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Abstract: Driver behaviour monitoring is a broad area of research, with a variety of methods and
approaches. Distraction from the use of electronic devices, such as smartphones for texting or talking
on the phone, is one of the leading causes of vehicle accidents. With the increasing number of
sensors available in vehicles, there is an abundance of data available to monitor driver behaviour,
but it has only been available to vehicle manufacturers and, to a limited extent, through proprietary
solutions. Recently, research and practice have shifted the paradigm to the use of smartphones for
driver monitoring and have fuelled efforts to support driving safety. This systematic review paper
extends a preliminary, previously carried out author-centric literature review on smartphone-based
driver monitoring approaches using snowballing search methods to illustrate the opportunities in
using smartphones for driver distraction detection. Specifically, the paper reviews smartphone-based
approaches to distracted driving behaviour detection, the smartphone sensors and detection methods
applied, and the results obtained.

Keywords: smartphone; smartphone sensors; driver monitoring; driver distraction detection

1. Introduction and Motivation

Driving a vehicle is a cognitively demanding task, and driver distraction and inatten-
tion, in general, have been major concerns for many years, as both significantly increase
the risk of accidents, especially for younger drivers (cf. e.g., [1–4]).

Driver distraction is the “diversion of attention away from safe driving activities to a
competing activity” [5,6] and occurs when “a driver is delayed in recognising information
needed to safely perform the driving task, because an event, activity, object, or person
within or outside the vehicle forces or induces the driver to shift attention away from the
driving task” [7]. Drivers may increasingly shift their attention from the driving task to non-
driving-related secondary tasks, for example, by taking their hands (manual distraction), eyes
(visual distraction), and/or mind (cognitive distraction) away from driving (cf. e.g., [8,9]).

Driver distraction by secondary tasks, i.e., smartphone use, is one of the main causes
of road accidents (cf. e.g., [10–12]), while avoiding road accidents has always been a
driving force for technological progress. Consequently, the detection of driver distraction
has become a popular research topic (cf. e.g., [13–15]), and vehicle manufacturers will
increasingly implement proprietary distraction detection systems to prevent accidents (cf.
e.g., [16,17]). As modern vehicles have become computers on wheels equipped with a
plethora of sensors [18,19], distraction detection systems can integrate the data generated
by vehicles during operation and infer certain types of distraction. However, distraction
detection systems can also be based on additional hardware and software that is brought
into the vehicle, such as smartphones [20–22]. Modern smartphones have a variety of

Sensors 2023, 23, 7505. https://doi.org/10.3390/s23177505 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23177505
https://doi.org/10.3390/s23177505
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5157-8131
https://orcid.org/0000-0002-5738-766X
https://orcid.org/0000-0002-3758-1617
https://doi.org/10.3390/s23177505
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23177505?type=check_update&version=1


Sensors 2023, 23, 7505 2 of 39

embedded sensors that can track position, rotation, and acceleration, as well as record
audio and video (of the driver) that can be used to monitor distracted driving [22].

The aim of this paper is to extend a previously published preliminary literature
review of scientific peer-reviewed published work on driver distraction using smartphones
[23]. Even though there have been several other literature reviews published on the
topic of driver distraction, in general (e.g., [2,5,6,24]), and driver distraction monitoring
(e.g., [3]), none of them have exclusively focused on distracted driver monitoring with
smartphone-based systems.

Our literature review is based on a previously published work that focused on a rather
small number of 16 selected papers and performs an extended author-centric literature
review, including, in total, 65 selected papers and combining the well-established method of
a systematic literature review with snowballing. This review method has been used to shed
light on previously published smartphone-driven distracted driver behaviour monitoring
studies using smartphones and compile the state of the art on this subject. More specifically,
this paper collects smartphone-based approaches to distraction detection, the smartphone
sensors and distraction detection methods used, and the results obtained. In doing so, we
contribute to the academic literature on driver state monitoring and summarise the state of
the art in smartphone-based distracted driver monitoring studies.

This paper is structured as follows: Section 2 includes the background on smartphone-
based driver distraction detection, Section 3 presents the research method used, an extended
systematic literature review combined with snowballing. Section 4 presents the results, a
description of the papers selected and a summary of each of the papers studied, focusing
on the aim of this work, the approach chosen, the detection method chosen, and the
smartphone sensors used, as well as some concrete results obtained. Section 5 provides a
discussion of the results, and Section 6 concludes the paper.

2. Background

The digital transformation wave is challenging the mobility and transport sector like
no other sector, creating a paradigm shift towards electric and automated vehicles enabled
by various digital technologies such as the Internet of Things, robotics, big data analytics,
and artificial intelligence [25–27].

Hence, modern vehicles have evolved into networked computers on wheels and are
equipped with a plethora of sensors, actuators, and information and decision-making
systems to ensure driving functionality and assist drivers in their driving tasks [18,19,28].
For several years, the automotive industry has been investing heavily in vehicle automation
to make driving safer, more efficient, and more comfortable [29]. However, despite great
progress and increasingly powerful assistance systems, full vehicle automation at higher
driving speeds and in a variety of driving scenarios is still a long way off [30]. For this
reason alone, the human driver will continue to play an important role in the vehicle as
the executor of the driving task in manual driving mode or as the operator of vehicle
automation systems in automated driving mode, which is more than what was assumed
a few years ago in the course of the vehicle automation hype. Driver monitoring will,
therefore, remain an important challenge, even in the context of partially automated
driving. This includes the prediction of driving behaviour, which has been a major area of
research in recent years [31].

Driving a vehicle is a cognitively demanding task, and driver distraction [32] and,
more generally, driver inattention [33,34] have been a major problem for many years,
as both significantly increase the risk of accidents, especially for young drivers [35,36].
Distraction and inattention are obviously major problems when driving manually, but
even when vehicle automation systems are activated, the driver must stay in the loop.
Driving a vehicle with activated SAE Level 2 assistance systems [30], the maximum level
of automation in most of today’s production vehicles, requires the driver to constantly
monitor the vehicle’s automation systems and keep their hands on the steering wheel. If
the driver removes their hands from the steering wheel, the vehicle automation system
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will remind the driver to reposition their hands after a period of time. In addition, if the
vehicle automation system reaches its system limits, the driver must immediately take over
the driving task again [30]. In both cases, driver distraction due to over-trust in partially
automated driving is a major safety risk that has led to fatal accidents [37].

There have already been literature reviews on driver distraction detection published
(cf. e.g., [2,3,6,24,32]); thus, we want to highlight how we distinguish our work from
other reviews (cf. Table 1). One key difference is that using a smartphone as a tool or
data source for approaches to prevent driver distraction is mandatory for the papers
included in this review. This is different to Young et al. [2] or Oviedo-Trespalacios, O.
[24], who focused on the different aspects of distraction coming from the use of mobile
phones inside a car. Dong et al. [3] also mentioned smartphone-based systems, but not in
detail. Kashevnik et al. [32] also had no emphasis on smartphones and created a holistic
framework from sensors to specific approaches for detecting driver distraction. Lee et al. [6]
concentrated on the elaboration of the definition of driver distraction, in general. In contrast
to the mentioned published literature reviews, this work is a systematical literature review
that also gives a more detailed and reflected view, as it contains both a short descriptive
summary for each reviewed paper as well as an aggregated summary including tables with
the study objective, analysis method, sensors used, and obtained results.

Table 1. Existing literature reviews: summary table of literature reviews on driver distraction
detection.

Author(s) Scope Limitations

Dong et al., 2010 [3] Focus on driver inattention moni-
toring

No in-depth review on
smartphone-based systems

Kashevnik et al., 2021 [32] Present holistic framework for de-
tecting driver distraction

No detailed review on smartphone
aspects

Lee et al., 2008 [6] Define driver distraction No focus on smartphone aspects

Oviedo-Trespalacios, O., 2016 [24] Focus on aspects of distraction
coming from the use of mobile
phones inside a car

Does not consider smartphone as a
tool or data source for approaches
to prevent driver distraction

Young et al., 2007 [2] Concentrate on distractions com-
ing from inside a vehicle

No consideration of smartphones
as tools or data source for ap-
proaches to prevent driver distrac-
tion

Distracted driving through the use of electronic devices, especially texting or other
types of mobile phone use while driving, is a major risk factor for vehicle collisions [35], as
it results in a secondary task that pulls the driver’s eyes off the road, the driver’s mind off
driving, and the driver’s hands off the steering wheel. The use of modern smartphones
while driving has, therefore, become one of the main causes of vehicle accidents with
injuries and fatalities [38,39]. Research has shown that young drivers, in particular, touch
their smartphones an average of 1.71 times per minute while driving for a variety of reasons,
including texting, browsing the Internet, listening to music, or watching videos [40].

There are several causes of road accidents, which can also occur in combination. For
instance, younger drivers are more likely to be involved in crashes due to inexperience,
poor driving ability, and risk-taking behaviours including excessive speed and drug and
alcohol use, while older drivers are more likely to be involved due to visual, cognitive,
and mobility problems [41]. Traffic volume, weather and lighting conditions, and specific
road sections are other causes of road accidents discussed in the scientific literature [42].
However, according to police officers, the use of mobile phones while driving is under-
recorded in traffic accident records [41], and phone use has been shown to significantly
reduce driver safety, which is of particular concern for young drivers, who have less driving
experience and tend to use phones more [43].

On the other hand, smartphones have also become an important platform for mobile
applications, in general, and for the transport and mobility sector, in particular. These
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include, for example, app-based vehicle information systems [44] or fleet management
apps, which, if used appropriately, can even lead to the prevention of risky driving
behaviour [45,46]. In addition, smartphone sensors and cameras are already being used
to enable driver monitoring systems, and researchers are exploring new ways to improve
detection accuracy.

Research has been exploring the use of the smartphone and integrated smartphone
sensors as a basis for the development of app-based driver monitoring systems [47,48].
Smartphone-based driver monitoring systems would have the added value of being able
to retrofit older vehicles with innovative camera and sensor technology, as they do not
rely on the vehicle’s sensors and actuators [49,50]. Researchers have already demonstrated
good accuracy in detecting distracting tasks from recorded images [48,51]. In addition
to focusing on the original distraction monitoring challenge, there are several sub-topics
addressed by the research, including driver detection (based on smartphone location),
gaze [52], or head pose detection [53], or the detection of different driver behaviours, such
as driver inattention [49], drowsiness [54], or risky driving [46].

As smartphone penetration continues to grow rapidly, so does the number of messages
received (via email, instant messaging, etc.). According to the Pew Internet Survey [55], the
share of Americans who own a smartphone has grown to 81% in 2019. As smartphones
are increasingly used while driving, smartphone-based distractions have become a major
problem [47]. This has exacerbated the case of phone-based distraction, as smartphones
offer more communication options than traditional cell phones.

As not only the prevalence but also the computational power of smartphones has
increased significantly, and as modern smartphones also allow the use of machine learning
approaches, the authors expect that a number of studies using smartphone driver distrac-
tion detection systems have been published in recent years. Both smartphone-based data
analysis and data-driven context-aware systems on smartphones have gained increasing
attention in recent years [56].

However, the use of smartphones as driver monitoring systems remains a double-
edged sword: the use of smartphones in vehicles can lead to driver distraction and accidents,
but their advanced architecture and powerful hardware and software can enable driver
monitoring applications that detect driver inattention and distraction, alert the driver,
bring the driver back into the loop, and, thus, support driving safety. The smartphone can
become a relevant platform for the development of driver monitoring systems, also in the
context of increasing vehicle automation. The aim of this article is to provide a systematic
overview of the current state of research in the development of smartphone-based driver
monitoring systems.

3. Method

A systematic literature review [57–59] is the method chosen to study the topic, and it
contains a set of steps: planning, scoping, searching, selecting, reporting, and analysing.
A preliminary execution of the method has already been published [23], whereas as an
extension to the method, a snowballing search complements the results reported and
analysed in this work (cf. Figure 1).
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Figure 1. Methodology combining systematic literature review steps and snowballing search.

3.1. Planning

At the planning step, the researchers defined the research questions (RQs) below:

• RQ1: What smartphone-based approaches for driver distraction detection have been
published in the last ten years?

• RQ2: What smartphone sensors and detection methods have been used?
• RQ3: What tangible results have been achieved by using smartphone-based detection

approaches?

Two researchers first developed the keyword string in three iterations, which was
aimed to not be too specific and not too generic. After each iteration, both authors applied
the string to several scientific databases and scanned the results. Based on the scan, they
tried to further improve the keyword string to obtain the most promising search results.

3.2. Scoping

Once the keyword string was determined, the three scientific databases IEEE Xplore,
Scopus, and Web of Science were selected (scoping phase). The databases were selected
based on their popularity amongst scholars and academics, which is due to their focused
and curated content, specialised coverage, reliable metadata, search tools, and citation
analysis capabilities. The search results were imported into a Mendeley (Mendeley reference
management software (https://www.mendeley.com/) (accessed on 24 July 2023)) group,
and the metadata of the papers were completed when needed. The 78 papers were then
imported into Rayyan (Software for Systematic Literature Reviews (https://rayyan.ai/)
(accessed on 24 July 2023)) and blindly provided to the two researchers for analysis. In the
selecting phase, the researchers each analysed all 78 papers, categorising them as “include”,
“exclude”, and “maybe”, and adding notes and labels. Through three rounds of joint
iteration, the researchers ultimately settled on 16 papers.

3.3. Searching

This step includes searching within a set of scientific databases as sources of infor-
mation, namely, ACM, IEEE Xplore, Scopus, and Web of Science (WoS). The scientific
databases and the search string were revised and agreed upon amongst the authors based
on the quality of the results obtained. The keyword search string used across the databases
is as follows: “(“*phone” AND (“sensor?” OR “data”) AND (“driver distraction” OR “driving
distraction” OR “distracted driving”) AND (“detect*”) AND NOT (“simulat*”))”. The search
was performed on 18 February 2021. The search string was used on the title, abstract, and
keywords (hence, ACM digital library could not be used, as it does not provide this title,
abstract, and keyword search). The researchers restricted the search to include papers
from the last 10 years (2011–2021) due to the huge growth smartphones have had in the
last decade and the changes in the automotive domain due to digitalisation. In Scopus,
the search excluded all other subject areas (i.e., medicine) except engineering, computer
science, and social sciences. In WoS, all the databases were used.

https://www.mendeley.com/
https://rayyan.ai/
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3.4. Selecting

Selecting papers from the scoping step (cf. Table 2) is a method to identify the most
relevant publications to the RQs. The researchers carried out this step independently
and with a blind process. After the blind process, the differences were discussed until an
agreement was reached. As illustrated in Table 3, 78 papers (60 of them unique) were the
input for the analysis, while the researchers agreed to use 20 of them (16 unique) for further
analysis, using inclusion/exclusion criteria.

Table 2. Scoping and selected paper results.

Database Scoping Step Selecting Step

IEEE 14 3
Scopus 16 7

Web of Science 48 10

In total
78

(60 unique)
20

(16 unique)

Table 3. Statistics of the selection steps of papers.

Researcher Initial Analysis Iteration 1 Iteration 2 Iteration 3

1
Incl.: 17
Excl.: 52
Maybe: 9

Incl.: 20
Excl.: 58

Incl.: 18
Excl.: 60

Incl.: 16
Excl.: 62

2
Incl.: 11
Excl.: 65
Maybe: 2

Incl.: 11
Excl.: 67

Incl.: 18
Excl.: 60

Incl.: 16
Excl.: 62

The following inclusion/exclusion criteria were agreed on:

1. Exclude results that are handbooks, Ph.D. theses, patents, or only abstracts;
2. Exclude results that are citations or conference proceedings;
3. Exclude duplicates and papers in languages other than English;
4. Exclude results that do not use smartphone data or phone data.

In particular, two researchers blindly looked at the 78 papers using the online tool
Rayyan in an initial analysis phase. The results of the initial analysis of the two researchers
were contrasted and discussed. At first glance, the results of the two researchers differed
stronger than expected (see column “Initial analysis” in Table 4; in total, 19% conflicts).
However, through two rounds of joint iteration, the researchers ultimately agreed and
settled on 16 papers. In Iteration 1, the papers categorised as “maybe” were discussed
jointly. Thereby, a clarification of detailed criteria for papers in the boundary was made
(i.e., include papers utilising WiFi/Radio signal strengths from smartphones), as well
as clarification on duplicates, where one researcher included the first entry, while the
other researcher included the second entry of the duplicate. In the second iteration, the
15 remaining conflicts (where one researcher wanted to include it, while the other researcher
wanted to exclude it) were resolved by jointly scanning and discussing the papers one more
time.

However, in the subsequent phase (Iteration 3), when all papers were analysed in
detail, the authors noticed that two papers did not use smartphone sensors at all, although
at first glance, it looked like they did. In particular, Kim et al. [60] mentioned a “resource
sharing device” and named the driver’s mobile phone as an example several times; however,
they used Raspberry Pi to collect camera images as input for a driver monitoring system
but stated that they planned to “verify the proposed system with a real device in the vehicle,
such as the driver’s mobile phone” in the future. Saeed et al. [61] detected risky behaviour
through differentiable patterns in received WiFi signals–patterns in a classification system,
and drowsy and inattentive driving are classified into four main gestures that reflect unsafe
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driving. These gestures include (a) yawning, (b) head jerks, (c) sideways motion, and
(d) smartphone usage. As a result, they found a representative received CSI waveform
corresponding to smartphone usage (which involves several different movements: pick-up,
move to front of face, look at phone, put back, hands back on the steering wheel). However,
it turned out that the WiFi signal used was not from the smartphone. Consequently, both
papers were excluded in Iteration 3.

Table 4. Statistics of the selection steps of the snowballing papers

Researcher Initial Analysis Iteration 1 Iteration 2 Consolidation

1 Incl.:
232+57

Incl.: 19+2
Excl.: 213+55

Incl.: 16+2
Excl.: 216+55

2 Incl.:
201 + 94

Incl.: 40 + 11
Excl.: 161 + 83

Incl.: 20 + 9
Excl.: 181 + 85

3 Incl.:
0 + 397

Incl.: 0 + 135
Excl.: 0 + 262

Incl.: 0 + 11
Excl.: 0 + 386

1, 2, and 3 (combined) Incl.:
433 + 151

Incl.: 59 + 13
Excl.: 374 + 138

Incl.: 36 + 11
Excl.: 397 + 140

Incl.: 31 + 11 + 7
Excl.: 402 + 135

After the selecting step, 16 unique papers remained. These consisted of the so-called
“Start set” papers (cf. Section 3.5). Figure 2 shows that amongst them are representatives
of all three databases used. Two of the 16 unique papers can be found in two of the
databases (Shabeer and Wahidabanu, 2012 [62], are in the result lists of Scopus and WoS,
and Paruchuri and Kumar [63] are in the result lists of WoS and IEEE), while one (Song et
al., 2016 [64]) is present in all three database result lists.

Figure 2. Selected papers and database where “Start set” papers were retrieved.

3.5. Snowballing

The method of snowballing was used to complement and enrich the research results,
presented in the preliminary systematic literature review [23], with additional papers.
These papers could not be found with the systematic literature review process executed
since they did not come up in the search step. Snowballing serves as a valuable complement
to the authors’ previous work [23] by effectively incorporating recent research findings
that were challenging to identify through the systematic literature approach without the
requirement of carrying out some steps in repetition. This method holds the potential to
yield more pertinent results, with particular emphasis on the inclusion of updated or newer
findings, especially with the forward snowballing search.

Snowballing refers to using the list of references from a set of papers, called the “Start
set”, to identify additional papers. The start set we have used is considered a good set
because it contains an adequate number of papers relevant to the topic originating from
different communities (cf. [23], Table 3), as well as a good mix of journal and conference
publications (44% and 56%, respectively). Furthermore, in the Start set, different authors
are represented from a mix of countries (i.e., Canada, China, Egypt, Germany, Greece, India,
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Philippines, Singapore, and the USA). These add to the diversity of the Start set, which is
important to have the necessary breadth of the research. The only aspect not adding to
the diversity of the Start set is the institutions carrying out the research, which are mostly
originating from academia (88%).

Two researchers executed the backward snowballing and then continued with forward
snowballing. With backward snowballing, papers were collected from the list of references
of the 16 selected papers that complied with the same set of inclusion/exclusion criteria
mentioned earlier. In addition to them, the following criteria were used:

1. Exclude white papers, technical reports, and pre-prints;
2. Exclude press releases, annual reports, and factsheets;
3. Exclude links to products, software code, or datasets;
4. Exclude papers that were not about driver monitoring.

Then, with forward snowballing, the papers citing these papers were checked. Again,
the same requirement was made, compliance with the inclusion/exclusion criteria.

In the initial analysis (cf. Table 4), two researchers performed backward and forward
selections and initially looked at 433 backward-selected and 151 forward-selected papers.
This process was carried out on 6 July 2021. Then, after two iterations where uncertain
papers were discussed (see columns Iteration 1 and Iteration 2), the resulting papers were
36 and 11 (from the backward and forward process, respectively). A third researcher
performed and updated forward selection on 24 May 2023 and added seven more papers.
The factor that excluded most papers was the lack of smartphone usage as a device for
driver behaviour detection. The papers were consolidated at the final consolidation step.

In the first iteration of the process, most of the papers were found clear to decide on
whether to include or exclude, as they were irrelevant to the topic. In the cases where
there was uncertainty, those papers were discussed. The titles and the abstracts of the
papers were read and, in some cases, the whole paper. In the second iteration of the
process, the researchers identified some papers that, at the first iteration, seemed relevant,
for example, papers on risky driver behaviour, but which were either not using smartphone
sensors or were on a broader topic, or even were not unique (in comparison to some other
papers already included). These papers were spotted, discussed, and decided on one by
one. That is, the researchers blindly inspected the papers and categorised them again as
“include”, “exclude”, and “maybe”. The “maybe” or borderline papers were inspected
by the researchers and then discussed in the consolidation step, and when necessary, the
researchers resolved any conflicts they had, reaching a consensus. In many cases, the full
papers needed to be read. In the consolidation step, all researchers discussed, in detail,
all papers, after the selection, and also decided that very similar papers be removed at
reporting (which had almost the same content but different publication venues; in such
cases, the latest publication was kept) so that they were not over-represented in the analysis.

Then, three researchers went through all the papers together and added labels when a
particular topic was investigated. The work was carried out during five workshops. The
workshops had a two-hour duration.

4. Results

This section presents the reporting of the results based on an author-centric structure
to answer RQs 1–3, given the new papers added from the authors’ previous work. The type
of sensors used in each work is summarised in Table 5. The summaries of the studies are
reported in a set of tables (cf. Tables 6–10).

Half (51%) of the papers are published in journals (appearing in Table 11) and the
rest (49%) in conference venues (appearing in Table ??). The papers are scattered across
multiple publication venues, and the combined number of papers in the top two venues
only represents ca. 16% of the papers in total.
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4.1. Author-Centric Analysis: Summary of Individual Results

This subsection presents the results of the author-centred analysis, including the
research objectives of their contributions, the smartphone sensors used, the analysis method
used, and the results obtained, in alphabetical order.

Ahn et al. [65] propose FuzzY inference (VERIFY), a system that recognises the vehicle-
boarding directions solely using inertial measurement unit (IMU) sensors of smartphones.
Using electromagnetic field (EMF) fluctuations, it detects when the smartphone is close
to the vehicle, whether the person is entering from the left/right/rear/front entrance of
the vehicle, and classifies the vehicle-boarding direction with a Fuzzy Inference System
(FIS). The authors report that the proposed system achieves 91.1∼94.0% accuracy, outper-
forming the other methods compared by 26.9∼38.4% and maintains at least 87.8% accuracy,
regardless of smartphone positions and vehicle types.

Ahn et al. [66] present a system capable of classifying the smartphone wearer into
“driver” or “passenger” by classifying if they are sitting left or right (left–right classifier—
LRC), front or rear (front–rear classifier—FRC), and if they have entered a vehicle (in-
vehicle classifier—IVC). Thereby, it is “utilizing the inconsistency between gyroscope and
magnetometer dynamics and the interplay between electromagnetic field emissions and
engine startup vibrations”. In their method, they use the smartphones’ IMU data in a
Bayesian classifier. They claim to identify the driver’s smartphone with 89.1% accuracy.
However, the solution is limited, as the smartphone “should remain static while an engine
is being turned on”.

Albert et al. [67] study the opinions of 37 experts through the Analytic Hierarchy
Process (APH) on smartphone apps that have the greatest potential to reduce injury crashes.
They refer to the following desirable types of smartphones: collision warning, texting pre-
vention (both no-typing and no-reading), voice control (both text to speech and commands),
and Green Box (in-vehicle data recorder—IVDR). Their results report which apps are less
likely expected to be widely accepted and used, and which are to be expected to gain public
support.

Alqudah et al. [68] classify different driving events using smartphone sensors (i.e.,
acceleration, gyro rotation, yaw, roll, pitch, rotation rate, quaternion, gravity, magnetic field,
and orientation). They make use of different classification techniques, like Support Vector
Machines (SVMs), decision trees, Discriminate Analysis, Naïve Bayes, k-nearest neighbour
(KNN), and ensembles, and achieve an accuracy of 98% with decision trees.

Baheti et al. [69] use a dataset collected by Abouelnaga et al. (2018) [70] for distracted
driver posture estimation and classified images to the following 10 classes: driving, texting
on mobile phones using the right or left hand, talking on mobile phones using the right
or left hand, adjusting the radio, eating or drinking, hair and makeup, reaching behind,
and talking to a passenger. They use convolutional neural networks (CNNs) and report
achieving 96.31% on the test set.

Bergasa et al. [54] present a system (DriveSafe) that uses computer vision and pat-
tern recognition techniques on the smartphone to assess whether the driver is drowsy or
distracted using the rear camera, the microphone, the inertial sensors, and the GPS. Dis-
tractions are evaluated with three different indicators (acceleration, braking, and turning),
and drowsiness as well as a distraction scores are calculated. Lane weaving and drifting
behaviours are measured to infer drowsiness, whereas distractions are based on sudden
longitudinal and transversal movements. Data from 12 drivers in two different studies are
used to detect inattentive driving behaviours, obtaining an overall precision of 82% at 92%
of recall.

Berri et al. [71] present an algorithm that allows the extraction of features from images
to detect the use of mobile phones by drivers in a car. The experiments are performed on a
set of images containing 100 positive images (people using phones) and 100 negative images
(people not using phones). SVM and its kernels are tested as candidates to solve the problem.
Tests on videos show that it is possible to use image datasets for training classifiers in real
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situations. A polynomial kernel (SVM) is the most advantageous classification system with
an average accuracy of 91.57% for the set of images analysed.

Bo et al. [72] distinguish between drivers and passengers, and detect texting using
smartphones, based on irregularities and rich microphone movements of users. The
approach is based on the observation that the majority of drivers carry their phones in their
trousers’ pockets, and they extrapolate that they enter a vehicle by a leg-lifting movement
(the direction of turning and sequence), thus distinguishing entering a vehicle from the left
or right. Then, they distinguish front or back seat positioning based on the vibrations felt
when wheels hit bumps or potholes. The authors consider both the time interval between
typing multiple sentences on smartphones and the frequency of the typing to discern
between no driving and driving (aka distraction) scenarios. Using the Hidden Markov
Model (HMM), they report a classification accuracy of 87% and a precision of 96.67% with
20 different typing cases of non-driving and driving in the parking lot.

Bortnik et al. [73] present an approach to detect if the smartphone has been used
while driving without accessing personal data. This driver distraction approach makes
use of Android dumpsys diagnostic data and detects online activities like social media,
calling, and texting, as well as offline activities like taking pictures and browsing media. A
synthetic case study is conducted and shows the ability of this approach to help, e.g., police
officers to examine driver distraction in a car accident investigation.

Caird et al. [74] provide a meta-study on the topic of driving and texting (reading and
typing), where the results from 28 studies are quantitatively presented and compared.

Castignani et al. [75] develop a smartphone-based event detection approach to identify
driving manoeuvres related to the driving style (calm or risky). They use a fuzzy system
that calculates a score for different drivers based on real-time contextual information, such
as route topology or weather conditions. The driver starts a trip with 100 points, but
when a driving-related event, such as hard braking, hard acceleration, over-speeding, or
aggressive steering, occurs, the driver loses points depending on the type and severity of
the event and its context (i.e., weather conditions and time of day). Similarly, the score is
increased again if no event occurs during 0.5 km of driving. In an evaluation study with ten
different drivers along a predefined route, an accuracy of more than 90% in event detection
is achieved when the calibration time is at least 17 min and the distance travelled is 9.21
km.

Chen et al. [76] develop algorithms for detecting and differentiating various vehicle
steering patterns, such as lane change, turn, and driving on curvy roads using non-vision
sensors on smartphones. The performance of the smartphone-based prototype system
is evaluated with a longer road test containing various road features, achieving 100%
accuracy in detecting both right and left turns, regardless of the phone’s placement and road
condition, 93% accuracy for lane changes when the phone is mounted on the windshield,
85% accuracy for lance changes when the phone is in the driver’s pocket, nearly 97%
accuracy in detecting curvy roads with the phone mounted on the windshield, and nearly
92% accuracy with the phone kept in the driver’s pocket.

Chu et al. [77] develop a set of ML-based algorithms to detect whether a smartphone
user is a driver or passenger in a vehicle. The basic idea is to detect micro-activities (entry
swing, seatbelt use, and pedal press) and event triggers (walking and pause, vehicle motion,
and timeouts) using smartphone sensors, which, in turn, allows for the distinction between
driver and passenger. Their first prototypes, running on Android and iOS operating
systems and tested with six users in two different vehicles, achieved overall recognition
accuracies of over 85%.

Chuang et al. [78] intended to estimate driver gaze direction to detect driver distraction.
In their online classifier approach, they record videos with the front camera of a smartphone
placed in front of the driver. In the first step, the head pose is detected and delivers features
for the eight-class gaze classifier. Classification is conducted with a multi-class linear
support vector machine (SVM) classifier. Due to the poor generalisation performance of the
online classifier training, offline classifier training with an in situ approach is performed.
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Therefore, videos are collected only once for a given setup of driver, vehicle, and camera
position. Four experimental scenarios with four different training techniques are tested,
leading to the conclusion that the proposed training technique comes close to the chosen
standard. Splitting the eight classes from the gaze classifier in safe and unsafe driver
behaviour, the classifier tested on the four experiments shows classification accuracies
between 86.4% and 97.4%.

Dai et al. [79] identify the driver’s talking direction, namely, front, right (when the
driver is sitting on the left side), and back, from running vehicles. They use two micro-
phones on a smartphone and a K-means clustering algorithm to first identify whether the
driver is talking or not and then classify the sound into one of the three driver talking
directions. The algorithm performs 95% accuracy on average for four different smartphone
placements, at least 92.2% accuracy on three specific scenarios (i.e., garage campus, down-
town, and windows opened or closed) and 90.3% accuracy when the window is opened,
i.e., when there is the presence of noise from outside the vehicle. The results are based on
23 collected hours of voice data from 20 participants, using two brands of phones and two
vehicles.

Dua et al. [49] develop an ML-based system that uses the front camera of a windshield-
mounted smartphone to monitor and rate driver attention by combining multiple features
based on the driver state and behaviour, such as head pose, eye gaze, eye closure, yawns,
and the use of cell phones. Ratings include inattentive driving, highly distracted driving,
moderately distracted driving, slightly distracted driving, and attentive driving. The
evaluation with a real-world dataset of 30 different drivers showed that the automatically
generated driver inattention rating has an overall agreement of 87% with the ratings of five
human annotators for the static dataset.

Dua et al. [49] aim to identify driver distractions using facial features (head pose, eye
gaze, eye closure, yawns, the use of smartphones, etc.). The smartphone’s front camera is
used as well as three approaches: in the first, convolutional neural networks (CNNs) are
used to extract the generic features and then a gated recurrent unit (GRU) is applied to
obtain a final representation of an entire video. In the second approach, besides having
the features from a CNN, they also have other specific features, which are then combined
using a GRU to obtain an overall feature vector for the video. In the third approach, they
use an attention layer after applying long short-term memory (LSTM) to both specific
and facial features. Their automatically generated rating has an overall agreement of 88%
with the ratings provided by five human annotators on a static dataset, whereas their
attention-based model (third approach) outperforms the other models by 10% accuracy on
the extended dataset.

Eraqi et al. [50] aim to detect ten types of driver distractions from images showing the
driver. They use (in one phase) the rear camera of a fixed smartphone to collect RGB images,
in order to extract the following classes with convolutional neural networks (CNNs): safe
driving, phone right, phone left, text right, text left, adjusting radio, drinking, hair or
makeup, reaching behind, and talking to passenger. Thereby, they run a face detector, a
hand detector, and a skin segmenter against each frame. For the results, first, they present
a new public dataset, and second, their driver distraction detection solution performs with
an accuracy of 90%.

Gelmini et al. [46] make use of the smartphone for four-dimensional driving-style
risk assessment, based on inertial sensors included on the smartphone. The approach to
assessing risk is based on the following four cost functions: speed (relating the measured
speed to the ideal speed for a specific road), longitudinal acceleration (analysing the driving
behaviour during any speed variation), lateral dynamics (considering the yaw rate or speed
when the driver is changing direction), and smartphone hand usage. They apply the
use of thresholds to detect the use of the smartphone, based only on acceleration and
angular velocity measurements, whereas the authors support that other methods such as
deep learning or ensembles could be alternatively explored. Their results indicate simply
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“safer” as opposed to “less safe” driver profiles, whereas data are collected from over 5000
kilometres of varied car trips.

He et al. [80] develop a system to determine the location of smartphones in a vehicle
on a seat level (front/back and left/right) only using embedded sensors. To detect if
a smartphone is left or right from another phone in a vehicle, He et al. [80] use the
centripetal acceleration in their algorithm, combined with techniques for synchronisation
and amplitude calibration. The main idea is that in the event of a turn, the acceleration
differs according to the position of the car (left/right). To identify whether a phone is in
front of the car or in the back is performed with the help of the vertical acceleration signals.
In the event of an uneven surface, the vertical acceleration differs in time. He et al. [80]
combined this basic idea with calibration, re-sampling, and sliding-window techniques
to create an algorithm to detect the front or back position of a smartphone. Comparing
different experiments (four different smartphones, two different cars, and ten different
positions), positioning accuracy reached between 70% and 90% in real city environments.

Hong et al. [81] build an In-Vehicle Smartphone-based Sensing Platform (IV-SP2) to
assess if a person has an aggressive driving style. They choose two methods for finding the
ground truth: one is based on self-reports of accidents and speeding tickets and the other
is based on the Manchester Driving Behaviour Questionnaire (DBQ) and some additional
questions concerning aggressive driving. Data are collected with 22 drivers over 3 weeks,
leading to 1017 trips and 542 hours of data in total. Hong et al. [81] create three naïve Bayes
classifiers for each ground truth using different combinations of sensor data. Model 1 is
a smartphone-only model, Model 2 adds a Bluetooth-based on-board diagnostic (OBD2)
reader, and Model 3 also includes an inertial measurement unit (IMU). Model 3 performs
best with 90.5% accuracy for the self-report method and 81% accuracy for the questionnaire
method. Model 1, using only smartphone sensors and no data about the car, has an accuracy
of 66.7% for both methods.

Janveja et al. [52] present a smartphone-based system to detect driver fatigue (based
on eye blinks and yawn frequency) and driver distraction (based on mirror scanning
behaviour) under low-light conditions. In detail, two approaches are presented—in the
first, a thermal image from the smartphone RGB camera is synthesised with a generative
adversarial network, and in the second, a low-cost near-IR (NIR) LED is attached to the
smartphone—to improve driver monitoring under low-light conditions. For distraction
detection, statistics are calculated if the driver is scanning their mirrors at least once every
10 s continuously during the drive. A comparison of the two approaches reveals that the
“results from NIR imagery outperforms synthesised thermal images across all detectors
(face detection, facial landmarks, fatigue, and distraction).” As a result, they mention 93.8%
accuracy in detecting driver distraction using the second approach, the NIR LED setup.

Jiao et al. [82] introduce a hybrid deep learning model to detect different distracted
driver actions as well as a new dataset. The dataset was created with a smartphone placed
in the right upper corner of the vehicle and covered eight different actions (e.g., safe
driving, eating while driving, drinking while driving, or talking with passengers). The
model consists of four different modules. The first module estimates the human body
pose (OpenPose), the second module processes the data and constructs features, the third
module extracts keyframes (K-means), and the last module recognises actions (LSTM).
After experimenting with different combinations of modules and features as well as tuning
hyperparameters, the best model shows an accuracy of 92.13%.

Johnson et al. [83] present the MIROAD system that uses the dynamic time warping
(DTW) algorithm for classifying driver behaviour based on a set of events, like left and
right manoeuvres, turns, lane changes, device removal, and excessive speed and braking.
The data collection and processing is carried out on a smartphone. The method also uses
the Euler representation of device attitude. The system also produces audible feedback if a
driver’s style becomes aggressive, as well as the information leading up to an aggressive
event, including video, location, speed, and recent driving manoeuvres. The results
presented refer to driving events mostly, i.e., the U-turn was correctly identified 23% of the
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time (using the accelerometer) and 46% of the time (using the gyroscope); 77% of the cases,
the U-turn was correctly classified, whereas 97% of the aggressive events were correctly
identified.

Kapoor et al. [48] design a system capable of detecting distracting tasks by the
classification of driver images through a pre-trained convolutional neural network (CNN)
model(s). Driver images of the “custom dataset” are taken from the smartphone camera,
and the CNN models can even run within the constraints of an Android smartphone. Thus,
“the system is designed to distinguish the state of the driver in real-time using only an
Android phone (mounted on vehicle dashboard) without any need of additional hardware
or instruments in the vehicle.” In the case of a detected distraction, an alert is generated
with a beep sound. The ten classes of distraction are taken from the State Farm Distracted
Driver dataset, which is used for fine-tuning the CNN models. Finally, they state an
accuracy between 98 and 100% for four classes (e.g., calling or texting on mobile), if they
fine-tune with public datasets.

Kashevnik et al. [5] present a methodology for the creation of a multimodal corpus for
audio-visual speech recognition using smartphones. They consider use cases that require
speech recognition in a vehicle cabin for interaction with a driver monitoring system and
use cases where the system detects dangerous states of driver drowsiness and starts a
question–answer game to prevent dangerous situations. Finally, based on the proposed
methodology, they develop a mobile application that allows them to record a corpus for
the Russian language.

Khurana and Goel [84] detect phone usage of drivers using on-device cameras.
Thereby, they present a software-based solution that uses smartphone camera images
to observe the vehicle’s interior geometry and detect the phone’s position and orientation.
For model training, they use continuous video recording to obtain a large dataset of images.
In addition, they use IMU sensors (accelerometer and gyroscope) to detect if the phone is
docked; however, this is not described in detail. The authors’ system is able to distinguish
between driver and passenger use of the phone. The authors train random forest classifiers
on data collected in 16 different cars from 33 different drivers and claim to have achieved an
overall detection accuracy of about 90 % to distinguish between the driver and passenger.
Thereby, the phones can be held by the persons or mounted on a docking station. However,
it is not possible to collect data for the phone in the in-hand position in real-time.

Koukoumidis et al. [85] use a windshield-mounted phone to detect current traffic
signals with its camera, collaboratively communicate and learn traffic signal schedule
patterns, and predict their future schedule. They apply image processing techniques such
as colour filtering, edge detection, and Hough transformation, and use colour confidence
intervals of candidate areas in video images to detect traffic signals. In addition, machine
learning (Support Vector Regression) is applied to predict the traffic light schedule, IMU
sensors are used to infer the orientation of the traffic light and improve the detection quality,
and GPS is used to calculate the distance to the signal. The evaluation for two different
deployment scenarios shows that the system correctly detects the presence (or absence)
of a traffic signal in 92.2% and 87.6% of cases, respectively. The timings for the preset
traffic signals are predicted with an average prediction error of only 0.66 s and those for the
traffic-adapted traffic signals with an error of 2.45 s.

Li et al. [86] combine different data from smartphones and WiFi signals to identify 15
risky driving actions (e.g., snoring, head turned, the use of phones, hands on the steering
wheel). The system called WisDriver classifies risky driving actions into three types: head
movement, arm movement, and body movement. It uses the wireless signal information
(Channel State Information—CSI) to identify the driver’s posture, and together with the
built-in smartphone sensors (such as accelerometers, gyroscopes, and magnetometer), it is
used to detect the vehicle’s status (speed and direction). The approach is field-tested on 20
drivers and indicates an accuracy of 92% in identifying dangerous driving behaviours.

Lindqvist and Hong [87] conduct user-interaction-related research for the design of
driver-friendly mobile phone systems that do not distract drivers. They present initial
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interaction designs for a mobile phone system that has the potential to encourage people
not to use their mobile phones while driving. They use different concepts such as context
awareness for burden shifting from caller to call recipient, time shifting and activity-based
sharing to address the mobile information needs of drivers and the people who might call
them. Their core idea is that drivers will not be distracted by their mobile phones unless
someone they know and trust is calling in an emergency.

Liu et al. [88] present a system that can recognise internal driver inputs such as
steering wheel angle, vehicle speed and acceleration, and external perceptions of the road
environment (e.g., road conditions and front view video) using a smartphone and an IMU
mounted in a vehicle. The accuracy is assessed using more than 140 trips collected over a
three-month period. The steering wheel angle is estimated with a mean error of 0.69, the
vehicle speed is derived with a deviation of 0.65 km/h, and binary road conditions are
estimated with 95% accuracy.

Ma et al. [89] propose a scheme for identifying dangerous driving behaviour and
have developed an algorithm for the automatic calibration of smartphones based on the
determination of the sensor noise distribution when a vehicle is being driven. Their system
uses the corrected sensor parameters to identify three types of dangerous behaviours:
speeding, irregular direction change, and abnormal speed control. They evaluate the
effectiveness of their system in realistic environments and find that, on average, it is able
to detect the events of driving direction change and abnormal speed control with 93.95%
accuracy and 90.54% recall, respectively. In addition, the speed estimation error of their
system is less than 2.1 m/s.

Mantouka et al. [90] use data collected from smartphone sensors to identify unsafe
driving styles based on a two-stage K-means clustering approach and use information on
the occurrence of harsh events, acceleration profiles, mobile phone use, and speeding. Trips
where the driver uses the smartphone are classified as distracted trips. Variables used are
harsh acceleration and hard brakes per km, a smoothness indicator, the standard deviation
of acceleration, the percentage of mobile phone use, and the percentage of speeding. In
the first clustering, the authors separate aggressive from non-aggressive trips, while in
the second clustering, they distinguish normal trips from unsafe trips. Finally, the trips
are categorised into six groups: aggressive trips (aggressive trips, distracted trips, and
risky trips) and non-aggressive trips (similar: safe trips, distracted trips, and risky trips).
The authors claim that 75% of the 10,000 recorded trips (from 129 drivers) did not have
aggressive features, and in just 8% of the trips, the driver was actually distracted.

Mantouka et al., in a follow-up publication [91], present a driving recommendation
framework for improving the driving behaviour of individuals regarding driving aggres-
siveness and riskiness. The data used in the development are recorded with a smartphone
app during 153,953 trips from 696 distinct drivers. Two different levels are considered
within the approach: trip (specific trip) and user level (overall driving behaviour). For each
level, a reinforcement learning (RL) controller based on the deep deterministic policy gradi-
ent algorithm (DDPG) is created. The results in a microscopic simulation using Athens’s
road network show that it would lead to safer and less aggressive driving, but the traffic
conditions, in general, do not improve.

Meiring et al. [92] investigate driving style analysis solutions and the machine learning
and artificial intelligence algorithms used. The following driving styles are described:
normal/safe, aggressive, inattentive, and drunk driving, as well as driver fatigue and
driver distraction. They identify and describe several fields of applications for assessing
driver styles, for example, driver assistance, drowsiness detection, distraction detection,
early warning applications, accident detection, and insurance applications. Meiring et al.
[92] elaborate on the most popular algorithms and identify fuzzy logic inference systems,
hidden Markov models, and Support Vector Machines to be of special interest in the future.

Meng et al. [93] introduce the system OmniView, which helps the driver to be aware of
all surrounding vehicles. OmniView uses smartphones and their cameras to compute a map
with the relative positions of all the vehicles next to a car. Communication is conducted
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via Dedicated Short-Range Communication (DSRC) and vehicles identify each other with
an image of themselves. The system includes five functional parts: vehicle detection,
vehicular communication, image matching, position calculation, and map computation.
Meng et al. [93] evaluate all these parts separately either by actual testing/calculation or
simulation. They conclude that OmniView might be able to create a map of the surrounding
vehicles in real-time and assist drivers.

Mihai et al. [53] describe an approach to create an estimator for head orientation in the
automotive setting using the front camera of a smartphone. They test several smartphones,
implement face detection and head orientation detection on an iPhone 6, and carry out a
case study with two scenarios. The first scenario includes a real vehicle and tests subjects
performing specific tasks to obtain the head orientation detection running (calibration
procedure). The second scenario is conducted in an ECA (https://www.ecagroup.com/
accessed on 24 July 2023) Faros Simulator. Test subjects drive in an urban environment,
and sound alarms go off when no face or no head orientation is detected. The collected
data indicate that some more work must be conducted, i.e., the head orientation has to be
aligned with the coordinate system of the smartphone.

Nambi et al. [94] develop Harnessing Auto-Mobiles for Safety (HAMS), a smartphone-
based system to monitor drivers and driving. The driver monitoring system uses the front
camera of a smartphone and detects driver drowsiness, driver distraction, and the driver’s
gaze. The basis for these detection tasks is the localisation of facial landmarks. These
landmarks are combined with different metrics to detect, i.e., eye closure. For driving
distraction, a pre-trained model is fine-tuned to detect if a driver is talking on the phone.
Gaze detection is conducted with OpenCV-implemented algorithms like Perspective-n-
Point and Random Sample Consensus together with the LeNet-5 network. The back camera
of a smartphone is used to monitor the actual driving. Two tasks are implemented: vehicle
ranging and lane detection. Vehicle ranging uses a deep neural network (DNN) to estimate
the distance to the vehicle in front. A three-way lane classifier with the help of a pre-trained
AlexNet and a support vector machine (SVM) is built for the actual classification. The
HAMS system is implemented as an Android app and is tested on two smartphones.

Omerustaoglu et al. [51] integrate sensor data into vision-based distraction detection
models to improve the performance of distraction detection systems. They construct a
two-stage distracted driving detection system to detect nine distracting behaviours using
vision-based convolutional neural network (CNN) models and long short-term memory–
recurrent neural network (LSTM-RNN) models using sensor and image data together.
Specifically, both hybrid and predictive level fusion increased overall accuracy by 9%, from
76% to 85%, compared to using image data alone. They also found that using sensor data
increased the accuracy of detecting normal driving from 74% to 85%.

Othman et al. [95] collect data from 633 different drivers to create an extensive dataset
for driver monitoring and behaviour analysis. Smartphones are used to gather data with
their embedded accelerometer, gyroscope, and magnetometer. In addition, the mobile
devices recorded videos which are then fed into deep neural network models to obtain
features, like driver’s head pose, safety belt state, and mouth-openness ratio, to detect
dangerous states. A smartwatch is also used to obtain the heart rate of the driver. Data
evaluation is conducted with an unsupervised learning approach (K-means) to detect
clusters in certain features regarding critical events. The results show that drivers tend to
not use seat belts in cities, and drowsiness is more common on highways.

Pargal et al. [96] introduce an approach to let a smartphone detect if it is used while
driving and who uses it (driver, passenger). The idea behind this is that drivers want to
use the phone while driving and use methods to fool systems that recognise driving with
the help of, e.g., cameras or Bluetooth. The authors, therefore, propose a blind approach,
only using the ambient mechanical noises within the car for detection. The final single-step
algorithm shows F1 scores from 0.75 to 0.875 for different smartphone placement scenarios,
although the authors state that there are still some issues to make the system robust.

https://www.ecagroup.com/
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Park et al. [97] present an Automatic Identification of Driver’s Smartphone (AIDS)
system, which uses smartphone sensor information to identify the position and direction of
the smartphone, as well as vehicle-riding activities, such as walking towards the vehicle,
standing near the vehicle while opening a vehicle door, entering the vehicle, closing the
door, and starting the engine. Entering a vehicle is detected by analysing electromagnetic
field (EMF) fluctuations, significant vertical accelerations caused by sitting-down motions,
and vehicle door closing sounds (VDCSs). Vehicle entering directions (left or right) are
differentiated by analysing the body rotations using EMF. Seated (front or rear) rows are
differentiated by analysing subtle EMF changes monitored when starting the engine. The
results using seven different vehicles show that entering a vehicle is detected with a 90–93%
true positive rate (TPR) and a 91–93% true negative rate (TNR), while entering directions
are identified with an 87–95% TPR and an 84–90% TNR. Moreover, TPR and TNR of seated
row classification results are found to be 82–99% and 79–95%, respectively. Finally, AIDS
identifies the driver’s phone with an 83–93% TPR, while the TNR is 90–91%.

Paruchuri and Kumar [63] present how a smartphone camera can be used to provide
context and/or the position of the smartphone. The paper focuses on distinguishing the
driver from the passengers by comparing images from the smartphone camera to reference
images. In particular, they compare the angle difference of reference objects (e.g., ventilation
grille) and calculate the distance between images to locate the phone position. As a result,
unfortunately, 15 out of 38 images are registered incorrectly.

Punay et al. [98] present a summary of the “unDivided” mobile application, which
utilises GPS data to calculate vehicle speed and warns when certain speed limits are
exceeded. The application auto-starts when driving is detected (the speed of human
running/walking is exceeded). When driving is detected, the application automatically
turns down and answers back with messages when the driver receives calls or messages,
while it allows emergency calls to go through, to keep distraction to the necessary minimum.
In addition, it tracks the users’ location, provides navigation features, and implements
e-call functionalities. However, no evaluation is available, as the system seems to be in a
prototypical state.

Qi et al. [99] present a human activity detection system for two areas inside the vehi-
cle based on audio information (chatting, silence, etc.) and context information (clear or
crowded traffic) for areas outside the vehicle, which is derived from IMU-based vehicle dy-
namics detection (brakes, lane changes, turns, and stops). Inside the vehicle, a microphone
is used to record audio and infer human activities. For context information, they used their
(IMU- and GPS-based) activity detection methods with a convolutional-neural-network-
based model to derive a data fusion model (including OBD-II data) for activity detection.
They report 90% detection accuracy for seven different activities by combining data from
multiple sensors.

Qi et al. [100] present a system called DrivAid, which collects and analyses visual and
audio signals in real-time, as well as data from IMU and GPS sensors to detect driving
events. The following events are of interest: (i) detecting vehicles, people, traffic signs and
speed limits from the front view camera; (ii) detecting vehicles and people from left and
right blind spot cameras; (iii) estimating head poses from the face camera; and (iv) monitor-
ing turn signal usage from audio streams. The system uses computer vision techniques
on a vehicle-based edge computing platform to complement the signals from traditional
motion sensors. Using deep learning inference, an average of 90% event detection accuracy
is achieved.

Rachmadi et al. [101] propose a driver abnormal behaviour detection system that uses
only two sensors from a smartphone (accelerometer and gyroscope). With this data, four
normal and five dangerous driving behaviours of motorcycle drivers can be detected with
the help of a multi-layer perceptron (MLP). Normal behaviours are, e.g., turning left/right
and going straight; dangerous actions include, e.g., sudden acceleration or braking. The
dataset is created with the help of five different motorcycle riders; the sampling rate is 5 s
with a sampling window of 100 ms. The architecture is divided into three common parts:
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(i) data reading, (ii) data processing and training phase, and (iii) model evaluation. The
best model shows an accuracy of 97.5% and takes 45 ms for calculation.

Shabeer and Wahidabanu [62] detect incoming or outgoing phone calls while driving
using an antenna located on the top of the driver’s seat for detecting when the driver
uses their mobile phone. Thereby, a GSM signal connection between the smartphone and
other entities of the GSM Network Architecture (e.g., mobile switching centres and base
stations with associated base transceivers) is detected. If a call is detected, a low-range
mobile jammer is used to prevent drivers from receiving base station signals, with its range
covering only the driver seat. However, no evaluation is available, as the system seems to
be in a prototypical state.

Singh et al. [102] do not detect driver distraction itself but develop a system that alerts
the driver in case of detected vehicles in a blind spot, thus assisting the driver if they
are distracted. In particular, the developed smartphone-based system monitors the blind
spot on the driver side in real-time and alerts the driver about the presence of a vehicle.
Using images from the smartphone’s front camera, two approaches are explored based on
intensity variation and contour matching to detect a vehicle in the blind spot. They state
that their system is able to detect vehicles in the blind spot with an accuracy of 87% in
real-time and warn the driver accordingly.

Song et al. [64] detect driver phone calls by using audio and voice recognition, com-
bined with the smartphone’s call state. Thereby, they use a client–server-based system with
smartphones being the clients, which is extended with a unidirectional microphone and
placed in front of the driver seat, together with an on-board unit being the server. They state
that the system is able to use the driver’s voice features to differentiate a driver from other
passengers, thus also determining whether the driver is participating in a current phone
call or not. In particular, first, they collect the driver’s audio signals for training; second,
transform them into feature vectors by feature extraction; and third, train a speaker model
using the driver’s feature vectors. The detection system will cut off the phone call if the
similarity score is higher than a certain threshold. An evaluation shows that the system’s
true positive rate (TPR) is above 98% for three different evaluated passenger positions,
over 90% with the impact of noise, 80% if three people are talking, and 67% if four people
are talking.

Torres et al. [103] propose a non-intrusive technique that uses only data from smart-
phone sensors and machine learning to automatically distinguish between drivers and
passengers when reading a message in a vehicle. They evaluate seven machine learning
techniques in different scenarios and find that convolutional neural networks (CNNs) and
gradient boosting are the models with the best results in our experiments. Their results
show accuracy, precision, recall, F1 score, and kappa metrics above 0.95.

Tortora et al. [104] present an Android application to detect driver inattention using
embedded sensors in the smartphone. The following distractions can be noticed: drowsi-
ness, turned head, smartphone usage, and smartphone falls, as well as excessive noise.
Combining these distractions with the speed of the car and the tortuosity of the road,
an index is calculated that represents the level of inattention. Including both speed and
tortuosity is based on the idea that these factors make inattention more dangerous. This
“distraction score” is visible to the user via a coloured bar in the Android application. The
calculation of the score is in real-time, no sensitive data are stored, and only a summary of
each trip is stored on the smartphone.

Tselentis et al. [105] provide a structured approach to studying the evolution of driving
efficiency over time, with the aim of drawing conclusions about different existing driving
patterns. They base their work on a dataset that uses smartphone device sensors during a
naturalistic driving experiment in which the driving behaviour of a sample of two hundred
drivers is continuously recorded in real-time over 7 months. Their main driving behaviour
analytics considered for the driving assessment include distance travelled, acceleration,
braking, speed, and smartphone usage. Their analysis is performed using statistical,
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optimisation and machine learning techniques. They use K-means for clustering, resulting
in three main driver groups: moderate drivers, unstable drivers, and cautious drivers.

Wang et al. [106] present an approach based on smartphone sensing of vehicle dy-
namics to determine driver phone use. Thereby, they use smartphone sensors, i.e., ac-
celerometers and gyroscopes, to detect differences in centripetal acceleration due to vehicle
dynamics using a simple plug-in module for the cigarette lighter or OBD-II port. These
differences combined with angular speed can determine whether the phone is on the left or
right side of the vehicle. The experiments conducted with two vehicles in two different
cities demonstrate that the system is robust in real driving environments. Their system can
achieve a classification accuracy of over 90%, with a false positive rate of a few per cent.
They also find that by combining sensing results in a few turns, they can achieve better
accuracy with a lower false positive rate.

Vasey et al. [107] aim to address the impact of driver emotions, such as anger and
happiness, on driving behaviour and driver distraction. Thus, they describe a system to
identify a driver’s emotional arousal. Thereby, they make use of an Android application
as a hub to collect data from the driver’s physiological and the vehicle’s kinematic data.
The smartphone’s accelerometer, jerk, and GPS data; a wearable chest band sensor to
collect the driver’s heart rate; and a vehicle’s OBD-II connector to read CAN bus data, i.e.,
accelerator pedal position, steering wheel angle, and engine RPM, are used. They mention
a machine learning classifier, such as a decision tree, support vector machine (SVM), and
neural network will be used to train. Questionnaires are planned to be used to rate the
driver’s emotional state and workload. However, the paper presents a concept, and there
are no results in it.

Vlahogianni and Barmpounakis [108] propose a device reorientation algorithm, which
leverages gyroscope, accelerometer, and GPS information, to correct the raw accelerometer
data, and use a machine learning framework based on rough set theory to identify rules
and detect critical patterns solely based on the corrected accelerometer data. They use
their approach to detect driving events (such as braking, acceleration, and left and right
cornering), so they do not report any results related to distraction. Their results, based on
data collected using a fixed-position device, compare the use of OBD-II and smartphone
devices. The total accuracies for the smartphone and OBD-II devices are 99.4% and 99.3%
respectively. TPRs (sensitivity) are 88.1% and 86.6%, while the FPRs are 0.3% and 0.4% for
the smartphone and the OBD-II devices, respectively.

Woo and Kulic [109] propose a classifier-based approach for driving manoeuvre
recognition from mobile phone data using SVMs. They investigate the performance of
a sliding window of velocity and angular velocity signals obtained from a smartphone
as features, using principal component analysis (PCA) for dimensionality reduction. The
classifiers use simulated vehicle data as training data and experimental data for validation.
Classifier performance was achieved with an average precision of 81.58% and an average
recall of 82.79%, resulting in an average F1 score of 81.94%. The balanced accuracy was
calculated to be 88.74%.

Xie and Zhu [110] compare three window-based feature extraction methods for driving
manoeuvre classification, statistical values, and automatically extracted features using
principal component analysis and stacked sparse auto-encoders. First, after pre-processing,
they segment all sensor information from each dataset into windowed signals. Then, they
apply three feature extraction methods to these windowed signals and, finally, feed the
extracted features into a random forest classifier. The performance of their manoeuvre
classification is evaluated on three different datasets and shows weighted classification F1
values of 68.56%, 80.87%, and 87.26%. Statistical features perform best on all three datasets.

Xiao and Feng [111] describe a driver attention detection system based on smartphones
with dual cameras. It consists of three modules: the first module is an estimator of gaze
direction (pupil location, yaw and pitch angles of eyes, and the position and size of face
detected with the smartphone front camera), the second is a detector of road motion objects,
and the third module is an inference engine that integrates the input from the above-
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mentioned two modules and outputs a voice alert to the driver when needed. An SVM
classifier is used to estimate the gaze area, and Lucas–Kanade optical flow is used to detect
road motion objects combined with dynamic background compensation. As a result, they
state 93% accuracy for gaze estimation and 92% overall accuracy.

Xie et al. [112] compare the utility of different features for driving manoeuvre classifi-
cation. The data are collected from the readings of accelerometers, gyroscopes, and GPS
sensors built into smartphones. They first extract features using PCA and stacked sparse
auto-encoder (SSAE) using windowed data. Then, statistical features are compared to the
PCA- and SSAE-based features before driving manoeuvre classification using a random
forest classifier is performed. They compare the three feature extraction methods using
three datasets provided by Intelligent Mechatronics Systems Inc (IMS), University of Alcalá
(UAH), and University of Waterloo (UW) and consist of different drivers, road conditions,
phone locations, and sample rates. They report weighted classification performance of F1
scores of 68%, 80%, and 87% on three different datasets.

Xie et al. [113] develop a smartphone-sensor-based driver distraction system using
GPS and IMU data and an ensemble learning method to detect vehicle shifting and erratic
braking for instance. Ensemble learning of four standard classifiers is used, namely, k-
nearest neighbour (KNN), Logistic Regression, Gaussian Naive Bayes, and random forest.
They state that their “best-performing model can achieve a weighted F1 score of 87% using
all signals”.

Yang et al. [114] detect smartphone usage in cars to distinguish between a driver
and a passenger using a smartphone by estimating the range between the phone and the
car’s speakers. The method classifies the location of the smartphone using the car’s stereo
system, the Bluetooth connection, and the smartphone’s speaker and microphone. The
method relies on threshold-based classification. Experimentation is carried out with two
types of smartphones and two types of cars, and the classification accuracy is obtained
with calibrated thresholds, the detection rate is above 90%, and the accuracy is around 95%.

Yaswanth et al. [115] consider a sequence of actions that trigger the identification of
smartphone detectors as follows: walking–standing–entering–seated–engine starts. The
following detectors are used: entering direction classifier (EDC), walking and standing
detector (WSD), entrance detector (ETD), seated row classifier (SRC), and smartphone posi-
tion classifier (SPC). SRC checks whether the driver is in the seat or not. SPC distinguishes
between three frequent positions used by the user to hold the smartphone: pockets, bags,
and hands. The system uses electromagnetic spikes triggered by the actions above and the
engine starts. In order to save energy, accelerometer and magnetometer readings are used
to detect if the driver has finished entering the vehicle; thus, other sensors are woken up.
However, the paper presents a concept, and there is no evaluation available.

You et al. [116] present a system (CarSafe) based on computer vision and machine
learning algorithms operating on the phone to monitor and detect whether the driver
is tired or distracted using a front-facing camera, while, at the same time, tracking road
conditions using a rear-facing camera. With respect to distraction, two-phase decision trees
are used to classify face direction and SVMs are used to classify eye states. The precision
obtained for face direction to the right is 68% and recall is 68%, and for face direction to the
left, it is 79% and 88%, respectively. The accuracy, precision, and false positive rates of eye
state classification (open–closed) are 92%, 93%, and 18%, respectively.

Ziakopoulos et al. [117] investigate the reasons that driver distraction through smart-
phone usage happens while driving. They conducted an experiment with 230 drivers
having a non-intrusive driving recording application installed. Drivers go through six
different phases, starting with no feedback on the app, leading to showing a scorecard for
safe driving on the phone, including maps, displaying comparisons between the driver
and other drivers, and back to no feedback. These data were completed with additional
self-reported questionnaire data and resulted in data from 50,728 trips and 87 drivers,
which were then analysed with XGBoost algorithms. The results showed that the reasons
for drivers using smartphones involved a number of complex relationships, such as an
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increase in total trip distance, the number of tickets in recent years, etc., leading to less
phone usage. On the other hand, older drivers or driving more kilometres annually leads
to more phone usage.

4.2. Aggregated Results: Smartphone-Based Approaches for Driver Distraction Detection

The papers identified on monitoring distracted driving behaviour using smartphones
can be categorised into several core topics: Firstly, there are papers that focus on driver
distraction, driver inattention, and the driver’s use of smartphones. Related to this cate-
gory, some papers specifically address the subtopic of calling or texting while driving. A
visualisation of the core topics and the subtopics related to driver distraction were found in
the papers and are shown in Figure 3.

Several papers tackle problems that are still relevant to the topic under analysis,
for example, identifying whether the driver or a passenger is using the smartphone and
determining the location or direction of the smartphone during the driving activity. These
are peripheral yet significant problems to the core topic. Moreover, a lot of papers that
investigate driver behaviour patterns associated with risky driving behaviours, such as
speeding or changing lanes, were discovered. These studies provide valuable insights into
the relationship between driver behaviour and distracted driving.

Several other subtopics related to driver distraction were investigated in the reviewed
papers, too. These included examining various actions while driving, i.e., examining
the direction of talking, talking/drinking, examining eye gaze patterns, identifying eye
movements, assessing eyelid closure, yawning, performing hair styling and makeup,
observing drivers’ posture/reaching behind within the vehicle, and operating the radio or
dashboard controls. However, these subtopics were not the primary focus of the present
study, as they do not pertain directly to smartphone-related distractions during driving.

The majority of the papers, as shown in Figure 4, address one of the following main
topics, driver distraction, driver behaviour, driver use of smartphones, and driver identifi-
cation. However, several reviewed papers may also address more than one of these topics
in combination:

(a) Driver distraction includes research dealing with driver state monitoring. Although
the focus of the paper was to review scientific work on driver distraction monitoring,
we decided to also include work on two related topics, driver drowsiness (e.g., [54])
and driver inattention detection (e.g., [104]), in our review and to group them under
driver state monitoring whenever smartphone sensors are used. In addition, we chose to
include these papers because parts of the applied methodology, such as detecting eye gaze
(e.g., [49,94,116]), face direction (e.g., [116]), head poses (e.g., [53]), or calculating eye closure
(e.g., [49]) or yawning status (e.g., [52]), can be applied to distracted driving monitoring,
too.

(b) Driver behaviour is a rather complex concept that is considered to include the
characterisation of human driving behaviour to fulfil a specific purpose, such as aggressive
or risky driving, unsafe or distracted or low-responsiveness driving (cf. driver distraction
topic above), and energy-efficient or eco-friendly driving style. Specifically, distracted driving
behaviour includes talking to people in the vehicle, eating and drinking, talking or texting on
a smartphone, adjusting vehicle controls such as navigation or infotainment, and looking
away from the road; while many authors focus explicitly on approaches to detect driver
distraction (e.g., [49,54,69,116]), others may focus on detecting driving behaviour in a more
general way (e.g., [89]. However, parts of the methodology used by these authors can also
be applied in the context of distracted driver monitoring. Other authors are developing
technical enablers for better detection and warning systems that capture vehicle movements
and manoeuvres [76,109,112] or detect harsh driving events [83,108].

(c) Driver use of smartphones includes observing the driver performing a secondary
task while driving, using a smartphone. This may be reported in an unspecified way (i.e.,
smartphone use) or, more specifically, holding the smartphone, the smartphone is placed
near the ear, or the smartphone is being held and operated (texting, calling, browsing,
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etc.). Papers identify interactions with the smartphone, in general [73], or talking on the
phone [94]. Furthermore, parts of the approaches used can again be applied in distracted
driver monitoring, too.

(d) Driver identification (driver/passenger) refers to identifying the person behind the
wheel. This topic, along with the topic of identifying the location or direction of the
smartphone (as a source of distraction), is included in this literature review, even though it
is indirectly related to distracted driver monitoring (cf. studies such as smartphone location
or direction [66], driver alerting [102], or distinguishing drivers from passengers [63,114]).
When using smartphone sensors to detect distracted driving, it is important to differentiate
between driver and passenger so as not to alert the wrong person.

Figure 3. Core topics related to driver distraction, driver inattention, driver use of smartphones, and
their subtopics.

Figure 4. Topics prevailing, their relation, and number of papers (in round brackets) referring to
those topics.

4.3. Aggregated Results: Smartphone-Based Sensors and Detection Methods

To provide an overview of the papers and to answer RQ2, Table 5 explicitly shows
which smartphone sensors were used per paper, using the categories camera, GNSS (e.g.,
GPS), IMU (e.g., accelerometer, gyroscope, magnetometer), microphone, or radio signals
(e.g., WiFi).

The approaches described in the papers used either one, two, or three different types
of smartphone data, e.g.:
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• The smartphone camera (front and/or rear camera) to collect images or videos;
• Data from a GNSS (global navigation satellite system, often the US-developed Global

Positioning System is used) to collect position data or to calculate vehicle speed;
• Data from the inertial measurement unit (IMU) of the smartphone, which usually

includes an accelerometer, a gyroscope, and, in some cases, a magnetometer;
• Smartphone microphones to collect sound data;
• Different types of radio signals from the smartphone, e.g., WiFi signals or the radio

signal connection between the smartphone and the base station/base transceivers.

Table 5. Literature result: 65 papers and the smartphone data type they use: camera (CAM), GNSS,
IMU, microphone (MIC), or radio signals (RAD).

Author(s) CAM GNSS IMU MIC RAD

Ahn et al., 2017 [65] X

Ahn et al., 2019 [66] X

Albert et al., 2016 [67]

Alqudah et al., 2021 [68] X

Baheti et al., 2018 [69] X

Bergasa et al., 2014 [54] X X X X

Berri et al., 2014 [71] X

Bo et al., 2013b [72] X X

Bortnik and Lavrenovs, 2021 [73]

Caird et al., 2014 [74]

Castignani et al., 2015 [75] X

Chen et al., 2015 [76] X X

Chu et al., 2014 [77] X X

Chuang et al., 2014 [78] X

Dai et al., 2019 [79] X

Dua et al., 2019a [49] X

Dua et al., 2019b [49] X

Eraqi et al., 2019 [50] X

Gelmini et al., 2020 [46] X X

He et al., 2014 [80] X

Hong et al., 2014 [81] X X

Janveja et al., 2020 [52] X

Jiao et al., 2021 [82] X

Johnson et al., 2011 [83] X X X

Kapoor et al., 2020 [48] X

Kashevnik et al., 2021 [5] X X

Khurana and Goel, 2020 [84] X

Koukoumidis et al., 2011 [85] X X X

Li et al., 2019 [86] X X X

Lindqvist and Hong, 2011 [87]

Liu et al., 2017 [88] X X X



Sensors 2023, 23, 7505 23 of 39

Table 5. Cont.

Author(s) CAM GNSS IMU MIC RAD

Ma et al., 2017 [89] X X X

Mantouka et al., 2019 [90] X X

Mantouka et al., 2022 [91] X X

Meiring et al., 2015 [92]

Meng et al., 2015 [93] X X

Mihai et al., 2015 [53] X

Nambi et al., 2018 [94] X

Omerustaoglu et al., 2020 [51] X X

Othman et al., 2022 [95] X X X

Pargal et al., 2022 [96] X

Park et al., 2018 [97] X

Paruchuri and Kumar, 2015 [63] X

Punay et al., 2018 [98] X

Qi et al., 2019a [99] X X X

Qi et al., 2019b [100] X X X X

Rachmadi et al., 2021 [101] X

Shabeer and Wahidabanu, 2012 [62] X

Singh et al., 2014 [102] X

Song et al., 2016 [64] X

Torres et al., 2019 [103] X X

Tortora et al., 2023 [104] X X X

Tselentis et al., 2021 [105] X X

Wang et al., 2016 [106] X

Vasey et al., 2018 [107] X X

Vlahogianni and Barmpounakis, 2017 [108] X X

Woo and Kulic, 2016 [109] X X

Xiao and Feng, 2016 [111] X

Xie and Zhu, 2019 [110] X X

Xie et al., 2018 [112] X X

Xie et al., 2019 [113] X X

Yang et al., 2012 [114] X

Yaswanth et al., 2021 [115] X X

You at al., 2013 [116] X X X

Ziakopoulos et al., 2023 [117] X X X

Total 27 26 37 12 3

In many cases, a camera that is recording the driver while driving is placed inside the
car, and the taken images are used to classify the driver’s actions.

Computer-vision-related research includes driver gaze detection or driver eye
detection [49], driver eye closure detection, driver yawn detection [49], and driver pose
detection [95], as well as other driver activity detection, such as attending their hair and
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makeup, reaching behind, operating the radio, eating, and drinking [50]. Audio-related
research includes identifying driver talking activity and phone use [64,79].

There is much less work that combines data from multiple modalities for distracted
driver detection tasks.

4.4. Aggregated Results: Summary of Tangible Results

The table below provides a structured overview of the reviewed papers and their
results with respect to the objective of the SLR (answering RQ3). The objectives of the
papers are reported in terms of the use of smartphones, while the analysis methods and
accuracy results are also listed when reported by the paper authors.

The research objectives of the reviewed papers range from the detection of when a person
enters the vehicle [65], the classification of users into drivers and passengers [63,66,77,114],
the identification of the driver’s interaction with the smartphone [64,73,84,106], the clas-
sification of driving events and driving styles [68,75,83,90], the detection of distracted
drivers [48–52,69,113], the detection of inattentive drivers [49,53,54,111], the detection
of gaze direction for distracted driving [78], to the identification of the driver’s speech
direction [79].

The analysis methods used include machine learning models [66,68,77–79,84,86,90,103,
105,107,109–112], neural networks [48–51,69,99,100], computer
vision [53,71,85,93,116], fuzzy logic [65,75], signal processing [76,80,83,88,89,106], and
smartphone app design [5,94], to name a few examples of popular approaches.

The results obtained vary, largely depending on the scope of the research and the
datasets used, and include, for example, the identification of the smartphone with about
90% accuracy [66], the classification of driving events with over 90% accuracy [75], or even
with over 98% accuracy [68], the detection of distracted driving on images with an accuracy
of 90% [50], with 96% in [69] or even with close to 100% [48].

Table 6. Literature result (Part 1 of 5): summary table of papers reporting on objective, analysis
methods, and obtained results.

Author(s) Objective Analysis Methods Results

Ahn et al., 2017 [65] Detect when a person is
about to enter a vehicle
by analysing the move-
ment trajectory of the
smartphone

Fuzzy Inference System,
electromagnetic field (EMF)
fluctuations

91.1% to 94.0% accuracy;
maintains at least 87.8%
accuracy regardless of smart-
phone position and vehicle
type

Ahn et al., 2019 [66] Classify users into drivers
and passengers and
whether they have en-
tered a vehicle

Bayesian classifier Identifies the driver’s smart-
phone with 89.1% average ac-
curacy

Albert et al., 2016 [67] Identify smartphone apps
that have the greatest poten-
tial to reduce risky driving
behaviour

Apps mapping, Analytic
Hierarchy Process (APH)

Texting prevention and
Green Box are unlikely to be
accepted and used; collision
warning and voice control
are expected to gain public
support

Alqudah et al., 2021 [68] Classify driving events
such as high speed, low
speed, stop, and U-turn
using smartphone sensors

SVM, decision trees, Dis-
criminate Analysis, Naïve
Bayes, KNN, ensembles

Classify events with over 98%
accuracy using decision trees

Baheti et al., 2018 [69] Detect distracted drivers
and the type of distraction,
such as texting, talking on
a mobile phone, eating, or
drinking

CNN (VGG-16 architec-
ture)

94.44% accuracy on test set;
adding dropout, L2 weight
regularisation, and batch nor-
malisation increases accuracy
to 96.31% on test set
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Table 6. Cont.

Author(s) Objective Analysis Methods Results

Bergasa et al., 2014 [54] Detect inattentive driving
and provide feedback to the
driver, assessing their driv-
ing and warning them if
their behaviour is unsafe

Drowsiness score uses lane
drifting and lane weaving
signals to infer drowsiness;
distraction score based on
sudden longitudinal and
lateral movements

Data from 12 drivers in two
different studies; detects
some inattentive driving
behaviours and achieves an
overall accuracy of 82% with
a recall of 92%

Berri et al., 2014 [71] Present an algorithm for ex-
tracting features from im-
ages to detect the use of mo-
bile phones by drivers

Computer vision and ma-
chine learning (SVM for
classification)

Average accuracy of 91.57%
for the set of images analysed

Bo et al., 2013b [72] Detect drivers and passen-
gers, and whether a smart-
phone is being used for tex-
ting

Classification with hidden
Markov model (HMM)

Classification accuracy of
87% and precision of 96.67%
across 20 different driving
and parking cases

Bortnik and Lavrenovs,
2021 [73]

Identify the driver’s inter-
action with the smartphone,
such as app activity, call ac-
tivity, or screen activity

Android dumpsys diagnos-
tic data

N/A

Caird et al., 2014 [74] Presents a meta-study on
texting and driving

N/A N/A

Castignani et al., 2015 [75] Detect events related to
driving style and scores
drivers

Fuzzy logic, principal com-
ponent analysis (PCA)

The developed system shows
more than 90% accuracy in
detecting events in an exper-
iment with 10 drivers along a
predefined route

Chen et al., 2015 [76] Detect and differentiate
between different vehicle
steering patterns, such as
lane changes, turns, and
driving on winding roads

Signal processing, Kalman
filter

High detection accuracy:
100% for right and left turns,
93% for lane changes, 97%
for curvy roads

Chu et al., 2014 [77] Detect whether a smart-
phone user in a vehicle is
the driver or a passenger

Machine learning approach Early prototypes on Android
and iOS show over 85% accu-
racy with 6 users in 2 differ-
ent cars

Chuang et al., 2014 [78] Estimate driver gaze direc-
tion to detect driver distrac-
tion

Multi-class linear support
vector machine (SVM) clas-
sifier

Classification accuracy be-
tween 86.4% and 97.4%.

Dai et al., 2019 [79] Identification of the
driver’s direction of speech
(namely, front, right, and
rear)

K-means clustering algo-
rithm

95% accuracy on average for
different phone placements,
at least 92.2% accuracy for
three scenarios, 90.3% accu-
racy when the window is
open in the presence of out-
side noise

Table 7. Literature result (continued, Part 2 of 5): summary table of papers reporting on objective,
analysis methods, and obtained results.

Author(s) Objective Analysis Methods Results

Dua et al., 2019a [49] Detect and assess driver
attention using the front
camera of a windscreen-
mounted smartphone

Neuronal networks, CNNs,
and GRUs

The driver’s attention rating
had an overall agreement of
0.87 with the ratings of 5 hu-
man annotators

Dua et al., 2019b [49] Identify driver distraction
based on facial character-
istics (head position, eye
gaze, eye closure, and
yawning)

CNN (generic features) and
GRU or (CNN + GRU)

The automatically generated
rating has an overall agree-
ment of 88% with the rat-
ings provided by 5 human an-
notators; the attention-based
model outperforms the AU-
TORATE model by 10% accu-
racy on the extended dataset

Eraqi et al., 2019 [50] Detect 10 different types of
driver distraction (includ-
ing talking to passengers,
phone calls, and texting)

Deep learning; ensemble
of convolutional neural net-
works

New public dataset, detec-
tion with 90% accuracy
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Table 7. Cont.

Author(s) Objective Analysis Methods Results

Gelmini et al., 2020 [46] Driving style risk assess-
ment based on speeding,
longitudinal acceleration,
lateral acceleration, and
smartphone use while
driving

Thresholds used for profil-
ing drivers and detecting
smartphone usage

Median phone usage, no ac-
curacy indicators used

He et al., 2014 [80] Present a seat-level location
of smartphones in a vehi-
cle to identify who is sitting
where

Signal processing: refer-
ence frame transformation,
event detection, left/right
identification, front/back
identification

Position accuracy between
70% and 90% (best case)

Hong et al., 2014 [81] Detect a person’s driving
behaviour via an Android-
based in-vehicle sensor
platform

Machine learning approach
(Naïve Bayes classifier)

Average model accuracy with
all three sensors was 90.5%,
and 66.7% with the smart-
phone only

Janveja et al., 2020 [52] Introduce a smartphone-
based system to detect
driver fatigue and dis-
traction (mirror scanning
behaviour) in low-light
conditions

For distraction detection,
statistics are calculated if
the driver is scanning their
mirrors at least once every
10 s continuously during
the drive

NIR LED setup: 93.8% accu-
racy in detecting driver dis-
traction

Jiao et al., 2021 [82] Recognise actions of dis-
tracted drivers

Hybrid deep learning
model, OpenPose, K-
means, LSTM

Accuracy depending on pro-
cessing step (up to 92%)

Johnson et al., 2011 [83] Detect and classify driving
events, such as left/right
manoeuvres, turns, lane
changes, device removal,
and excessive speed and
braking

Manoeuvre classification
with the DTW algorithm

U-turn correctly identified
23% of the time (using ac-
celerometer), 46% of the time
(using gyroscope), 77% of the
time (combined sensors), 97%
of aggressive events correctly
identified

Kapoor et al., 2020 [48] Provide a real-time driver
distraction detection sys-
tem that detects distracting
tasks in driver images

Convolutional neural net-
works (CNNs)

Accuracy for 4 classes
(e.g., calling or texting on
a cell phone) reaches 98–
100% when fine-tuned with
datasets such as the State
Farm Distracted Driver
Dataset

Kashevnik et al., 2021 [5] Provide an audio-visual
speech recognition corpus
for use in speech recogni-
tion for driver monitoring
systems

Corpus creation, develop-
ment of smartphone app

Corpus (audio-visual speech
database with list of phrases
in Russian language, 20 par-
ticipants)

Khurana and Goel,
2020 [84]

Detect smartphone use by
drivers using in-device
cameras

Random forest classifiers
(machine learning models)
for 2 scenarios: a) docked,
b) in-hand

Approximately 90% accuracy
in distinguishing between
driver and passenger. Can-
not collect data for phones in
handheld position

Koukoumidis et al.,
2011 [85]

Detect traffic lights using
the smartphone camera and
predict their timing

Machine learning (Support
Vector Regression)

Accuracy of traffic signal de-
tection (87.6% and 92.2%) and
schedule prediction (0.66 s,
for pre-timed traffic signals;
2.45 s for traffic-adaptive traf-
fic signals)

Table 8. Literature result (continued, Part 3 of 5): summary table of papers reporting on objective,
analysis methods, and obtained results.

Author(s) Objective Analysis Methods Results

Li et al., 2019 [86] Introduce the WisDriver
system, which detects 15
different dangerous driving
behaviours

Multiple approaches for sig-
nal processing (sliding win-
dow, mean absolute devia-
tion): PCA, DTW, discrete
wavelet transform (DWT)

CSI plus sensor can achieve
up to 92% detection accuracy

Lindqvist and Hong,
2011 [87]

Conduct user interaction
research to design driver-
friendly smartphone appli-
cations that do not distract
the driver

Interaction designs (no
analysis)

Initial interaction designs for
Android apps
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Table 8. Cont.

Author(s) Objective Analysis Methods Results

Liu et al., 2017 [88] Recognition of internal
driver inputs (e.g., steering
wheel angle, vehicle speed,
and acceleration) and exter-
nal perceptions of the road
environment (e.g., road
conditions and front view
video)

Signal processing, filtering
approaches, deep neural
networks

Estimate steering wheel an-
gle with an average error of
0.69, infer vehicle speed with
an error of 0.65 km/h, and es-
timate binary road conditions
with 95% accuracy

Ma et al., 2017 [89] Propose a scheme to iden-
tify three dangerous driv-
ing behaviours, speeding,
irregular change in direc-
tion and abnormal speed
control

Coordinate reorientation,
sensor error estimation,
data correction, speed
estimation, turn-signal
identification

Kalman filter approach: aver-
age precision and recall for di-
rection change and abnormal
speed detection are 93.95%
and 90.54%, respectively,

Mantouka et al., 2022 [91] Identify unsafe driving
styles and provide person-
alised driving recommen-
dations

Two-stage K-means cluster-
ing

Summary statistics on col-
lected trip data

Mantouka et al., 2019 [90] Identify driver safety pro-
files from smartphone
data and distinguish nor-
mal driving from unsafe
driving

Unsupervised learning:
two-stage K-means cluster-
ing approach

7.5% of the trips are charac-
terised by distracted driving

Meiring et al., 2015 [92] Review solutions and ap-
proaches to driving style
analysis to identify relevant
ML and AI algorithms

N/A N/A

Meng et al., 2015 [93] Develop a system that ex-
tends the driver’s view in
all directions by using cam-
eras from multiple cooper-
ating smartphones in sur-
rounding vehicles

Image processing System detects a vehicle
within 111 ± 60 ms

Mihai et al., 2015 [53] Develop a system to deter-
mine the orientation of the
driver’s head to infer visual
attention

Image processing
(OpenCV)

Feasibility tests in two scenar-
ios, no numbers given

Nambi et al., 2018 [94] Develop a windscreen-
mounted, smartphone-
based system to monitor
driving behaviour (includ-
ing driver states)

Android app: uses
OpenCV, TensorFlow,
and custom libraries (DNN
and SVM)

Demonstration case, no fur-
ther information provided by
the authors

Omerustaoglu et al.,
2020 [51]

Introduce a two-stage
driver distraction detection
system that integrates
vehicle sensor data into
a vision-based distraction
detection model

CNN, LSTM-RNN on
sensor and image data
together; model tuning
and transfer learning (from
StateFarm to own dataset)

Increased overall accuracy to
85% compared to using only
image data. Increased driver
detection accuracy to 85% us-
ing sensor data.

Othman et al., 2022 [95] Introduction of a driver
state identification dataset
synchronised with vehicle
telemetry data

Dataset provision, unsuper-
vised learning approach (K-
means)

Clustered, labelled dataset

Pargal et al., 2022 [96] Present an approach to de-
tecting whether a smart-
phone is being used by the
driver

Spectral analysis, power
analysis of noise features,
acoustic-based smartphone
localisation

F1 scores from 0.75 to 0.875
for different smartphone
placement scenarios

Table 9. Literature result (continued, Part 4 of 5): summary table of papers reporting on objective,
analysis methods, and obtained results.

Author(s) Objective Analysis Methods Results

Park et al., 2018 [97] Detect the location and
direction of the driver’s
phone, as well as in-car
activities, such as walk-
ing towards the vehicle,
standing near the vehicle
while opening a door, and
starting the engine

Electromagnetic field (EMF)
fluctuations are analysed

The driver’s phone was iden-
tified with 83–93% true pos-
itive rate and achieved 90–
91% true negative rate
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Table 9. Cont.

Author(s) Objective Analysis Methods Results

Paruchuri and Kumar,
2015 [63]

Detects smartphone lo-
cation and distinguishes
drivers from passengers

Image comparison (angle
difference) with reference
images for the localisation
of the smartphone (driver’s
seat vs. passenger seats),
based on the distance be-
tween images

15 out of 38 images were reg-
istered incorrectly

Punay et al., 2018 [98] Focus on a safer driving
experience by providing
an Android application for
non-distracted driving

Thresholds are used, i.e.,
the system detects if the
speed is higher than a cer-
tain threshold

N/A

Prototype only

Qi et al., 2019a [99] Detect in-car human ac-
tivity, such as chatting,
and contextual informa-
tion (clear vs. crowded)
based on vehicle dynamics
(braking and turning)

Convolutional neural net-
work (CNN) for the audio

Average accuracy of 90%
across 7 different activities

Qi et al., 2019b [100] Classify driving events,
such as turning, braking,
and lane changes, using
sensor data, while cameras
and microphones are used
to identify objects in front
view and blind spots and
estimate head position

Deep learning inference
(Nvidia TensorRT)

Average of 90% event detec-
tion accuracy

Rachmadi et al., 2021 [101] Present a driver abnormal
behaviour classification sys-
tem

Enhanced multi-layer per-
ceptron (MLP)

97,5% accuracy and 45 ms
processing time

Shabeer and Wahidabanu,
2012 [62]

Detect driver phone calls Threshold value cutoff of
the receiving RF signal

N/A

Singh et al., 2014 [102] Blind spot vehicle detection Two approaches: inten-
sity variation and contour
matching

Detect and alert the driver
with 87% accuracy

Song et al., 2016 [64] Detect driver phone calls Similarity based on thresh-
old: voice feature model

TPR is over 98% for 3 differ-
ent evaluated passenger posi-
tions, over 90% with noise im-
pact, 80% when three people
are talking, and 67% when 4
people are talking

Torres et al., 2019 [103] Use data from smartphone
sensors to distinguish be-
tween driver and passenger
when reading a message in
a vehicle

Machine learning (various
models): three eager learn-
ers (SVM: DT, LR), three en-
semble learners (RF, ADM,
GBM), and one deep learn-
ing model (CNN)

Performance values accuracy,
precision, recall, F1, and
Kappa: CNN and GB models
had the best performance

Tortora et al., 2023 [104] Develop Android applica-
tion to detect distracted
driving behaviour

Distraction score based on
different distraction activi-
ties and detection methods

Application presentation (no
KPIs)

Tselentis et al., 2021 [105] Driving behaviour analysis
using smartphone sensors
to provide driver safety
scores and driver clustering

K-means driver clustering
(based on event compute
in a trip such as phone
use, speeding, harsh brak-
ing, etc.)

Descriptive statistics, defini-
tion of driver characteristics
for each cluster (moderate,
unstable, cautious drivers)

Wang et al., 2016 [106] Present an approach based
on smartphone sensing of
vehicle dynamics to deter-
mine driver phone use

Signal processing: com-
pute centripetal accelera-
tion using smartphone sen-
sors and compare to those
measured by a simple plug-
in reference module

Approach achieves close to
90% accuracy with only a few
with less than 3% FPR

Vasey et al., 2018 [107] Driver emotional arousal
detection

Machine learning classifier
(decision tree, SVM, NN)

N/A, concept only
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Table 10. Literature result (continued, Part 5 of 5): summary table of papers reporting on objective,
analysis methods, and obtained results.

Author(s) Objective Analysis Methods Results

Vlahogianni and Barm-
pounakis, 2017 [108]

Detect driving events such
as braking, acceleration, left
and right cornering

Rough set theory and own
classifier (MODLEM), com-
pared to MLP, C4.5 decision
trees, and ZeroR

Smartphone accuracy is
99.4% and OBD-II device ac-
curacy is 99.3%; TPRs are 88%
and 86% and FPRs are 0.3%
and 0.4% for smartphone and
OBD-II device, respectively,

Woo and Kulic, 2016 [109] Propose a classifier-based
approach for driving ma-
noeuvre recognition from
mobile phone data

SVM classifier, PCA Average precision of 0.8158
and average recall of 82%.
Balanced accuracy of 88%.

Xiao and Feng, 2016 [111] Driver attention detection
with 2 modules: a) gaze de-
tection and b) road motion
objects detection

Linear SVM classifier (mod-
ule a); Lucas–Kanade op-
tical flow with dynamic
background compensation
(module b)

93% accuracy for gaze estima-
tion and 91.7% overall accu-
racy

Xie and Zhu, 2019 [110] Manoeuvre-based driving
behaviour (lane changing
or turning) and classifica-
tion amongst three labels
(normal, drowsy, and
aggressive)

ReliefF, random forest Average F1 score of 70.47%
using leave-one-driver-out
validation

Xie et al., 2018 [112] Classification of driving
manoeuvres (i.e., brak-
ing, turning, stopping,
accelerating, decelerating,
lane changing) based on
different feature extraction
methods

Random forest classifier F1 scores of 68%, 80%,
and 87% on three different
datasets

Xie et al., 2019 [113] Driver distraction detection Ensemble method of 4 clas-
sifiers: K-NN, Logistic Re-
gression, Gaussian Naive
Bayes, random forest

87% accuracy in distraction
detection

Yang et al., 2012 [114] Distinguish between pas-
sengers and drivers using
smartphones by classifying
the position of the smart-
phone

Threshold-based classifica-
tion

Accuracy with calibrated
thresholds: detection rate
is over 90% and accuracy is
around 95%

Yaswanth et al., 2021 [115] Smartphone detection (clas-
sifier) and drivers’ action
detection

N/A N/A

You et al., 2013 [116] Detect if drivers are tired or
distracted (drowsy driving,
inattentive driving) and
identify various driving
conditions such as tail-
gating, lane weaving, or
drifting

Computer vision and ma-
chine learning (decision
trees and SVM)

Precision and recall for face
direction events: precisions
are 68% for facing left, 79%
for facing right, and 92% for
eye state classification

Ziakopoulos et al.,
2023 [117]

Investigate influence fac-
tors for driver distraction
through smartphone use

230-driver experiment us-
ing the developed driv-
ing recording application
and feedback questionnaire,
XGBoost for distraction in-
vestigation

Deducted influence factors
for driver phone use

Table 11. List of journals that published the papers.

List of Journals No. of Papers

Sensors (Switzerland) 7

Accident Analysis and Prevention 3

IEEE Transactions on Biometrics, Behaviour, and Identity Science 3

International Journal of Interactive Mobile Technologies 2

Transportation Research Part C: Emerging Technologies 2

Advances in Intelligent Systems and Computing 1
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Table 11. Cont.

List of Journals No. of Papers

Applied Soft Computing Journal 1

Data 1

IEEE Access 1

IEEE Intelligent Transportation Systems Magazine 1

IEEE Sensors Journal 1

IEEE Transactions on Intelligent Transportation Systems 1

IEEE Transactions on Mobile Computing 1

Journal of Advanced Transportation 1

Lecture Notes in Electrical Engineering 1

Lecture Notes of the Institute for Computer Sciences, Social-Informatics 1
and Telecommunications Engineering

Mobile Information Systems 1

Procedia Engineering 1

Proceedings of the ACM on Interactive, Mobile, Wearable and 1
Ubiquitous Technologies

Safety Science 1

Transport Policy 1

Total (Percentage) 33 (51%)

Table 12. List of conference venues where the papers were presented.

List of Conferences No. of Papers

International Conference on Mobile Systems, Applications and Services 4

Conference on Human Factors in Computing Systems 2

IEEE Intelligent Vehicles Symposium 2

International Conference on Computing, Networking and Communications 2

International Conference on Mobile Computing and Networking 2

IEEE Computer Society Conference on Computer Vision 1
and Pattern Recognition Workshops

IEEE Conference on Intelligent Transportation Systems 1

IEEE International Conference on Automatic Face and Gesture Recognition 1

IEEE International Conference on Computer Communications 1

IEEE International Conference on Mobile Ad Hoc and Smart Systems 1

IEEE International Conference on Systems, Man, and Cybernetics 1

IEEE Pacific Rim Conference on Communications, Computers 1
and Signal Processing

IEEE Vehicular Networking Conference 1

International ACM Conference on Automotive User Interfaces 1
and Interactive Vehicular Applications

International Conference on Advanced Information Networking 1
and Applications
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Table 12. Cont.

List of Conferences No. of Papers

International Conference on Communication Systems and Networks 1

International Conference on Computer Vision Theory and Applications 1

International Conference on Information, Intelligence, Systems 1
and Applications

International Conference on Intelligent Transport Systems 1

International Conference on Neural Computation, Fuzzy Systems 1
and Knowledge Discovery

International Conference on Mobile Data Management 1

International Conference on Orange Technologies 1

International Conference on Transportation Information and Safety 1

International Electronics Symposium 1

Workshop on Mobile Computing Systems and Applications 1

Total (percentage) 32 (49%)

5. Discussion

In our study, based on a systematic literature review, we evaluated the current state of
the art in smartphone-based driver behaviour monitoring and driver distraction detection
according to four criteria: the objectives of the approaches, the types of approaches, the
sensors used, and the results obtained.

Before discussing the contributions of our study, we would like to point out our
limitations, including the paper selection bias. We extended a preliminary literature review
published in a conference paper and built our results on it. In addition, we selected three
scholarly databases, IEEE Xplore, Scopus, and Web of Science, to search for recent literature
on the research topic. To supplement our use of these three databases and to include
additional relevant literature that we might otherwise have missed, we also conducted
backward and forward searches using Google Scholar through a rigorous snowballing
research process that we performed; while we are confident that our final sample represents
the current literature on our research topic, it is possible that we may have missed existing
work, despite our rigorous review approach. In addition, we based our research on peer-
reviewed scientific papers, excluding white papers, technical reports, or company press
releases. As a result, we may have missed out on industry experiences.

Furthermore, our paper is a literature review, and within the reviewed scientific
literature, the findings are derived from developed and evaluated research prototypes.
There is no commercially available solution for a smartphone-based driver distraction
detection system, and therefore no real-life experience of people using such a system could
be integrated. From a practitioner’s perspective, we supplemented the results of our study
with practical domain knowledge from our expertise in automotive engineering.

Driver behaviour monitoring is a broad area of research with a variety of methods
and approaches, and distracted driver monitoring is an important subset of this research.
In addition, while modern smartphones pose a risk of distracting drivers when used in
cars, they also offer great potential for enabling solutions to detect driver inattention and
distraction due to their built-in sensory and computational capabilities.

Against this background, this paper offers an extended systematic literature review to
capture the state of the art in smartphone-based distracted driving monitoring approaches
extending a previously carried out literature review [23]. Specifically, this paper sheds
light on three research questions: What types of smartphone-based approaches have been
published? What types of smartphone sensors and detection methods have been used?
And what tangible results have been achieved?
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Driver behaviour monitoring is a complex problem, and to date, there appears to be
no commercially available smartphone application for distracted driving monitoring on the
market. However, there are some presented research prototypes (e.g., [48,94]) and outlined
individual approaches to explore the technical feasibility, which are reviewed in this paper.
If these individual approaches were combined in systems to detect driver distraction and
evaluated in real-world situations, they would certainly have great exploitation potential.

The results of our review suggest that a lot of research using smartphone sensors seems
to be quite successful in achieving good machine learning KPIs, such as high recognition
accuracies or good F1 scores, to name two examples. This raises the question of why we do
not yet see smartphone-based distraction detection systems in action.

We suggest several reasons why such systems are not yet available on the market.
Firstly, researchers typically work on methods and theories, and design system prototypes
to test and evaluate the success of their models and methods. Secondly, they work on mostly
available datasets for training machine learning models, or they collect their own, mostly
limited datasets, which they use to train and apply their models. These research datasets
tend to be very homogeneous, and when divided into 80% training and 20% validation sets,
the machine learning models trained usually provide good accuracy, which also explains
the high accuracies achieved in deriving the distracted driving task from images, ranging
from 90% to almost 100%. Thirdly, if these models were evaluated in real conditions with
distracted drivers in real vehicles, the input data for these models would be much more
diverse; for example, for image data, people would behave differently, look differently,
camera angles would be different, lighting conditions would be different, there would be
sun reflections, and these models would also have to work during night driving. Therefore,
and fourthly, the trained models are often tested in laboratory or lab-like conditions, and if
in real life, in standardised conditions to allow good results to be accepted at conferences
or in journal papers.

Traditional driver state monitoring systems in cars use the sensors in the steering
wheel and detect driver inattention and distraction by examining steering behaviour, but
relying on inferring driver behaviour from sensitive monitoring of steering movements
and steering wheel reversal rates [118] can have several limitations and may not capture
all phenomena with high enough accuracy. Therefore, researchers have explored a variety
of further approaches to driver monitoring, using multiple cameras, infrared cameras, or
in-cabin time of flight sensors for professional industry-proof systems. However, these
systems were not the focus of our literature review as we wanted to shed light on the use
of smartphones to detect driver distraction.

Due to the advent of partially automated driving, another push has been made to
offer camera-based driver monitoring systems in a series of vehicles. For instance, the
manufacturer Tesla has integrated in-cabin camera-based driver monitoring systems to
prevent misuse of its autopilot feature (Tesla has activated its in-car camera to monitor
drivers using Autopilot, https://techcrunch.com/2021/05/27/tesla-has-activated-its-in-
car-camera-to-monitor-drivers-using-autopilot/ accessed on 24 July 2023). In addition, the
updated European Vehicle General Safety Regulation (new rules to improve road safety and
enable fully driverless vehicles in the EU, https://ec.europa.eu/commission/presscorner/
detail/en/ip_22_4312 accessed on 24 July 2023) will require some form of alertness and
drowsiness warning in newly registered European vehicles.

While the use of smartphones while driving continues to pose a serious risk to safety,
numerous methods from different fields have been proposed and put into practice to lessen
their adverse impacts. These include laws prohibiting the use of handheld mobile devices,
bans on texting, strict enforcement of the laws, establishing designated texting zones on
highways, educational campaigns, and suggestions to automobile manufacturers to restrict
communication through electronic devices integrated into their vehicles, such as browsing,
entertainment, and texting. Nevertheless, there is an ongoing debate about the practicality,
efficacy, and acceptability of these measures.

https://techcrunch.com/2021/05/27/tesla-has-activated-its-in-car-camera-to-monitor-drivers-using-autopilot/
https://techcrunch.com/2021/05/27/tesla-has-activated-its-in-car-camera-to-monitor-drivers-using-autopilot/
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_4312
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_4312
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From the studies reviewed, depending on the specific sensor combinations used (see
Table 5), the smartphone can be placed in different locations to collect data, e.g, (a) for gaze
sensing, it needs to be placed on the dashboard or mounted on the windshield facing the
driver; (b) for GNSS sensing, it needs to be placed on the dashboard or near the windshield
to ensure clear sky visibility for accurate GPS-based position and speed data; (c) for IMU
sensing, it needs to be placed in a stable position in the vehicle, such as on the centre console
or mounted on the driver’s seat, to record precise motion and orientation changes; and (d)
for microphone sensing, it needs to be placed in the cabin, preferably on the dashboard
or near the centre console, to record auditory cues and driver interactions. Details of such
placements are typically discussed in the papers whose studies were examined in our
review. Depending on the sensor combinations used, the smartphone may need to be
mounted in a central location within the vehicle, such as on the dashboard or windshield,
and specialised smartphone holders or mounts designed for in-vehicle use are typically
used. However, there are approaches that allow the use of IMU sensors without the need
to mount the smartphone in a fixed position. These align the IMU sensor’s coordinate
reference system with the vehicle’s coordinate reference system.

6. Conclusions and Outlook

Our paper provides an extended systematic literature review of smartphone-based
distracted driving monitoring approaches [23]. This extended review includes a total of 65
relevant scientific papers that address smartphone-based distraction detection approaches,
the smartphone sensors and detection methods used, and the results obtained. We analysed
all papers in terms of their objectives, the analytical methods used (including ML and
AI), and the results obtained in terms of KPIs, where these were provided. In doing
so, we are contributing to the growing literature on driver monitoring and distraction
detection systems.

The core literature in this field encompasses papers focusing on driver distraction,
driver inattention, and driver use of smartphones (with a specific emphasis on calling or
texting), as well as papers addressing issues like identifying the driver from the passenger
and determining smartphone location/direction. Additionally, studies analysing driver
behaviour associated with risky driving are also relevant to the topic at hand. A variety of
other subtopics related to driver distraction were investigated in the literature and were
discussed, too.

Based on the results of this literature review, our paper calls for further contributions
on smartphone-based driver monitoring systems, integrating the different approaches
presented by the authors, as well as integrating all available sensors on smartphones to en-
able a benchmark against industry-grade in-vehicle driver monitoring systems. Moreover,
our work calls for more applications in real life, as they are currently missing. We have
identified a gap in research carried out in real-world conditions that is systems perform-
ing reliably across diverse driving scenarios, weather conditions, and individual driving
styles [119]. This is a significant challenge, which necessitates extensive testing and valida-
tion. In order to contribute to this future direction, there are several technical limitations
as this requires advanced technologies, such as computer vision, machine learning, and
sensor fusion, to be combined in effective smartphone-based driver distraction detection
systems. Effective (i.e., highly accurate and reliable) systems in real-time scenarios are
challenging, especially given the diverse and complex driving environments vehicles are
found in. Another wide future avenue for research is sensor appropriateness, accuracy,
and consistency. Choosing the most appropriate sensors (either smartphone-based or not
sensors) that can provide increased effectiveness is crucial and complex as sensors vary
in quality, calibration needs, and performance. The placement of the sensors also leads to
measurement inconsistencies and inaccuracies that can lead to false positives or negatives
in distraction detection, which may jeopardise the system’s credibility.

While smartphone-based driver monitoring systems would allow retrofitting of vehi-
cles with no or limited driver monitoring systems and would likely extend the life cycle of
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vehicles, the authors expect that available in-vehicle sensors will soon surpass smartphone
sensors and cameras. However, new hardware that can connect to smartphones or act as a
standalone system, such as AI cameras, will provide novel opportunities for “bring your
own device” driver monitoring systems in the future. This introduces concerns about user
data privacy and security, which is another future direction for research, as using personal
device data for driver monitoring could raise legal and ethical issues related to consent,
data ownership, and the potential misuse of sensitive information. Moreover, regulatory
approvals and standardisation processes can be significant barriers to the development of
these systems, in addition to cultural and driver behaviour changes, which are complex to
achieve, even with the technology in place. Addressing the root causes of driver distraction
and promoting safer habits may require more complex and multi-faceted approaches to
occur than just overcoming the technical challenges.
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