynamics are unveiled by Cx and Cy, the hydrodynamic parameters that
contribute to the robot’s interaction with its surroundings. Each of these variables weaves
together to define the intricate dance of forces and dynamics that shape the manta ray
robot’s journey. Refer to Figure 3d for a visualization of the propulsion and undulating
diving system.

Figure 3. (a) Omnidirectional, (b) hydrojet, (c) hydrojet maneuver and (d) undulating propulsion
and dive system [16,21,22].

4.3. Control

The first drone used a model-predictive-control algorithm to set the maneuvers and
trajectory of the herd UUV, which predicts future behavior and optimizes a control action
based on that prediction. According to Saback et al. [24] and Heshmati-Alamdari et al. [68],
whose logic flow employs a discrete-time form:

xk+1 = f (xk, τk)⇒ xk + 1 = xk + Λ(xk)dt + {(τk)dt, (25)

where

Λ(xk) =



urk cos(ψk)− vrk sin(ψk) + uτ
c

urk sin(ψk) + vrk cos(ψk) + vτ
c

wrk + wτ
c

rrk
1

m11
(m22vrkrrk + Xuurk + Xu|u||urk|urk)

1
m22

(−m11urkrrk + Yvvrk + Yv|v||vrk|vrk)
1

m33
(Zwwrk −m22urkvrk + Zw|w||wrk|wrk)

1
m44

((m11 −m22)urkvrk + Nrrrk)

+Nr|r||rrk|rrk


(26)
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{(τk) =

[
04 × 1
TAτk

]
. (27)

xk = [ηT
k , vT

rk]
T ∈ R8 represents the state vector at time step k, which includes the

position and orientation of the vehicle with respect to the inertial frame τ, and the rela-
tive linear and angular velocity of the vehicle with respect to the water. m11, i = 1, ..., 4,
Xu, Yv, Zw, Nr < 0, Xu|u|, Yv|v|, Zw|w|, Nr|r| > 0, and dt denote the mass terms, linear, and
quadratic drag terms, and sampling period, respectively. The control input of the system
is τk = [τpk, τsk, τvk, τlk]

T ∈ R4, representing the thrusters’ forces. Ocean current profile
uncertainties are presented by δk = [01×4, δuk, δvk, δwk, δrk]

T ∈ D ⊂ R8, with D being a
compact set and ||δk|| ≤ δ. The perturbed system is modeled by taking into consideration
the disturbances caused by ocean current profile uncertainties and dynamic parameter
uncertainties denoted by 4 f (xk, τk). The vehicle’s dynamic parameters are assumed to
have been identified through a proper identification scheme.

xk+1 = f (xk, τk) + δk (28)

= f (xk, τk) +4 f (xk, τk) + δk

= f (xk, τk) + γk + δk

where
γk = 4 f (xk, τk) ∈ T,

||γk|| ≤ γ∀xk ∈ X,

τk ∈ T,

(29)

where T is the compact set of uncertainties bounded by γ ≥ 0.

xk+1 = f (xk, τk) + wk (30)

Let wk = γk + δk ∈W ⊂ R8 be the vector of uncertainties and external disturbances
affecting the system. W is a compact set, defined as W = D⊕ T, where D and T are also

compact sets. Hence, W is bounded by ||wk|| ≤ w, where w ∆
= y + δ. The dynamical

equation of the system includes the vector of disturbances. However, for the nominal
model, we neglect the effect of disturbances.

Employing a sliding-mode control algorithm, the second drone distinguishes itself
through the implementation of a nonlinear control strategy. This strategy, characterized by
its simplified logical framework, stands resilient against various disturbances and uncer-
tainties that might arise during operation. The foundation of this innovative approach is
rooted in the insightful work of Qiao et al., who have introduced a significant advancement
in trajectory tracking control. Referred to as the fast integral terminal sliding mode control
(FITSM) method, it represents a refined iteration of the ITSM method, as discussed in their
authoritative references [25]. This amalgamation of cutting-edge techniques underscores
the second drone’s prowess in achieving precise and robust control, poised to navigate
challenges with a balanced blend of sophistication and adaptability.

s(t) = e(t) + αeI(t), (31)

eI(t) = em/n(t), with eI(0) = −α−1e(0). (32)

In the context of this control framework, let us denote e(t) ∈ R as the tracking
error, where its significance cannot be understated. To further shape the dynamics, a
positive constant α is introduced, playing a pivotal role in influencing the system’s behavior.
Additionally, we introduce the integers m and n, both of which are odd, with a clear
constraint ensuring that n holds a greater value than m, and both remain greater than zero.
The interplay of these elements intertwines to orchestrate a controlled system marked by
intricate relationships and carefully orchestrated dynamics.
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In the scenario where s(t) remains consistently at zero, effectively dictating that e(t)
takes on the form −αeI(t), a fascinating consequence unfolds within the realm of the
fractional integrator. Under these conditions, the fractional integrator demonstrates its
distinctive behavior and characteristics, showcasing the remarkable interplay between the
components involved. This alignment not only offers insights into the system’s response
but also unveils a unique facet of the fractional integration process that emerges when
specific constraints are meticulously maintained.

eI(t) = −αm/nem/n
I (t) (33)

The solution to the error dynamic provides crucial insights into the behavior and
evolution of the system, unraveling the intricate interplay of variables and shedding light
on its underlying dynamics.

eI(t) = [e1−m/n
I (0)− αm/n(1−m/n)t]1/(1−m/n) (34)

Subsequently, the time at which eI(t) achieves convergence is determined, yielding a
fundamental understanding of the temporal aspect of this critical variable’s behavior.

tr =
|eI(0)|1−m/n

αm/n(1−m/n)
=
|e(0)|1−m/n

α(1−m/n)
(35)

The convergence of the tracking error e(t) to the ITSM surface s(t) = 0 is achieved
within a finite timeframe under the condition e(t) = −αeI(t). This pivotal observation
encapsulates the essence of the FITSM approach, characterizing it as a dynamic system
where the interplay of variables culminates in this precise convergence scenario.

s(t) = e(t) + αeI(t) (36)

ėI(t) = e(t) + βem/n(t), with eI(0) = −α−1e(0) (37)

On the FITSM surface, s(t) = 0 (i.e., e(t) = −αeI(t)), with β > 1 and other parameters
defined as in the ITSM. The integrator is equivalent to

ėI(t) = −αeI(t)− αm/nβem/n
I (t). (38)

We adapt Chu et al.’s approach presented in [69] for developing a nervous system-
based control system for AUVs using DRL-based control. This control system transforms
local environmental information into an array S1 = (s1, s2), where s1 represents the direc-
tion of the ocean current.

s1 =

X · · · X
...

. . .
...

X · · · X


n×n,

(39)

where, X ∈ [0, 360] and s1 represent the ocean current direction, while s2 is a matrix with
information on obstacles and ocean currents. To ensure AUV safety, we define a forbidden
area around each obstacle considering changing ocean current directions and eddy currents.

s2 =



3 · · · · · · 3 3 3

3
. . . 2 2 2 3

...
. . . 1 1

. . .
...

...
. . . 1 1

. . .
...

...
. . . . . . . . . . . .

...
1 · · · 3 1 2 1


n×n,

(40)
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where “1” represents the obstacle area; “2” indicates the prohibited zone; and “3” is the
navigation region. The navigation state vector, S2 = (ϑ1, s1, s2, υ1), represents the angle
between vector ~α and ~β, where ~α and ~β depict the points from the current and initial
locations to the destination, respectively. This crucial value can be acquired through the
following method:

ϑ1 = cos−1 ~α · ~β
|~α| ·

∣∣∣~β∣∣∣ . (41)

The allocation of the destination within the AUV coordinate system is succinctly
represented by the direction variables (s1, s2), encapsulating the spatial arrangement of the
target point. This system is meticulously defined as follows:

(s1, s2) =


(0, 0) The first quadrant
(0, 1) The second quadrant
(1, 0) The third quadrant
(1, 1) The fourth quadrant.

(42)

4.4. Sensing

The underwater unmanned vehicle (UUV) is outfitted with an array of sensors, which
encompass passive, active, or fused sensing capabilities, enabling it to perceive the surrounding
environment, underwater entities, and fellow UUVs. As detailed in [30], precision in mea-
surements is attainable solely when the target resides within the sonar’s effective field of view.
Upon acquiring a set of N measurements during the initial leg, the UUV’s behavior dictates
both its operational mode and the corresponding turn angle δ ∈ [0, π], calculated through the
utilization of ᾱ. Operating under a non-preferential turning direction, the vehicle consistently
executes right turns, expressed in radians as the turn angle unfolds.

δ(ᾱ) =


π/2, if ᾱ ∈ [0, ω1) ∪ (π −ω1, π]
π/2, if ᾱ ∈ [ω1, ω2) ∪ (π −ω2, π −ω1]

ᾱ−ω1, if ᾱ ∈ [ω2, π −ω2]
(43)

The array configuration follows a structured pattern: the initial row corresponds to the
first leg, the subsequent row pertains to the second leg, and the final row is designated for
the broadside target. This systematic arrangement effectively organizes the data collected.
To visualize the operational process of the system, refer to Figure 4a, which visually captures
the step-by-step functioning of the system.

Song et al. [34] suggested using a color screening filter based on hue–saturation
value (HSV) to detect oil leaks. However, RGB color space, which is commonly used
in optical displays, is not accurate enough for oil spill segmentation. In HSV space, the
video can be converted to screen the oil spill region under the foreground mask. The
computation methodologies for the S and V channels are well-defined: S is determined as
v−min(R, G, B), while V is calculated as max(R, G, B). Equally integral is the calculation
of the H channel, which follows the subsequent process:

H =


60(G−B)/(V−min(R,G,B)) if V = R

60(B−R)/(V−min(R,G,B)) + 120 if V = G
60(R−G)/(V−min(R,G,B)) + 240 if V = B.

(44)

By applying the threshold screening process to the HSV model, areas suspected of
being affected by oil spills can be described effectively using the following equation:

Maski =

{
1, Ti ≤ Ii ≤ T̄i
0, others.

(45)

The process involves setting lower threshold Ti and upper threshold T̄i values for
each color channel. These thresholds are applied to individual pixel values, denoted as Ii,
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within the HSV color space. The resultant mask pixel value is assigned as 1 if and only
if the pixel values across all three channels satisfy the threshold conditions; otherwise, it
is assigned a value of 0. For a more comprehensive understanding of the HSV concept,
refer to Figure 4b, which provides a visual elucidation of the HSV model’s intricacies. This
visual aid serves to enhance clarity in grasping the nuances of HSV-based thresholding.

Figure 4. Sensing tracking target involves a sequential process depicted in (a). Initially, upon target
detection, the measured aspect angle remains unresolved, as evidenced by both port and starboard
rays extending from the vehicle. Subsequent maneuvering and data collection during the second
leg facilitate the completion of the resolve-ps-ambiguity behavior, leading to the determination of
target orientation. Once resolved, the keep-broadside behavior utilizes the obtained vehicle-relative
bearing measurement, indicated by a single ray extending from the vehicle, to effectively track the
target’s movements. (b) In the realm of optical sensing, a progression unfolds from the top left to
right, followed by a downward transition. The initial view showcases the original image captured.
Subsequently, the HSV image processing unveils a distinct perspective, enabling the extraction of key
color information. Finally, the journey culminates in the presentation of color masks, representing
specific regions of interest and aiding in targeted analysis. This holistic sensing approach harmonizes
various stages of processing, culminating in a comprehensive understanding of the tracked target’s
dynamics and optical properties [30,34].

Employing the HSV extraction method within the realm of autonomous intelligence
for autonomous underwater vehicles (AUVs) holds profound significance. This technique
empowers AUVs to not only detect but also comprehend intricate color details present
within their aquatic surroundings. Such an ability proves indispensable for the AUVs’
capacity to conduct thorough and insightful analyses of the underwater environment,
thereby enhancing their overall capabilities and contributions to underwater exploration
and research. AUV can detect objects based on distinctive color patterns, understand
its surroundings, aid in navigation and obstacle avoidance, and enhance underwater
observation and monitoring. Machine learning techniques can also be used for color-
based object recognition, identifying environmental changes, and predicting environmental
conditions. The development of autonomous intelligence through the combination of HSV
extraction and Machine Learning holds the potential to improve AUV’s adaptability and
interaction with the underwater environment, enhancing AUV’s mission performance in
various applications, such as resource exploration, marine environmental monitoring, and
scientific research beneath the ocean’s surface. More about the potential use of Machine
Learning in AUV operations is discussed in the future research directions chapter.
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4.5. Localization

We use two models for UUV localization. The first model, adapted from
Braginsky et al. [42], uses the Doppler velocity log (DVL) method. DVL sends out acoustic
beams and measures the Doppler frequency shift to compute the velocity and direction of
each beam. Relevant definitions and calculations are as follows: Rn

b is the rotation matrix
defined by Euler angles (φ, θ, ψ).

Rn
b (φ, θ, ψ) (46)

=

cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ
−sθ sφcθ cφcθ


Using the DVL method for UUV localization involves two models. The first sends

out acoustic beams and measures the Doppler frequency shift for each beam to compute
velocity and direction. To transform a vector from body-fixed to DVL coordinates, we use
the following coordinate transformation with cα = cos(α) and s(α). Correction of DVL
measurement requires considering seafloor-to-platform angles during velocity calculations.
Assuming the local seafloor is represented by the plane equation zi = a + bxi + cyi for
i = [1 · · · 4] representing the DVL’s four altitude measurements, the measurement can be
expressed in matrix form.

z = A
[
a b c

]T . (47)

Using the seafloor equation and linear algebra, we estimate angles φ̂ and θ̂s. Figure 5a
provides an illustration of the DVL and its measurement.

We are demonstrating GPS- or GNSS-based location techniques for unmanned surface
vehicles (USV). However, GPS measurements in water are inaccurate and misleading.
According to Jiang et al. [43], GPS works on the principle of 2D Cartesian coordinates (x, y)
and their respective covariances, using Universal Transverse Mercator (UTM) from the World
Geodetic System (WGS84) ellipsoid. This theory is illustrated in Figure 5b.

Figure 5. (a) Two-dimensional seafloor example. The blue line represents the DVL signal that
performs seafloor measurements and estimates. (b) GPS–GNSS Work [42].

Measurement by GPS zGPS
t provides the position and orientation parameters written

in the equation:

z GPS
t =

〈[
µ GPS

µ GPS
θ

]
,
[

Σ GPS 0
0 σ GPS

θ

]〉
,

µ GPS =

[
µ GPS

x
µ GPS

y

]
, Σ GPS =

[
σ GPS2

x σ GPS
xy

σ GPS
xy σ GPS2

y

]
.

(48)
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Assuming that position (x, y) and orientation (θ) follow a Gaussian probability density
function (PDF), the posterior given a GPS reading can be obtained according to the following:

p(xt | zGPS
t )∼ p(zGPS

t | xt)· p(xt)= f (x, y)· fWN(θ)·p(xt), (49)

where the PDF for the position is in

f (x, y)=
1

2π|ΣGPS|1/2 e
− 1

2


x−µGPS

x
y−µGPS

y

T

ΣGPS−1

x−µGPS
x

y−µGPS
y




, (50)

and the PDF corresponding to the orientation angle, which follows a wrapped normal
distribution:

fWN(θ)=
1

σGPS
θ

√
2π

∞

∑
k=−∞

e−(θ−µGPS
θ +2πk)2/2σGPS2

θ . (51)

4.6. Energy Supply

In addition to internal battery power, UUVs can utilize potential renewable energy
sources in the aquatic environment. Baik et al. [51], Sezgin et al. [52], and Tian et al. [53]
have explored this topic, and we summarize their findings in Table 6.

Lindsay et al. [59] and Fang et al. [63,64] suggest using track lines and a collaborative
approach with unmanned underwater vehicles and systemized underwater communication
resources to improve energy efficiency during underwater survey missions.

We propose using UAVs equipped with reconfigurable intelligence surface (RIS)
devices [70,71] as communication relays to expand coverage to previously unreachable
water areas.

The joint operation scenario for UAV, USV, and UUV is shown in Figure 6 and summa-
rized in Table 7.

Table 6. Summary of references regarding renewable energy sources that can be considered as
alternative sustainable energy supplies for UUV operations [53].

Sustainable Energy Sources The Form of Energy Generated Types of Vehicles That Can Apply It

Hydrogen–Oxygen fuel cell Heat–Electric energy ROV, AUV
Photovoltaic energy Heat–Electric energy AUV, USV, and UG
Ocean wave power Mechanical–Electrical energy USV, AUV

Heat energy Pressure–Electric energy USV, AUV, and UG with profilling float
Marine current energy Mechanical–Electric energy UG, AUV

Abbreviations: ROV, remotely operated vehicle; AUV, autonomous underwater vehicle; USV, unmanned surface
vehicle; UG, underwater glider.

In a series of sequentially arranged mission illustrations, we can form a comprehen-
sive overview of potential collaboration patterns in the execution of missions involving
various types of unmanned vehicles (Unmanned Aerial Vehicle (UAV); Unmanned Surface
Vehicle (USV); and Unmanned Underwater Vehicle (UUV)). This concept is supported by
networking and communication resources operating both underwater and on the surface.
This collaborative approach integrates diverse unmanned vehicle platforms and holds the
potential to revolutionize cross-domain mission execution.

Previous research references have discussed the benefits of each type of unmanned
vehicle separately within the contexts of maritime and aerial missions. UAVs prove valuable
for aerial monitoring and data collection, USVs are suitable for surface water monitoring
and patrols, and UUVs can perform exploration and reconnaissance in underwater depths.
However, to optimize these potentials, the integration of these elements into a coordinated
framework is necessary.
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Figure 6. Scenario joint-operation: UAV, USV, UUV.

In the described scenario, cooperation between UAVs, USVs, and UUVs is facilitated by
a robust network and communication infrastructure in both the air and water environments.
This enables these vehicles to share real-time information, coordinate movements, and
execute complementary tasks across various environmental layers. For instance, UAVs can
gather data from the air and transmit them to USVs on the surface, which can then direct
UUVs to conduct further surveys in the ocean depths.

The application of this concept holds extensive potential, ranging from environmen-
tal monitoring missions, military reconnaissance, and exploration of marine resources to
disaster response in maritime settings. By harnessing the strengths of various types of
unmanned vehicles and the support of cross-air and water communication networks, we
can create an adaptable, responsive, and efficient system for cross-domain missions. In
conclusion, through the amalgamation of ideas from various preceding research references,
we have delineated a comprehensive vision of how collaboration among unmanned vehi-
cles, supported by cross-air and water communication networks, can shape new working
paradigms in solving cross-domain missions. This concept harbors substantial potential for
optimizing resource utilization, expanding operational scope, and delivering innovative
solutions to diverse challenges in both maritime and aerial environments.
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Table 7. Summary of reference used to describe mission scenarios.

Research Contribution Outcome

Shen et al. [67] Buoy transmitter relay Cover communications for surface waters area
Qu et al. [9] Underwater wireless acoustic communication Cover long-distance transmission at sea depth

Al-Halafi et al. [10] Underwater wireless optical communication Cover short-range communication at sea depth
Gupta et al. [11] Underwater wireless communication radio-waves Cover communication at sea level

Page et al. [13,14] Direct electrical system A system that allows recharging for UUV
Luo et al. [29] Air–water boundaries communication Air–water communication link

Wang et al. [15–17] Omnidirectional propulsion and dive system A system that allows UUV free to move to all
directions in underwater

Shi et al. [22] Hydrojet propulsion and dive system Allows the UUV to capable of operating in surface
and underwater environments

Zhang et al. [21] Undulating propulsion and dive system UUV can move in an ideal fluid with a constant
velocity

Saback et al. [24,68] MPC algorithm Capable to optimize control of UUV based on the
prediction

Qiao et al. [25] Sliding mode control algorithm Considers simpler logical systematics but can
withstand disturbances and uncertainties

Chu et al. [69] Deep reinforcement learning control base

Control system based on the nervous system with
the ability to make decisions based on training and

past learning experience in recognizing the
environment

Wolek et al. [30] Use of fusion sensors
Make UUV have the ability to recognize the

environment, detect the presence of underwater
objects, or detect the presence of fellow UUV herds

Song et al. [34] Use of optical sensors Accurately used to recognize the environment
based on image capture

Braginsky et al. [42] Localization using DVL method Can compute velocity and direction UUV using
acoustic-beam

Perea-Strom et al. [43] Localization using GPS–GNSS

UUV localization using GPS–GNSS, while currently
only being able detect USV, will, in the future, be
applicable for types of UUV after the discovery of
air–water boundaries communication technology

Baik et al. [51–53] Supply of power Potential renewable energy based on fuel cell, solar,
wind, wave, thermal, and tidal current energy

Reference was used to describe mission scenario.

5. Performance Simulations

The previous section described a swarm of UUVs and their six leading supporting
technologies: underwater communication; dive system; control; sensing; localization; and
energy supply. These technologies are computationally simulated to estimate malfunctions
and performance gaps.

5.1. Underwater Communication

In the introduction to this paper, we stated our aim to achieve a minimum BER
and maximum SNR for the communication system [6]. Direct communication is ideal
for achieving this, while other methods such as acoustic communication have a long
transmission time [72], optical communication has a short range [10,73], and wireless radio
and satellite communications experience high attenuation in water.

We assumed that wired communication is the best alternative with low SNR and BER.
However, it lacks flexibility. Optical communication is the second-best option with low
SNR and BER, but it has limited range. On the other hand, the most equitable and feasible
alternative for use is the acoustic communication model, which is directly transmitted
underwater. Wireless and satellite communications perform poorly because they still
require intermediary media to connect between the aerial and underwater domains.
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5.2. Dive System

A diving system’s performance is measured by synchronizing the required energy
with the resulting buoyancy. It uses the δi = (itW − ibW) approach, where δi is a coefficient
attitude-dependent magnitude of the moment produced by any offset between the center
of mass (it) and buoyancy (ib), and (W) is the weight of the vehicle [15,19]. This statement
is supported by the simulation results shown in Figure 7.
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Figure 7. Simulation of a diving system using the law of buoyancy: δi = (itW − ibW) approach,
where δi is a coefficient attitude-dependent magnitude of the moment produced by any offset between
the center of mass (it) and buoyancy (ib) and (W) is the weight of the vehicle.

5.3. Control

The accuracy of the control system can be measured by the unmanned vehicle’s ability
to follow a predetermined path using Cartesian coordinates (X, Y, Z). The path-following
controller’s goal is to enable autonomous navigation through a series of waypoints rep-
resented by a vector pk, defined by the equation ωk = [xpk, ypk, zpk, Vpk]. The KPIs for the
control system are Vpk, which are shown in the simulation results in Figure 8.

Occupancy Map with AUV Path

Figure 8. Control system: these waypoints, represented by a vector pk, can be written in the equation
ωk = [xpk, ypk, zpk, Vpk], where xpk, ypk, and zpk are the absolute coordinates of the waypoints in the
environment frame. Vpk is the desired norm of the AUV velocity vector (mostly surge and dive) at
the considered waypoint (can be 0).
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5.4. Sensing

The UUV sensing performance, simulated as in Song et al. [35], converts environmen-
tal parameters into hue–saturation value (HSV) images for easy recognition via binary
computing systems. The HSV threshold values Ti and T̄i are set for each color channel, and
the pixel value on the mask is 1 only when the pixel values on all three channels meet the
threshold requirements. This is illustrated in Figure 9.

Figure 9. Sensing: works by changing the environment image into light–dark parameters, where the
light path (1 Ii ≤ T̄i) means it can be skipped and the dark band (0 Ti ≤ Ii) must be avoided.

5.5. Localization

Localization performance is indicated by the ability to identify UUV position and
orientation [43], with the GPS reading represented as p(xt | zGPS

t )! ∼ p(zGPS
t | xt) · p(xt) =

f (x, y) · fWN(θ) · p(xt). This is supported by simulation results in Figure 10.
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Figure 10. Localization: works by identifying (x, y) position and (θ) as orientation.
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5.6. Energy Supply

UUV battery performance depends on ambient temperature during charging. Low
temperatures can reduce capacity, while high temperatures can increase battery aging and
shorten lifespan. The equation Pload = (Re(Zr0))I2

p = ω0
M2

Ls
I2
PQs (Teeneti et al. [15]) can be

modified by adding temperature (T), as Pload = (Re(Zr0))I2
p = ω0

M2

Ls
I2
PQs · T. Figure 11

shows the optimal temperature range for storage capacity and lifespan.
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Figure 11. Energy supply: battery state of charge (SoC), which is affected by ambient temperature,
where Pload = (Re(Zr0))I2

p = ω0
M2

Ls
I2
PQs · T.

6. Performance Gaps

This research takes a general approach to the field of underwater vehicles and com-
munications with the aim of identifying gaps for further investigation.

1. Currently, underwater communication technology lacks a description of actual un-
derwater signal conditions and instead relies on calculated approaches using existing
research and surveys.

2. We only simulate buoyancy and its energy requirements, without making comparisons.
3. We have only measured UUV control system effectiveness based on time. However,

we have not compared models using other parameters such as system autonomy or
algorithm capabilities during system failure. Additionally, the optimal control algorithm
should trace the shortest path based on our assumptions.

4. We use the HSV method to convert environmental parameters into computer-readable
notations of 0 and 1. However, due to the complex underwater environment and its impact
on sensing functions, more research is necessary to identify additional parameters.

5. Underwater localization technology only tracks GPS locations, identifying (x, y) po-
sition and θ orientation. Real-time, accurate positions of underwater vehicles require
consideration of factors such as speed and orientation, whether diving or floating.
Combining sensor functions to form an IMU and calculate position with GPS is also
worth considering. Therefore, further research on this topic is needed.

6. Simulations provided an overview of the ambient temperature’s effect on the vehicle’s
state of charge capability for energy supply. However, further simulations are necessary,
including battery life calculations, as underwater vehicles operate remotely and system
failures due to power outages can be challenging to evacuate. Therefore, more research
is required on this topic.
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7. Future Research Directions

The study analyzes the performance gap between UUV operation support technology
and the latest research in the field. Further research on resource management, including
communication, dive system, control, sensing, localization, and energy supply, is being
considered. The Throp model approach, adapted from Menaka et al. [74] and the CATM
model by Jiang et al. [65], is used to optimize UUV operational capabilities using energy
network infrastructure resources, communication, and underwater environment monitor-
ing. Menaka [74] emphasizes the importance of resource management in communication
and underwater vehicle research, which will become the backbone of future sea-related
research. The study by Jiang et al. [65] supports this claim. Mathematical and computer
simulations are conducted using IoUT-assisted underwater communication and sensing
resource-sharing management.

In future research, we will propose joint operations of AUV, UUV, and USV, optimize
the air–water boundary communication model [29], and model the use of reconfigurable
intelligence surfaces (RIS) in AUVs to support these joint operations [71].

In the implementation of UUV operations, it is possible that Doppler effect may occur,
similar to what happens in mobile cellular communication. This is due to the changes in
the location and distance between the transmitter (TX) and receiver (RX) as the UUV moves
relative to such changes. The extent of the impact of this can be calculated using basic
mathematical approaches:

fD =

(
v± vd
v± vs

)
fS, (52)

where fD is the detected frequency; fS is the frequency emitted by the source; v is the
speed of sound waves through the underwater environment; vD is the relative detector
speed with respect to the underwater environment; and vS is the speed of sound waves. A
simple illustration is that there is a stronger frequency change as the source approaches
the detector, and the opposite occurs as the source moves away. The values of the other
parameters will automatically adjust to this phenomenon.

Some studies have anticipated this phenomenon and offered solutions, such as
Li et al. [75] who also discuss the Doppler shift phenomenon in underwater acoustic
(UWA) communication and propose a multicarrier orthogonal frequency division
multiplexing (OFDM) communication system to overcome this challenge. Furthermore,
Abdelkareem et al. [76] offer a Doppler shift compensation scheme by modifying the carrier
frequency of OFDM subcarriers to match the Doppler shift frequency. In the study by
Li et al. [75], an experiment was conducted using different numbers of subcarriers—512,
1024, and 2048—each with the corresponding number of active subcarriers: 484, 968, and
1936, respectively. The experiment focused on bit rates, employing a fixed guard inter-
val of Tg = 25 and an OFDM block duration T representing values of 42.8, 85.38, and
170.73, respectively. For these setups, the bit rates without coding resulted in 10.52 kb/s,
12.90 kb/s, and 14.55 kb/s. Furthermore, after applying a rate 2/3 channel coding, the bit
rates were observed to 7.0 kb/s, 8.6 kb/s, and 9.7 kb/s, respectively [75].

From the observation above, it can be concluded that the working mechanism of
OFDM multicarrier is capable of addressing the classic issue of Doppler shift, as indicated
by the constant interval. However, there are certain concerns related to the limitations of this
approach. Therefore, an examination of the Doppler effect, its implications, and strategies
by which to mitigate it should also be included as part of future research directions in the
field of unmanned underwater vehicles.

In addition to future issues regarding the technologies that can be integrated into AUV
operations, there are also concerns about potential applications that may arise in the future
given the rapid and advancing field of research. We predict that with the development of
communication technology and the increasing demands in underwater vehicle research
for various purposes such as resource exploration, marine environmental monitoring, and
scientific research, there may also be a demand for research in the field of maritime trans-
portation assisted by underwater vehicles, autonomous surface vehicles, and the utilization
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of Artificial Intelligence technology. Due to the limited references on the utilization of
underwater vehicles, autonomous surface vehicles, and Artificial Intelligence technology,
we have drawn some references from similar research fields applied to different devices and
environments, such as the use of autonomous aerial vehicles in some case studies, including
unmanned transportation options equipped with cognitive awareness capabilities that
enable UAVs to actively recognize and understand their surroundings, making smarter and
more responsive decisions in various situations, and studies using UAVs for autonomous
traffic monitoring and management assisted by Artificial Intelligence.

Among the researchers examining and presenting their findings are Filippone
et al. [77], who discussed the developments in urban air mobility and the use of rotor-
craft as air transportation options in urban areas. Furthermore, Barmpounakis et al. [78]
conducted a review on the application of unmanned aerial vehicle systems in trans-
portation engineering, covering current practices and future challenges. Additionally,
Cavaliere et al. [79] researched the development of proactive Unmanned Aerial Vehicles
(UAVs) to enhance cognitive contextual awareness, aiming to integrate Artificial Intelligence
and data processing technologies to enable UAVs to actively recognize and understand
their surroundings, making smarter and more responsive decisions in various situations,
including obstacle avoidance and mission adaptation based on environmental changes.
Vlahogianni et al. [80] conducted research on model-free traffic condition identification
using unmanned aerial vehicles (UAVs) and deep learning, developing a data processing
model for traffic analysis from aerial perspectives and training deep learning algorithms
to recognize traffic density patterns. Moreover, Trivedi et al. [81] developed a real-time
vision-based vehicle detection and speed measurement system using morphology and
binary logical operations. The research aims to create a method capable of accurately
detecting vehicles in real time using visual data from cameras and accurately measuring
vehicle speeds based on inter-frame movement, achieved by combining morphology and
binary logical operation techniques.

If successfully implemented in terrestrial and aerial environments, the possibility
of applying these techniques to surface and underwater environments in the case of
autonomous underwater vehicles may also be feasible. However, researchers must also
address factors that could lead to system and operational failures, considering the unique
underwater environment distinct from other environments.

Furthermore, the development of applying Machine Learning for optimization across
various sectors involving computation is also predicted to have an impact on the research
and development of unmanned underwater vehicles. Several studies supporting this
statement include Teng et al. [82], who investigated underwater target recognition methods
based on deep learning frameworks (DL); Bhopale et al. [83], who developed obstacle
avoidance systems based on reinforcement learning (RL) for autonomous underwater
vehicles (AUVs); and Sands and Timothy [84], who developed deterministic Artificial
Intelligence (AI) for unmanned underwater vehicles, where “deterministic” signifies that
decisions made by the AI system possess a high degree of certainty and definiteness. This
leverages predictability and consistency in the behavior of the AI system, implying that it
produces identical responses or actions when confronted with the same situation.

Research by Sun et al. [85] involved developing a three-dimensional path tracking
control system for autonomous underwater vehicles using a deep reinforcement learning
(DRL) approach. Another study by Sun et al. [86] focused on mapless motion planning
systems for AUVs using a policy gradient-based DRL approach. The main emphasis of
policy gradient-based methods is on learning policies that link environmental states to
actions that need to be taken by the agent. A notable advantage of this approach is its
capability to address continuous action spaces and exhibit stochastic (probabilistic) policies.

From the entire series of reviews, several proposals can be summarized which are
expected to be able to overcome common problems and issues regarding research in the
field of unmanned underwater vehicles, among others shown in Table 8.
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Table 8. Identified issues and proposed solutions.

Identified Issues Proposed Solutions

Cross-border communication [70,71]
Optimization can be achieved through collaborative mission management involving UAVs, USVs, and
UUVs, utilizing underwater communication network infrastructure resources. Additionally, the use of

surface buoys as relays, assisted by satellites, can help extend the coverage area.

Movement and dive system [16,21,22] Optimization can be achieved by employing biorobotic mechanisms or vehicles inspired by living
organisms. This approach is more efficient in generating propulsion and minimizing energy consumption.

Control system [24,25,68]
Optimization can be achieved through the implementation of adaptive control mechanisms, enabling

vehicles to autonomously react to obstacles along the mission path and optimize routes based on
predictions.

Sensing [30,34]

Optimization can be achieved by implementing a holistic sensing approach, wherein unmanned
underwater vehicles can employ various types of sensors or diverse measurement methods in an

integrated manner. This allows for a more comprehensive and profound understanding of the
surrounding environment.

Localization [42,43] Optimization can be achieved through passive underwater localization techniques that utilize the Doppler
Velocity Log (DVL) sensor to ascertain the vehicle’s position in relation to the seafloor surface.

Supply energy [51–53]
Optimization can be accomplished by harnessing the potential renewable energy available in the vicinity
of the operational area, while considering the ambient temperature of each model. This is essential as the

storage capacity of batteries is influenced by ambient temperature.

Machine learning [82–86]

All the sub-technologies that support the operation of unmanned underwater vehicles can be optimized
through the utilization of Machine Learning. This includes the optimization of the sensing system to

accurately recognize underwater objects, avoid and prevent collisions, make predictions, and formulate
measurable decisions, should similar challenges arise in the future.

The proposed solutions are expected to address common issues and challenges in the field of unmanned under-
water vehicle research.

8. Conclusions

From the overall discussion above, several conclusions can be drawn by the researchers.
First, the prospects for the research and development of autonomous underwater

vehicles (AUVs) in the future heavily rely on technological support. Collaborative commu-
nication technology capable of overcoming the limitations of signal transmission across
air and water or signal transmission at water depths, utilizing support from the under-
water communication network infrastructure, is crucial. It is essential for UUVs to have
energy-efficient propulsion systems, sustainable power supply, reliable navigation control,
and robust sensing capabilities, as the success of missions depends on these technological
supports, as demonstrated in several simulations where efficiency and optimization are the
primary focus of attention.

Second, resource management can enhance efficiency, and with good resource man-
agement supported by available infrastructure, joint operations involving AUVs, USVs,
and UUVs can be deployed simultaneously.

Third, future research is likely to focus on implementing new technologies that can poten-
tially be integrated to address research barriers and challenges. The application of autonomous
underwater vehicles similar to autonomous vehicles operating on land and in the air can
be considered by exploring new theories and utilizing the currently available technological
support, including underwater communication technology and Artificial Intelligence.
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