Skip to main content
. 2023 Sep 4;23(17):7655. doi: 10.3390/s23177655
Algorithm 2. Model training.
1:   Initialize model parameters randomly as Θ, and total loss as Loss = 0;
2:   Repeat
3:      For each (Q,Yt,i) in Dtrain
4:         Perform forward propagation to compute Yt,i^;
5:         Compute mean square error LΘ=Yt,iYt,i^2;
6:         Loss+=LΘ;
7:         Perform backward propagation to computeΘ;
8:         update Θ, Θ=Θ+Θ;
9:      End
10:   Until Loss<σ;
11:   Output: Trained model DPVEM-DGD