| Algorithm 1 IMTL-G algorithm with random-weighted multi-task losses |
|
Input: Initialized task-shared/specific parameters / and learning rate Output: 1. for t = 1 to T do 2. compute task scaled loss: ,… 3. compute weight: ~Dirichlet 4. compute total loss: = 5. compute gradient of shared feature: = 6. compute unit-norm gradient = 7. end for 8. = (1−I,), where I = (1,…,1), IMTL-G 9. update task-shared parameters = − () 10. for t = 1 to T do 11. update task-specific parameters = 12. end for |