Skip to main content
. 2023 Aug 28;23(17):7458. doi: 10.3390/s23177458

Table 2.

Estimation performance (mean of RMSEs) for each RNN model over three augmented test datasets (unit: °).

(a) Results for the test dataset with applied virtual gyroscope bias
Attitude Heading Avg. Improvement
Original 9.27 12.09 -
Rotation 6.60 8.25 30.3%
Bias 7.33 9.47 21.3%
Noise 7.98 11.02 11.4%
Rotation and Bias 6.63 8.64 28.5%
Rotation and Noise 6.60 9.04 27.0%
Bias and Noise 7.37 9.45 21.2%
All 6.00 7.85 35.2%
(b) Results for the test dataset with applied virtual noise
Attitude Heading Avg. Improvement
Original 9.27 12.11 -
Rotation 6.59 8.26 30.4%
Bias 7.32 9.49 21.3%
Noise 7.98 11.03 11.4%
Rotation and Bias 6.63 8.65 28.5%
Rotation and Noise 6.60 9.05 27.0%
Bias and Noise 7.36 9.47 21.2%
All 5.99 7.85 35.2%
(c) Results for the test dataset with applied virtual rotation
Attitude Heading Avg. Improvement
Original 30.43 38.57 -
Rotation 13.00 14.63 59.7%
Bias 25.98 33.79 13.5%
Noise 27.24 35.99 8.6%
Rotation and Bias 12.36 15.77 59.3%
Rotation and Noise 11.58 14.31 62.3%
Bias and Noise 25.81 31.95 16.2%
All 11.60 14.45 62.2%
(d) Results for the dataset from [39]
Attitude Heading Avg. Improvement
Original 31.49 54.77 -
Rotation 26.40 31.24 29.6%
Bias 30.90 45.16 9.71%
Noise 33.72 50.82 0.05%
Rotation and Bias 24.77 32.69 30.8%
Rotation and Noise 23.74 34.71 30.6%
Bias and Noise 34.36 49.01 0.69%
All 24.63 31.28 32.3%