
Citation: Sangaiah, A.K.; Javadpour,

A.; Pinto, P.; Chiroma, H.; Gabralla,

L.A. Cost-Effective Resources for

Computing Approximation Queries

in Mobile Cloud Computing

Infrastructure. Sensors 2023, 23, 7416.

https://doi.org/10.3390/s23177416

Academic Editor: Miguel Ángel

Conde

Received: 28 April 2023

Revised: 25 July 2023

Accepted: 2 August 2023

Published: 25 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Cost-Effective Resources for Computing Approximation
Queries in Mobile Cloud Computing Infrastructure
Arun Kumar Sangaiah 1,2 , Amir Javadpour 3,4,*, Pedro Pinto 4 , Haruna Chiroma 5,* and Lubna A. Gabralla 6

1 International Graduate School of Artificial Intelligence, National Yunlin University of Science and Technology,
Douliou 64002, Taiwan

2 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
3 Department of Computer Science and Technology (Cyberspace Security), Harbin Institute of Technology,

Shenzhen 150001, China
4 ADiT-Lab, Electrical and Telecommunications Department, Instituto Politécnico de Viana do Castelo,

4200-319 Porto, Portugal
5 College of Computer Science and Engineering, University of Hafr Al Batin, Hafar al-Batin 31991, Saudi Arabia
6 Department of Computer Science and Information Technology, Applied College, Princess Nourah Bint

Abdulrahman University, Riyadh 11671, Saudi Arabia
* Correspondence: a.javadpour87@gmail.com (A.J.); haruna.chiroma@acm.org (H.C.)

Abstract: Answering a query through a peer-to-peer database presents one of the greatest challenges
due to the high cost and time required to obtain a comprehensive response. Consequently, these
systems were primarily designed to handle approximation queries. In our research, the primary
objective was to develop an intelligent system capable of responding to approximate set-value
inquiries. This paper explores the use of particle optimization to enhance the system’s intelligence. In
contrast to previous studies, our proposed method avoids the use of sampling. Despite the utilization
of the best sampling methods, there remains a possibility of error, making it difficult to guarantee
accuracy. Nonetheless, achieving a certain degree of accuracy is crucial in handling approximate
queries. Various factors influence the accuracy of sampling procedures. The results of our studies
indicate that the suggested method has demonstrated improvements in terms of the number of
queries issued, the number of peers examined, and its execution time, which is significantly faster
than the flood approach. Answering queries poses one of the most arduous challenges in peer-to-
peer databases, as obtaining a complete answer is both costly and time-consuming. Consequently,
approximation queries have been adopted as a solution in these systems. Our research evaluated
several methods, including flood algorithms, parallel diffusion algorithms, and ISM algorithms.
When it comes to query transmission, the proposed method exhibits superior cost-effectiveness and
execution times.

Keywords: intelligent technique algorithm; peer to peer; particle optimization; approximation
queries; mobile cloud computing

1. Introduction

The advancement of distributed technologies, such as grid, peer-to-peer networks, and
mobile computing, has revolutionized the landscape of large-scale collaborative applica-
tions. Among these distributed technologies, peer-to-peer systems have gained significant
attention for their scalability, simplicity, and independence from powerful centralized
servers. In peer-to-peer systems, data storage and processing can occur autonomously
across the network, and users can freely join or leave the network at any moment, fostering
a highly flexible and dynamic collaborative environment [1,2].

One of the key challenges in mobile cloud computing (MCC) is to ensure safety and
security within the mobile environment. With the widespread usage of cloud-based services
accessed through mobile devices, the vulnerabilities of mobile networks and potential risks

Sensors 2023, 23, 7416. https://doi.org/10.3390/s23177416 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23177416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0229-2460
https://orcid.org/0000-0003-1856-6101
https://orcid.org/0000-0003-3446-4316
https://doi.org/10.3390/s23177416
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23177416?type=check_update&version=1

Sensors 2023, 23, 7416 2 of 31

associated with cloud-based data storage demand robust solutions. Recent research trends
in MCC focus on addressing these challenges and enhancing the reliability and security
of MCC systems. Researchers in the MCC domain are actively exploring energy-efficient
strategies to optimize data transmission, resource allocation, and task scheduling to extend
the battery life of mobile devices. Improving the quality of service (QoS) in MCC is also
a priority, with efforts concentrated on reducing latency, enhancing network reliability,
and delivering seamless user experiences. Trust and reputation management mechanisms
have emerged as critical components to assess the reliability of cloud service providers
and mobile devices in MCC. These mechanisms play a vital role in establishing trust
among users and service providers, thereby enhancing the overall safety and security
of data transactions and exchanges. The concept of federated learning holds promise in
enabling collaborative model training without exposing raw data. This privacy-preserving
approach is well-suited for applications in mobile cloud computing, allowing mobile
devices to participate in model training while preserving user data privacy. Furthermore,
the integration of blockchain technology with mobile cloud computing has become an
area of considerable interest. Blockchain’s tamper-resistant data storage and decentralized
trust offer potential solutions to enhance security and transparency within mobile cloud
environments. Researchers aim to explore practical implementations of blockchain to
ensure data integrity and bolster the safety of mobile cloud computing.

In the realm of industrial applications, the Industrial Internet of Things (IIoT) has
brought revolutionary changes, including intelligent power quality monitoring for indus-
trial drives. Recent research trends in this domain focus on developing advanced power
quality monitoring systems that can efficiently handle and process large volumes of data.

Researchers are integrating edge intelligence and analytics into power quality moni-
toring systems to enable real-time analysis at the edge, leading to quicker decision making
and increased responsiveness. Additionally, the fusion of data from multiple sensors has
emerged as a significant area of exploration to gain comprehensive insights into power qual-
ity and overall system performance. This holistic approach allows for timely fault detection
and diagnosis, enhancing the reliability and efficiency of industrial drive applications.
Cloud-based predictive maintenance systems have become invaluable tools in optimizing
industrial drive operations. By leveraging historical data and advanced analytics, these
systems can predict equipment failures and schedule proactive maintenance, reducing
downtime and optimizing maintenance costs. Energy harvesting techniques are actively
being studied to improve energy efficiency and power quality in industrial drive appli-
cations. The integration of renewable energy sources and energy storage solutions offers
promising avenues to enhance power quality while reducing reliance on traditional power
grids. As industrial applications become more interconnected, data privacy and security are
critical concerns. Researchers are actively working on developing secure communication
protocols, encryption methods, and access control mechanisms to safeguard sensitive data
and maintain the integrity of power quality information. In peer-to-peer systems, the
dynamic behavior, where users can store their information in different parts of the network,
has led to the reliance on data replication to provide a substantial volume of available
data. Some replication methods are considered static, but sophisticated applications in
peer-to-peer systems require more advanced abilities to identify conflicts in updates. Opti-
mistic replication, which allows for asynchronous version updates, enables applications to
function seamlessly even in the presence of disconnected or problematic nodes [3,4]. Fur-
thermore, the advancements in distributed technologies, especially peer-to-peer systems,
have propelled collaborative applications to new heights. The research focus on ensuring
safety in mobile cloud computing and developing intelligent power quality monitoring
systems for industrial drives highlights the industry’s commitment to providing secure,
efficient, and reliable solutions in the evolving landscape of distributed computing.

Sensors 2023, 23, 7416 3 of 31

1.1. Peer-to-Peer System Characteristics

The concept of peer-to-peer processing finds its historical roots in earlier distribution
systems such as NNTP and ICP. While the peer-to-peer pattern is not entirely novel, it
introduced specific features that distinguish it from traditional client-server models. These
characteristics, which were already present to some extent in prior distribution systems,
define the fundamental nature of peer-to-peer systems [5,6].

The first notable characteristic is the ad hoc nature of peer-to-peer systems. Unlike
centralized architectures with fixed servers, peer-to-peer networks allow members to join
or leave the system at will. This dynamic environment results in a constantly changing
network topology. To ensure smooth operations and effective collaboration, peer-to-peer
systems require robust organization and coordination mechanisms to handle the continuous
fluctuations in membership and network structure.

Secondly, peer-to-peer systems rely heavily on the collective resources of participating
members, each of whom typically possesses limited capacity and capabilities. Individual
nodes may experience failures due to factors, such as limited processing power, bandwidth,
or intermittent connectivity. Consequently, it becomes crucial to distribute the workload
efficiently and to maintain a balance of tasks among peers to ensure system stability and
optimal performance.

The peer-to-peer processing pattern is not entirely novel. Many prior distribution
systems, such as NNTP (Network News Transfer Protocol) and ICP (Internet Cache Pro-
tocol), followed a peer-to-peer pattern, although typical peer-to-peer systems replaced a
type of distribution system with specified features. These characteristics were, of course,
present in prior distribution systems, albeit to varied degrees. The following are some of
the characteristics of peer-to-peer systems [5,6].

1.1.1. Ad-Hoc

Members join and leave the system at will, and, therefore, the number and position
of active members, as well as the network topology, are always changing. Ad hoc nature
requires the organization of peer-to-peer systems. One of the fundamental characteristics
of peer-to-peer systems is their ad hoc nature. In such systems, members have the freedom
to join or leave the network at will, leading to a continuously changing network topology.
This dynamic environment presents challenges in terms of organizing and maintaining the
system effectively. Coordination mechanisms are necessary to ensure seamless communi-
cation, resource sharing, and efficient collaboration among peers, despite the constantly
fluctuating membership.

1.1.2. Limited Capacity and Reliance on Members

According to survey results, members do not have the ability to be a server; they have
limited capabilities and frequently fail. Because of the members’ limited working ability, it
is necessary to divide the burden and create a balance among the participating members.
Unlike traditional client-server models where powerful servers handle most of the tasks,
peer-to-peer systems distribute functionalities among individual nodes. As a consequence,
each member typically possesses limited capabilities, and they may experience failures due
to factors like limited processing power, bandwidth, or network connectivity. To maintain
system stability and performance, peer-to-peer systems must divide the workload and
balance responsibilities effectively among participating members.

1.2. Advantages of Peer-to-Peer Systems

Despite the challenges posed by the dynamic and resource-constrained nature of
peer-to-peer systems, they offer numerous advantages over traditional client-server archi-
tectures [7,8].

One of the primary advantages lies in the enhanced scalability of peer-to-peer systems.
In centralized architectures, the scalability is often tied to the capacity of the central server.
However, peer-to-peer systems can scale more efficiently due to their decentralized nature.

Sensors 2023, 23, 7416 4 of 31

With each node acting as both a client and a server, direct communication and resource
sharing among peers enable the system to grow in power and resilience as the number of
nodes increases.

Moreover, the cost efficiency of peer-to-peer architectures is another significant advan-
tage. Traditional client-server setups may require expensive infrastructure and maintenance
costs for powerful central servers. In contrast, peer-to-peer systems distribute the computa-
tional and storage burden across participating nodes, effectively sharing the costs among
users. For example, in file-sharing systems, the collective storage space provided by all
members eliminates the need for costly centralized servers.

Another key benefit lies in the improved scalability and reliability achieved by peer-
to-peer systems. Despite lacking a centralized resource, innovative distributed algorithms
and techniques enable Peer-to-Peer (P2P) network to exhibit high levels of fault tolerance
and robustness. Such adaptability allows the system to handle node failures and adapt to
varying network conditions effectively.

The decentralized nature of peer-to-peer systems also grants users increased autonomy
in their interactions. Users are not solely dependent on a central server for data access or
communication. Instead, they can directly interact with other peers, enabling more direct
and efficient sharing of resources. This autonomy can lead to faster content delivery and
more responsive interactions.

Furthermore, peer-to-peer systems offer a higher level of user anonymity compared
to centralized architectures. In traditional client-server systems, users must reveal their
identities to the central server for various operations. In contrast, peer-to-peer interactions
occur directly among peers, allowing users to avoid divulging personal information to
centralized authorities. This increased privacy and security make peer-to-peer systems
desirable for applications where anonymity is crucial.

Computers that engage in a peer-to-peer system often belong to reasonable, indepen-
dent members; they may choose to share data, quit the system, or send a query, for example.
These decisions are not always in line with the system’s aims, and this conflict of interest
might undermine the system’s overall growth and efficiency. Therefore, when creating
peer-to-peer protocols, participants’ reasoning must be taken into account. Some of the
advantages of peer-to-peer systems are as follows [7,8]:

• These systems enhance the system’s scalability by reducing the system’s reliance on
centralized management.

• Because nodes communicate directly with one another, we won’t require ca costly
structure to communicate with and manage the nodes.

• Because of its great scalability, it will be possible to increase the number of system
nodes, thereby expanding the system’s available resources, and a powerful system
will thus be formed.

1.2.1. Split and Reduce Costs

The server will have to spend a lot of money to set up a centralized system that
can support several clients. Peer-to-peer architecture can assist in spreading this cost
among all members. In a file sharing system, for example, the required space will be
provided by all members. One of the primary advantages of peer-to-peer systems is their
enhanced scalability. In traditional client-server models, the scalability of the system relies
heavily on the capacity of the central server. However, peer-to-peer systems can scale
more efficiently because each node can act as both a client and a server. This decentralized
approach enables direct communication and resource sharing between peers, allowing the
system to grow more powerful and robust as the number of nodes increases. Peer-to-peer
architecture can significantly reduce infrastructure costs. In client–server systems, setting
up and maintaining powerful centralized servers can be expensive. In contrast, peer-to-peer
systems distribute the computational and storage burden across the participating nodes,
sharing the costs among the users. For example, in a file-sharing system, the required

Sensors 2023, 23, 7416 5 of 31

storage space can be provided collectively by all members, reducing the need for expensive
centralized servers.

1.2.2. Improve Scalability and Reliability

Because of the lack of a powerful central resource, one of the major tasks is to improve
the system’s scalability and reliability, which leads to algorithmic breakthroughs in this field.
Despite lacking a centralized powerhouse, peer-to-peer systems have shown remarkable
advancements in scalability and reliability. By leveraging the collective resources of multiple
nodes, P2P networks can achieve high levels of fault tolerance and robustness. Innovations
in distributed algorithms and techniques have enabled peer-to-peer systems to handle node
failures and adapt to varying network conditions effectively.

1.2.3. Increase Autonomy

In many situations, users of a distributed network are reluctant to rely on a centralized
server because doing so limits them. In the case of file sharing programmers, for example,
users can directly download each other’s files rather than relying on a centralized server
that may or may not enable them to receive the file. Peer-to-peer systems grant users
increased autonomy and flexibility in their interactions. Users are not solely dependent on
a central server for data access or communication. Instead, they can directly interact with
other peers in the network, enabling more direct and efficient sharing of resources. This
autonomy can lead to more efficient content delivery and faster response times.

1.2.4. Anonymous

This term becomes reliant on the same autonomy. Users may not want any other user or
server to have access to their system’s information. Anonymity cannot be guaranteed while
employing a central server since the server must be able to identify the client, for example,
using its URL. Because procedures are performed locally in a peer-to-peer architecture,
users can avoid disclosing personal information to others. The decentralized nature of peer-
to-peer systems often provides a higher level of user anonymity compared to centralized
architectures. In traditional client–server systems, users must identify themselves to the
central server for various operations. In contrast, peer-to-peer interactions occur directly
among peers, allowing users to avoid revealing personal information to central authorities.
This increased privacy and security make peer-to-peer systems attractive for applications
where anonymity is crucial.

1.2.5. Model of Software Architecture

Participants in a peer-to-peer system build a covering network among themselves. A
logical channel can be established between two members in this cover without a direct
physical link between them. This cover network outlines the physical network’s details,
resulting in the growth of peer-to-peer systems on the Internet. To be eligible for this
coverage, members must install special software. The software consists of two major
components: a peer-to-peer layer and a peer-to-peer application, with the possibility of an
intermediate component. This peer-to-peer layer is in charge of shaping and organizing
the coverage, as well as file replacement. Peer-to-peer applications carry out the functions
required by system-specific services. The interface includes auxiliary applications (such as
identifying desirable members) that can improve peer-to-peer quality and performance [9,10].

1.3. The Necessity and Importance of Conducting Research

Peer-to-peer systems have recently received increased interest from the research and
industrial communities, owing to their potential to combine the participation of members’
resources in the form of enormous, shared resources for all users. Today, the file-sharing
service has attracted millions of users who have exchanged massive volumes of network
data. Recent scale investigations have contributed to the expansion of this system. Ac-
cording to these studies, peer-to-peer file sharing consumes more bandwidth than the use

Sensors 2023, 23, 7416 6 of 31

of global spreadsheets [6]. Participants in a peer-to-peer system collaborate to provide
the desired service. This service could be shared processing, file sharing, shared storage,
or data exchange, for example. There should be no centralized authority of controlling,
organizing, monitoring, or maintaining the entire system. These functions are instead
shared among members who collaborate to share resources, such as memory, processor,
network bandwidth, and information. The following are some of the advantages of using a
peer-to-peer approach for distributed applications:

• Improve scalability by sharing resources among members and minimizing dependency
on a centralized server.

• Cost-effectiveness in terms of utilizing available resources and avoiding the need for
costly infrastructure

• Capability to grow by completing all procedures in the final system

For numerous reasons, data replication is critical in distribution networks, particularly
peer-to-peer systems. First, replication increases system accessibility by removing defects.
Second, it enhances system performance by decreasing communication with superiors, and
finally, repetition promotes system scalability by facilitating system growth by establishing
acceptable response times. Another issue with data replication is managing updates. A
copy management system is one that creates a copy, finds the best copies, and manages and
updates the copy in a virtual organization. The data copy strategy’s role is to determine
when to copy, where to put the copies, and how to put the best copy. The copy algorithm is
in charge of generating the dynamics of new versions. This algorithm must decide which
files should be copied and where they should be saved. The copy deletion algorithm is
in charge of removing duplicates in order to preserve storage space [11]. To achieve a
performance gain, a copy selection method is also required. Copy strategy determines the
time and location of copy production. This method is influenced by factors, such as data
demand, network status, transmission costs, and storage costs. Replica management is a
critical issue in decreasing bandwidth consumption, improving data access, and maintain-
ing data inclusion in large distribution networks. Grand River Mutual (GRM) [12,13] refers
to maintaining data integrity across the network, which is especially critical in multi-group
distribution systems. GRM, on the other hand, is unsuitable for many applications because
too many messages must be exchanged during the copy management process, which
decreases the amount of message exchanges required to accomplish the appropriate GRM
approach by employing an internal connection structure known as a Distributed Spanning
Tree (DST) [14,15]. The DST Ver.1.4.6 software turns the network collaboration into a logical
layer structure, resulting in a hierarchical method for copy management. This hierarchical
method has been found to increase data access and integration throughout the network, as
well as to reduce the amount of data recorded and the number of messages transmitted for
each application on the network. Due to the distributed nature of peer-to-peer networks,
in which nodes with the same role and capabilities exchange information and services
directly with each other, each node must request the transmission of multiple network
messages in order to exchange data with another network collaboration, which may result
in increased access delays. Data copying is an important and widely used method for
lowering network access latency and transmission intensity. Copy management is critical
for all forms of distribution schemes due to the documented capabilities and desire for
network collaboration. Most techniques of copying data copy it to all nodes, or at least
to the beginning and end of a linked search path, to boost accessibility. However, a high
number of copies consumes a lot of memory and raises the unit cost of individual nodes.
Because of these constraints, there is a greater need for a series of efficient solutions to
reduce the number of copies. Many solutions have been presented, and they differ in terms
of location, durability, scope, and application.

Sensors 2023, 23, 7416 7 of 31

1.4. Hypotheses

Along with technological advancements, peer-to-peer systems are now being regarded
for having a suitable platform for shared applications, as well as scalability, simplicity, and
the lack of the need for powerful servers. Data storage and processing can be conducted
independently in any area of the system in a distributed fashion, and users can join or leave
from the network at any moment. Because of these dynamic characteristics, which allow
users to store their information in different areas of the system in a dispersed manner, they
now rely on a new technique to supply a significant amount of available data to peer-to-
peer networks. One strategy to improve access to information is to reduce execution time,
bandwidth usage in peer-to-peer networks, and overall system performance by employing
an up-to-date and appropriate data management method. This method is known as data
replication. It is an efficient method of increasing performance and accessibility by storing
many replications in different locations as well as reducing bandwidth consumption and
access costs in the operating environment. Transparency in data replication is required.
The following hypotheses are briefly stated in this study:

• Peer-to-peer networks are highly significant today, and data replication is one of the
primary issues of data management in peer-to-peer networks.

• Dynamic data replication is an effective method for controlling the volume of traffic
and the performance of peer-to-peer networks.

• Data replication approaches based on intelligent searches have been used successfully
for resource management concerns in cloud computing, grid networks, and other
domains.

• In peer-to-peer networks, data replication operations are carried out using intelligent
and hybrid processing algorithms.

• Synchronous updating of a copy of data by distinct nodes causes duplicates to diverge
and collisions to occur. Dynamic data replication methods are employed for this
purpose.

1.5. Peer-to-Peer Systems and Research Background

Peer-to-peer systems have evolved as a popular method for distributing massive
volumes of data. These networks have grown in popularity in recent years. Peer-to-peer
networks are fundamentally distributed systems that lack centralized structure or control.
When there are multiple iterations in a system that are all based on the same data source,
each change in one of them must be reflected in all iterations in order for the iterations
to be compatible. If a source has a large number of iterations, keeping these iterations up
to date becomes one of the system’s key difficulties if one of them changes and reduces
the system’s performance. Memory limits may not be a relevant consideration in many
applications nowadays, owing to the arrival of high-capacity memory, but given that we
deal with a huge number of massive data sources, memory issues and restrictions are one
of the primary limitations.

The first category is static iterations, in which the iteration policy is specified from
the beginning and is in fact part of the system configuration, i.e., the location of the
iterations is specified in the system design stage, and these iterations are located in the
specified locations during the implementation stage and, moreover, their location is set and
unchanging till the conclusion of system operation. The first category is static iterations, in
which the iteration policy is specified from the beginning and is, in fact, part of the system
configuration, i.e., the location of the iterations is specified in the system design stage, and
these iterations are not only located in the specified locations during the implementation
stage but their location is also constant and unchanging till the conclusion of system
operation. Changing the topology of the data source network or the pattern of queries will
almost certainly not modify this policy. Therefore, the efficiency of the system is severely
reduced and resources may not be used properly. For example, the number of system users
may be statically set at 50 at the time of policy setting, but after a while, the number of

Sensors 2023, 23, 7416 8 of 31

users may reach 500, or initially the number of users in a particular node may exceed the
rest of the nodes, but this pattern changes and the traffic of another node increases [16].

As a result, these algorithms are more suited for applications where the user request
pattern is fairly constant and highly predictable. If the user request pattern in these systems
changes, the only method to modify the system is to redesign and re-implement the
system. This is the most significant disadvantage of these approaches. The most significant
advantage of these systems is their simplicity of implementation. Table 1 summarizes the
presented approaches separately.

In systems where the user request pattern is not constant and changes over time,
using static repetition methods is not only ineffective but may also change the present
configuration to one of the worst scenarios by changing the user request pattern. Therefore,
methods for dynamically determining the optimal configuration of iterations based on the
current demands of users are required in such systems. Dynamic replication methods are
designed for this purpose, in which the data source automatically replicates as needed
owing to changing access patterns and other variables, and places it in the appropriate
location to improve access frequency while avoiding cost increases [17]. These approaches
continuously monitor the user request pattern and, if it changes, modify the arrangement
and configuration of replications to retain the system’s approximate optimal configura-
tion. The process of generating dynamic replication is both centralized and distributed.
Versions are created solely at the vertex node in the centralized version, while versions are
created at several selected nodes in addition to the vertex node in the distributed version.
Dynamic replication approaches outperform static iterative methods because they may
make intelligent decisions regarding iteration creation based on information from the p2p
network environment [18]. One disadvantage of this strategy is that a central iteration
decision maker is necessary in data sources that require the collection of information from
all nodes or sites running in a complicated structure. If nodes are added and withdrawn on
an irregular basis, the overhead of this central decision maker is compounded. Synchro-
nization is extremely difficult and almost impossible in complicated contexts such as P2P
networks when using decentralized approaches. In general, static data replication methods,
while simple to construct, are not feasible in practice; on the other hand, dynamic data
replication is an optimization strategy that reduces average execution time. Now, despite
all the research on dynamic data replication in p2p environments, the following challenges
remain. High execution time on peer-to-peer sites, high file access delays, absence of com-
bined use of iterative algorithms and scheduling in the majority of proposed techniques,
limited number and capacity of available storage resources, and inefficient data access [19].
Replica techniques must have the ability to improve one or more optimization parameters
of iterative algorithms. The optimization parameters of iterative data algorithms improve
system performance, and each proposed data replication approach must do at least one
of the following: reduce access latency, bandwidth usage, maintenance costs, strategically
placing replications, and downtime, create load balancing, increase fault tolerance, quality
assurance, and make the most use of available storage resources. Search methods in data
iteration algorithms can be categorized into conscious or blind. In blind search, nodes do
not hold any information about the location of documents, but in conscious search, there
is a distributed or centralized directory service that aids in the search for the requested
items. The basic idea behind these search algorithms is to decrease the amount of nodes
that each query receives and evaluates. This will be processed, and fewer results will be
returned [20]. The proposed architecture, known as eestore [21], introduces a principled
distribution list with a repeat layer in the middle and a transaction management layer at
the top layer. The authors of this reference presented a method called self-scaling iteration,
which includes features including automatic data segmentation, load balancing, efficient
query range, transactional access, and compatibility with agreed-upon replication and
multi-copy concurrency management. They presented the inclusion of effective masses
in an ordered distributed table in [22,23]. The planning step comes before the actual de-
grees in this method. This method’s characteristics include the employment of parallel

Sensors 2023, 23, 7416 9 of 31

clusters, balance between interpolation, and the decrease in partition transfer costs while
developing operational capacity. The method of partitioning and iteration on the load axis,
known as division, is provided in the reference. The approach is divided into two stages:
load-oriented and division and iteration based on the graph, distribution and validation.
In the article [24], databases are presented as a service with specific purposes that aim
to strengthen large organizations’ data management capability. This system, which has
numerous dedicated storage engines and high access due to transparent replication and
automatic partitioning, has become highly scalable and balanced by allowing for regular
distributed transactions. The authors present a method in the reference that separates large
databases into node sets and converts a large number of small, independent databases
into multi-tenant databases. Thus, by improving transaction and fault tolerance, they have
provided a very flexible method. The network distance and load balancing of the nodes are
measured in this approach, and an algorithm called Paxos is employed for this purpose.
The data replication technique in the article [25] is the way of integrating the file collection
with the FIRE method, which performs better than the LRU and LFU methods by enhancing
efficiency and decreasing data access time. The DRS data replication approach is used
in a peer-to-peer network environment to improve data access, which reduces network
latency and detects changes in the access algorithm, speeds up data access, reduces data
transfer rates over long distances, and boosts efficiency and decreases bandwidth. In [26],
the authors used a dynamic table with indexing by presenting an intelligent method called
RPAT. This discovery approach is based on evaluating the similarity of data sources on the
path of requesting and service nodes, and it may be utilized in decentralized networks and
dynamic algorithms due to the ability to establish and update rules. Researchers introduce
OPRA, an intelligent and discovering technique, in [27], which compensates for the time
delay caused by node requests using the pointer iteration method. This algorithm’s method-
ology is greedy, and it aims to reduce the retrieval rate of the query by using a pointer table.
The researchers’ notion in [28] is that if we allow nodes to reply to queries on behalf of
other nodes, we can still reduce the number of nodes that process the query to respond to
most queries without relying on the capabilities of multiple nodes. This will decelerate
network access to data sources. Current lookup algorithms aim for efficient bandwidth and
the discovery of unique objects via these networks. In these systems, the respondent node
may be aware of the query’s source address and may establish a temporary connection
to the source (to convey the response message). Although this method consumes more
bandwidth than the previous ones, it provides anonymity for the query source and protects
it from being targeted by connection requests. When a node receives a query message,
it must determine whether to forward it to its other neighbors or destroy it. The routing
policy decides whether the query is sent and to whom. This strategy is implemented by
having a search source that queries messages exclusively to a subset of neighbors who
select nodes that produce quality results. The lookup approaches considered by researchers
nowadays are highly distinct and have numerous capacities in the field of intelligence,
some of which are discussed following. Data Grid is a distributed environment that deals
with high-volume centralized data applications.

Table 1. An overview of the research background and related methods.

[29] HRI Try to select the best super node to refer to prevent duplication and fetching of queries
between nodes in an area [30].

[31]
An intelligent fuzzy search
method based on clustering

topology

The existence of a cluster means that when a request for a particular object reaches the
cluster, the request can be sent to the part of the cluster that has the best chance of

finding the desired file and source [32].

[33] Random-walk algorithm is used
The Random-walk algorithm is used to improve the response time [34].

In order to solve the flooding problem that causes problems, such as heavy traffic on
the network

Sensors 2023, 23, 7416 10 of 31

Table 1. Cont.

[35] object replacement
In this method, distributing a file within the network and repeating it between

different nodes reduces the search pressure and also the time to find that file within
the network [12].

[36] From a data structure Intelligent strategies based on the Digistra method and Storage Strategy Query
categorizations classify the output results as approximate or accurate [37].

[38] Maintain the node list
Each node holds a list of other nodes that are connected to a network. In this list,

nodes that are directly connected to the node are referred to as neighboring nodes,
and the number of these neighbors is considered a degree for this node.

[39] Schedule called CSS
Divides the optimization problem into several pieces and distributes them over the

network so that it can be used to monitor lost information and retrieve missing pieces
of information from neighboring peers [40].

[28] Query

The search techniques considered by researchers today are very different and have
many capabilities in the field of intelligence, some of which are discussed below. Data

Grid is a distributed environment that deals with high-volume centralized data
applications.

[27] OPRA Compensates for time lags caused by node queries by pointing method

[26] RPAT
This detection method is based on calculating the similarity of data sources on the

path of request and service nodes, which can be used in decentralized networks and
dynamic algorithms due to the ability to create rules and optimize them.

[25] FIRE

In a peer-to-peer network environment, the DRS data replication strategy is used to
improve data access, which reduces network latency and detects access algorithm

changes, speeds up data access, reduces long-distance data transfers, and increases
performance and reduces bandwidth.

[24] Data management for large
organizations

This system has several dedicated storage engines and has high access through
transparent duplication and automatic partitioning.

[23] Insert effective mass in a table
In this method, the planning phase is before the actual degrees. The use of parallel

clusters, balance between interpolation and reduction of partition transfer costs with
the development of operational capacity are the features of this method.

[21] Eestore A principled distribution list with a duplication layer in the middle and a transaction
management layer in the top layer.

[20] Blind lookup
Nodes do not hold any information about the location of documents, while in

conscious methods, there is a distributed or centralized directory service that helps to
search for the requested objects.

The algorithm [39] contains a scheduler called CSS that takes into account the number
of tasks waiting in line, the location of the data necessary for the tasks, and the processing
capabilities of the nodes. The optimization problem is separated into several portions and
distributed over the network in this article in order to monitor the missing information
and retrieve the missing patch information from the neighboring peer. Protocols demand
a delay between the time it takes to create packets at the source and the time it takes to
broadcast on the network in this reference. The authors of [38] developed an approach
in which each node in a network maintains a list of other nodes that are connected to it.
Nodes that are directly related to the node are referred to as neighbor nodes in this list,
and the number of these neighbors is regarded a degree for this node. As the number
of nodes increases, the maximum size of the path from one node to another decreases;
however, this strategy increases the storage space in each node. Although this method use
TTL for each message to avoid requiring each node to store a huge volume of messages,
the TileLife problems make the method inefficient. Intelligent techniques based on the
Digistra method and query classifications are used in [36] to classify the storage strategy of
output results into approximate and precise methods. The suggested technique employs
a distinct data structure. The new method employs a tree data structure with less search
space, which decreases runtime and memory requirements. Furthermore, the proposed

Sensors 2023, 23, 7416 11 of 31

solution accounts for the CPU constraint by raising the data entry rate, which increases
system burden. The system recognizes this circumstance automatically and reduces some
extra load. Using a statistical technique, the error rate of the final findings is assured to be
confined to the amount of error predetermined by the user. The authors of [35] also propose
an object replacement mechanism for selecting the location of a node in the network so
that it has a higher probability of being found. Distributing a file throughout the network
and repeating it between multiple nodes minimizes the lookup pressure as well as the time
required to locate that file within the network. Duplicate subgraphs are subgraphs that are
frequently observed in path nodes on a graph and provide the most repetition with the
least support while exploring the pattern of the graph with k using the greedy local search
technique. In [33], in order to solve the flooding problem that causes problems such as
heavy traffic in the network if the TTL parameters are not well defined, the Random-walk
algorithm is used in which a node is randomly select one of its neighbors and then transmit
its request message. The node neighbor also selects another neighbor at random and sends
the message again. This step is repeated till the TTL message is finished. If the initial
neighbor does not react to the desired message, the primary node will send the request to
another random neighbor, and this procedure will be repeated until the source is discovered
or a fault is encountered. To improve response time, we can send several requests in one
unit on the network using Random Walk. The authors of [31] proposed an intelligent fuzzy
search approach based on clustering topology in which navigation can be performed and
used based on the geographical distance of nodes or their identical features in their shared
resources. The existence of a cluster means that when a request for a particular object
reaches the cluster, the request can be sent to the part of the cluster that has the best chance
of finding the file and the source, because the source and file identifiers are amazingly near
to the identification of the cluster’s certain series of nodes. The authors of [29] attempt to
select the best super node to refer to by employing a method that employs the Hop-Count
Routing Indices (HRI) algorithm to prevent duplication and fetching of queries between
nodes in an area, claiming that their random routing has solved the problems of random
walk and flooding.

2. Research Statement and Proposed Methods

Peer-to-peer architecture was initially conceived as a network architecture for sharing
computer system resources. Peer-to-peer database systems include infrastructure that is a
peer-to-peer network, and the peer-to-peer network that underlies these systems is effective
in many aspects of the system, including query processing and optimization. Participants
in a peer-to-peer system collaborate to provide the desired service. This service could be
shared processing, file sharing, shared storage, or data exchange, for example. There should
be no centralized body in charge of controlling, organizing, monitoring, or maintaining
the entire system. These functions are instead shared among members, who collaborate
to share resources, such as memory, CPU, network bandwidth, and information. Due to
the distributed nature of peer-to-peer networks, in which nodes with the same role and
capabilities exchange information and services directly with each other, multiple network
messages must be requested for each node to exchange data with another partner on the
network, resulting in increased access delays. Data copying is an important and widely
used method for lowering network access latency and transmission intensity. Copy control
is critical for all forms of distribution programs due to the documented capabilities and
demand for partner networks.

2.1. Intelligent Object Search

The search algorithms presented in this study are intended to be efficient in terms of
bandwidth and the discovery of required data sources via peer-to-peer networks. Methods
of searching can be classified consciously or blindly. In blind search, nodes have no
knowledge of the location of documents, but in conscious techniques, there is a distributed
or centralized directory service that aids in the search for the requested items. The basic

Sensors 2023, 23, 7416 12 of 31

idea behind these search algorithms is to limit the number of nodes involved in receiving
and processing each query. Intelligent and exploratory strategies will be effective only
when the majority of queries can be answered by a small number of nodes. The innovative
idea presented in this study is to provide a method that allows nodes to respond to queries
from other nodes, reducing the number of nodes that process the query and, as a result,
the need for and reliance on multi-node capabilities in the network. When a user issues a
query, the corresponding node is the query’s origin. The query message may be sent by
the source node S to any number of its neighbors. The routing policy sets the number of
neighbors and which neighbor receives the query. When a node receives a query message,
the query is processed throughout the node’s local set. If a result is found in that node, it
will send a distinct response message to the query source.

We can create some exploratory methods to help choose the best neighbor to send a
query. Some of the exploratory methods are:

• Choose the neighbor who provided the most results for earlier queries.
• Choose a neighbor who returns reply messages with the fewest stations on average.

Fewer stations may mean that this neighbor is closer to nodes that have useful data.
• Choose the neighbor who has sent the most messages (of any type) since our client

connected with the neighbor. The enormous quantity of messages suggests that the
neighbor is stable, implying that we have been connected to it for a long time and that
it can handle a significant flow of communications.

• Choose the neighbor who has the shortest message queue. The long message queue
indicates that the neighbor level has reached saturation or that the neighbor has died.

2.2. Network Structure in a Peer-to-Peer System

The proposed network topology in this paper is based on the supergroup. Nodes in
this network are classified into two types: super peers and client peers. Each super peer is
linked to a group of client peers. The super peer serves as a centralized server for a number
of peers in the cluster, and communication is handled by these lead nodes. The architecture
used in this article is depicted in the Figure 1.

The Figure 1 depicts a peer-to-peer network with each cluster consisting of a leader
and a client. Each cluster is the same size as the number of nodes in the cluster (client peers
and super peers). Through super peers, clusters can communicate with one another in
network coverage. When a client enters the system, it transmits data information to its
cluster header, which is then added to the header indexes. When a node is removed from
the network, the same thing happens. Clients submit their updates to the cluster header
when they change information (for example, registering, deleting, or modifying an item).

2.3. The Proposed Structure

The approach presented in this study is to first identify the same of all similar queries
in the current query using the query similarity criterion, and then select a set of neighbours
that provided the most results for these queries. If there is a collision, the query will
consider the path back to the requester and update the local indexes. This technique, which
achieves high accuracy, can exchange knowledge while imposing no overhead on node
entry and exit. In other words, the creation of its message is massive and only grows with
time (when knowledge is spread over the nodes). This algorithm is incompatible with
deleting objects or leaving peers because it does not use negative feedback from searches
and sending is based on ranking. Finally, its accuracy is strongly reliant on the assumption
that nodes be assigned to specific documents. The purpose of this strategy is to minimize
the number of messages exchanged for each request and the number of nodes analyzed, so
the request message is delivered to those nodes rather than all nodes.

Sensors 2023, 23, 7416 13 of 31Sensors 2023, 23, x FOR PEER REVIEW 13 of 31

Figure 1. Super-peer network model.

The Figure 1 depicts a peer-to-peer network with each cluster consisting of a leader
and a client. Each cluster is the same size as the number of nodes in the cluster (client
peers and super peers). Through super peers, clusters can communicate with one another
in network coverage. When a client enters the system, it transmits data information to its
cluster header, which is then added to the header indexes. When a node is removed from
the network, the same thing happens. Clients submit their updates to the cluster header
when they change information (for example, registering, deleting, or modifying an item).

2.3. The Proposed Structure
The approach presented in this study is to first identify the same of all similar queries

in the current query using the query similarity criterion, and then select a set of neigh-
bours that provided the most results for these queries. If there is a collision, the query will
consider the path back to the requester and update the local indexes. This technique,
which achieves high accuracy, can exchange knowledge while imposing no overhead on
node entry and exit. In other words, the creation of its message is massive and only grows
with time (when knowledge is spread over the nodes). This algorithm is incompatible
with deleting objects or leaving peers because it does not use negative feedback from
searches and sending is based on ranking. Finally, its accuracy is strongly reliant on the

Figure 1. Super-peer network model.

Finally, its precision is strongly reliant on the assumption that nodes be assigned to
specific documents. In this method, the purpose is to decrease the number of messages
exchanged for each request and the number of nodes examined, so the request message is
not sent to all nodes, but only to those nodes that are most likely to respond to the current
request, and, for this purpose, the record-keeping mechanism, which is used by each node
to record the data of its neighbors, is used. It keeps track of neighbors’ responses to recent
requests. The answer T, for example, holds the most recent request for each neighbor.

2.4. How to Select a Peer to Transmit Information

When the memory is full, the LRU (Unified Modeling Language) method is utilized
to replace the data. In the ranking system, the rank which is defined by each node p to
define its neighbors’ rank based on their history, and based on this ranking, the request is
forwarded to the neighbors who are more likely to respond to it.

The following formula is used for ranking, in which the Cost function calculates the
similarity of the latest request with prior requests and the s function indicates the number of
responses returned by that specific neighbor to the request. The relevance of the similarity
of the two requests is indicated by parameter a, and the larger the value, the better the
rating of the neighbor who responds to the same request. This strategy is beneficial when
the nodes include information about a specific topic:

RRpl(Pi.q) = εCost(qi.q)
α ∗ S(Pi.qk)

Sensors 2023, 23, 7416 14 of 31

One problem with this strategy is that if a new node contains very relevant data, the
request message will not reach it and will instead travel to the prior nodes because this
new node has no history of rising in the rankings. One method is to choose additional
nodes at random in addition to the nodes selected by the ranking. We recommend using
the local indexing strategy. The range of each node’s depth stations is held by node n, the
data index of each node in the local index technique. The index radius is denoted by the
symbol r. The node that receives the query message can process it from any node within its
r station depth range. As a result, multiple node sets can be searched by query processing
in a small number of nodes, resulting in a high degree of satisfaction and results while
keeping costs low.

2.5. Local Indexing Policy

The distinction between local index politics and repetitive deep learning duplication
policy is that in the deep learning duplication technique, the depths of the policy specify
the depths at which the repeats should terminate, and nodes of all depths process the query.
In order for the local index approach to work as well as the first depth D level search, the
local index policy’s final depth must also be set to D-r. When a node departs the network
or dies, the relevant metadata is deleted by other nodes that index the set of that node after
a certain length of time. Each node indexes the files stored in all nodes within a radius of r
and can respond to queries from all of them. The first level search method does a search,
but only the nodes available to the requester are processed at particular search depths.
To keep overhead to a minimum, the station distance between two consecutive depths
should be 2r + 1. Because each connected node indexes numerous peers, the accuracy of
this technique is expected to be high and the collisions to be very low.

2.6. Routing Indices

The Routing Index (RI) is used in P2P networks to improve query routing and to
minimize flooding. This index organizes the nearby nodes’ resource information and,
depending on this information, delivers the existing query to the neighboring peers. In this
study, we employ the Hop-Count Routing Index (HRI) idea for each peer, which counts
the number of nodes required to reach a base level. This index is created as a M × N table,
where M is the number of peer neighbors and N represents the maximum number of steps.
This index is created as a M × N table, where M is the number of peer neighbors and
N represents the maximum number of steps. The number of data elements that can be
accessed via a peer neighbor is represented by the nth place in the mth row of this matrix.
When a new partner enters the network, it provides data information to all of its neighbors.
As a result, the data in the peers has been updated.

2.7. How to Conduct a Client Queries

When a client requests a resource (file), it sends a query message to the local super
peer. This query is executed locally, and the results are presented. If a response is available,
it sends a successful message with the IDs of the responding nodes to the requesting node.
Otherwise, the local node selects the best super peer for the neighbor based on the number
of routing indexes and sends a copy of the query to the chosen neighbor. When a source
that fits the criteria indicated in the query is located, a queryHit message is generated
and sent to the query node via the same return path. This technique is repeated until all
neighbors have been contacted or examined.

2.8. Search Algorithm

If we consider the network structure shown in Figure 1, the search procedure within
the peer-to-peer network will be as follows. When node P1 in cluster 1 requires a resource
(a file), it makes a request to the cluster’s head (cluster 1). Cluster 1 (SP1) then looks
for the desired cluster. If acceptable requested resources are detected, the requester will
be supplied the node address of the owner of the requested resources. Otherwise, the

Sensors 2023, 23, 7416 15 of 31

cluster in Cluster #1 sends a request to find the best neighbor based on HRI data. For
example, in this case, we will assume that Cluster 2 is better than Cluster 3. As a result,
the cluster head in Cluster 2 initiates a local search. If it receives no responses, it for-
wards the request to its best neighbor (for example Cluster 4). If the result is in Cluster
4, the queryHit value from the node containing the requested file is returned. Other-
wise, the query will be returned unanswered, and the Cluster 2 header will route it to
the second best neighbor (cluster 6). In general, if the Cluster header 2 lacks the neces-
sary resources and, after reviewing all of its neighbors, is unable to discover an answer
to the given query, Cluster header 2 returns the query to Cluster 1. As a result, at this
point, the Cluster head 1 forwards the received query to its second best neighbor (Clus-
ter 3). The pseudo-code Algorithm 1 below demonstrates how to run this search method.

Algorithm 1: Pseudo-algorithm The proposed method for source search.

FUNCTION MatchQueryLocalResource(query)
localResource = NULL
// Logic to match the query with the local resources in the cluster
// . . .
RETURN localResource

FUNCTION FindNextBestNeighbor(query, toTry)
nextBestNeighbor = NULL
// Logic to find the next best neighbor using HRI (Hybrid Routing Index)
// . . .
RETURN nextBestNeighbor

FUNCTION ForwardQueryToRecipient(query, recipient)
// Logic to forward the query to the recipient
// . . .
// . . .
// . . .
// Ensure the query is forwarded to the recipient
PRINT “Forwarding query to recipient:” + recipient

FUNCTION SendResponseToRequester(query)
// Logic to send the response back to the requester
// . . .
// . . .
// Ensure the response is sent back to the requester
PRINT “Sending response to requester”

FUNCTION MainAlgorithm(requests)
FOR EACH query IN requests

localResource = MatchQueryLocalResource(query)
IF localResource IS NULL THEN

nextBestNeighbor = FindNextBestNeighbor(query, toTry)
IF nextBestNeighbor IS NULL THEN

recipient = Sender(query)
ELSE

recipient = nextBestNeighbor
END IF
ForwardQueryToRecipient(query, recipient)

ELSE
SendResponseToRequester(query)

END IF
END FOR

Sensors 2023, 23, 7416 16 of 31

2.9. In-Depth Explanation of the Proposed Method

The paper introduces an intelligent object search method in peer-to-peer (P2P) systems
using particle optimization. Particle optimization, also known as particle swarm optimiza-
tion (PSO), is a metaheuristic optimization algorithm inspired by the social behavior of
bird flocking or fish schooling. It is commonly used to solve optimization problems, and in
this context, it aims to improve the efficiency of object search within the P2P network. The
goal of the intelligent object search method is to efficiently discover required data sources
through P2P networks while minimizing bandwidth consumption. The search algorithms
are designed to strike a balance between accuracy and the number of nodes involved in
processing each query. The search methods can be classified into two types: conscious
search and blind search. In blind search, nodes have no prior knowledge of the location of
the desired documents. On the other hand, conscious search methods involve a distributed
or centralized directory service that aids in locating the requested items. The core idea
behind these search algorithms is to limit the number of nodes involved in processing each
query. Intelligent and exploratory strategies are employed, assuming that the majority of
queries can be answered by a small number of nodes. By doing so, the method aims to
reduce access delays and improve the overall efficiency of the object search process. To
achieve this, the paper proposes a method where nodes in the P2P network can respond to
queries from other nodes, effectively reducing the number of nodes that process the query
and thereby reducing the reliance on multi-node capabilities in the network. When a user
issues a query, the corresponding node becomes the origin of the query. The proposed
intelligent object search method considers various factors in selecting the best neighbor
node to send the query to. Some of the exploratory methods employed are:

• Choosing the Neighbor with Most Results: Selecting a neighbor who has provided the
most results for previous queries.

• Choosing the Neighbor with Fewest Stations on Average: Preferring a neighbor who
returns reply messages with the fewest stations on average. Fewer stations may
indicate that the neighbor is closer to nodes with useful data.

• Choosing the Neighbor with the Most Messages Sent: Prioritizing a neighbor who
has sent the most messages (of any type) since connecting with the current node. A
higher number of messages suggests stability and an ability to handle significant
communication.

• Choosing the Neighbor with Shortest Message Queue: Preferring a neighbor with the
shortest message queue. A long message queue might indicate that the neighbor has
reached saturation or is no longer active.

The proposed method also employs a ranking system where each node defines its
neighbors’ ranks based on their history. The ranking system helps forward the request to
neighbors who are more likely to have the desired data, reducing the number of messages
exchanged for each query. Additionally, the paper introduces the concept of a “local
indexing policy”. Each node maintains an index of files stored in all nodes within a certain
radius. This allows query processing to be restricted to a smaller set of nodes, thereby
reducing overhead and increasing search efficiency. The Hop-Count Routing Index (HRI)
is also used to improve query routing and minimize flooding in the P2P network. The
HRI idea involves counting the number of nodes required to reach a base level, and the
index is organized as an M × N table, where M is the number of peer neighbors and N
represents the maximum number of steps. To conduct a client query, the client sends a
query message to the local super peer. The super peer handles the query locally, and if it
has the desired data, it responds with the results. If not, it selects the best super peer based
on the Hop-Count Routing Index and forwards a copy of the query to the chosen neighbor.
This process continues until the query is answered or all neighbors have been contacted.
Overall, the intelligent object search method uses a combination of exploratory strategies,
ranking mechanisms, local indexing, and the Hop-Count Routing Index in order to improve
the efficiency of object search in P2P systems. However, the paper could provide more
in-depth details about the specific implementation of the particle optimization technique,

Sensors 2023, 23, 7416 17 of 31

how it interacts with the search algorithms, and its impact on the overall performance of
the intelligent object search method to allow other researchers to better understand and
replicate the results.

3. Simulation and Results

In this study, a peer-to-peer system is developed to provide the desired service, which
is to find an answer to a question or service among peers. This service could include file
sharing, shared storage, or data exchange. The purpose of this research is to find an optimal
or near optimal answer to the query. The following is the procedure for obtaining the best
possible answer to a query. We must determine the best path from the source peer. The best
approach provides the greatest number of responses by allocating TTL per hop, and this is
while we aim to keep the cost-to-response ratio as low as possible in this direction. In other
words, the number of hops required to reach an answer is minimized in an optimal path.
The following equation illustrates the formal definition of the optimal response to a query:

optimal Answer = PathOptimal where min

(
CostPathOptimal

HitsPathOptimal

)

3.1. Simulation Environment

The simulations are conducted in an environment with an Interl® Core ™ i7 CPU
@ 2.3 GHz and 6 GB of RAM. The operating system used is Windows 7 Ultimate 64Bit.
MATLAB programming language is used to simulate a peer-to-peer system, the relationship
between databases and the structuring of data releases.

3.2. Initial Values

In this section, we considered four different sources with varied parameters for each
of the examples, as shown in the table below. Each parameter has a minimum value that
can be incrementally increased to a maximum value. We produced one of the sources at
random for each peer using the parameters specified in Table 2 and assigned these sources
to the relevant peer. We use the k-means clustering algorithm to cluster the peers based on
the resources allocated to each peer.

Table 2. The details parameters for simulating a peer-to-peer system.

HDD Bandwidth RAM Number of CPU Resources

5 TB 10 GB 32 GB 8 MAX

500 GB 2 GB 2 GB 2 MIN

100 GB 1 GB 256 MB 1 Step

3.3. Simulated Peer-to-Peer System

The following describes the system environment topology used in this study and the
simulation performed for the P2P system. This network topology is represented by the
matrix N × N, where N is the number of cluster heads. In this topology, each header is
connected to its neighbors by a short-circuit connection, and all of the connections are
local. Furthermore, each cluster head is connected to all nodes within the cluster and is
topologically related to the nodes inside the cluster like a star. The network size, or, in
other words, the initial number of peers, is set to 1024. The equations are classified into
32 groups (using the k-means clustering method). The topology utilized is depicted in the
image below. Network topology and content distribution in a dynamic network are also
taken into account. The P2P network is presented as a trilogy (peer, link, data). A link is
a set of edges that represent all of the network’s links, and data is a dataset in which all
of the data are shared. The small world network architecture will be used to model the
neighborhood between clusters [30]. This network architecture is represented by lattice

Sensors 2023, 23, 7416 18 of 31

N × N. (Figure 2). In this topology, each peer is linked to its neighbors by a short-circuit
connection, and all four connections are local. Furthermore, each peer with a D-probability
is linked to another peer via a remote connection, where D is the number of hops or the
Manhattan distance between these nodes, and where α is also the clustering coefficient,
which is considered one.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 31

Figure 2. Proposed topology model. All connections between groups are based on the topology of
the small world.

3.4. The Implementation Process
Peer clustering across different groups was employed in this study in order to create

a method for sharing and replicating queries in a peer-to-peer network. Each group has a
peer known as the cluster head who is in charge of initiating communication between one
group and other groups in the network. The cluster head is responsible for all tasks con-
nected to duplicating queries and sending them to a neighbor who can provide a query
response for the asking node. As a result, the cluster head will be chosen from among
those with the best sources in each cluster (Figure 3).

Figure 3. Flowchart of the proposed method’s implementation process.

3.5. A Peer-to-Peer System’s Data Structure
The data distribution in this study’s peer-to-peer network is based on the distribution

introduced in the study]41 [. The domain of the query attribute (the attribute on which
the query is issued) is divided into subdomains in this data distribution. This Hierarchical
Structure of Domain Division (HSDD) is divided into three levels, with each subdomain
at each level equal to the community of its lower subdomains. The lowest level of HSDD
consists of 910 subdomains, whereas the second level consists of 177 subdomains. In the
third level, each domain in the second level has around five domains. The data structure
employed in this paper is depicted in Figure 4.

Figure 2. Proposed topology model. All connections between groups are based on the topology of
the small world.

3.4. The Implementation Process

Peer clustering across different groups was employed in this study in order to create
a method for sharing and replicating queries in a peer-to-peer network. Each group has
a peer known as the cluster head who is in charge of initiating communication between
one group and other groups in the network. The cluster head is responsible for all tasks
connected to duplicating queries and sending them to a neighbor who can provide a query
response for the asking node. As a result, the cluster head will be chosen from among those
with the best sources in each cluster (Figure 3).

Sensors 2023, 23, x FOR PEER REVIEW 19 of 31

Figure 2. Proposed topology model. All connections between groups are based on the topology of
the small world.

3.4. The Implementation Process
Peer clustering across different groups was employed in this study in order to create

a method for sharing and replicating queries in a peer-to-peer network. Each group has a
peer known as the cluster head who is in charge of initiating communication between one
group and other groups in the network. The cluster head is responsible for all tasks con-
nected to duplicating queries and sending them to a neighbor who can provide a query
response for the asking node. As a result, the cluster head will be chosen from among
those with the best sources in each cluster (Figure 3).

Figure 3. Flowchart of the proposed method’s implementation process.

3.5. A Peer-to-Peer System’s Data Structure
The data distribution in this study’s peer-to-peer network is based on the distribution

introduced in the study]41 [. The domain of the query attribute (the attribute on which
the query is issued) is divided into subdomains in this data distribution. This Hierarchical
Structure of Domain Division (HSDD) is divided into three levels, with each subdomain
at each level equal to the community of its lower subdomains. The lowest level of HSDD
consists of 910 subdomains, whereas the second level consists of 177 subdomains. In the
third level, each domain in the second level has around five domains. The data structure
employed in this paper is depicted in Figure 4.

Figure 3. Flowchart of the proposed method’s implementation process.

Sensors 2023, 23, 7416 19 of 31

3.5. A Peer-to-Peer System’s Data Structure

The data distribution in this study’s peer-to-peer network is based on the distribution
introduced in the study [41]. The domain of the query attribute (the attribute on which
the query is issued) is divided into subdomains in this data distribution. This Hierarchical
Structure of Domain Division (HSDD) is divided into three levels, with each subdomain
at each level equal to the community of its lower subdomains. The lowest level of HSDD
consists of 910 subdomains, whereas the second level consists of 177 subdomains. In the
third level, each domain in the second level has around five domains. The data structure
employed in this paper is depicted in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 31

Figure 4. Domain division’s hierarchical structure]41 [.

A total of 30 Tuples are stored in each peer, and the data is not distributed randomly
among the peers. Because each peer in a practical situation is interested in specific data,
data distribution is based on the idea of the favorite area. Each favorite area comprises a
subset of the subdomains. These areas of interest are, in fact, second level subdomains.
Each peer’s data is composed of 60% data from one favorite area and 20% data from an-
other favorite area. The rest of the data are assigned at random. Each iteration, each peer
asks a question with a 10% probability of being correct. Each query is issued at random
on one of the HSSD sheets. Each peer will issue a minimum of zero and a maximum of
one question in each iteration, and after completing the execution of all questions in each
iteration, the next iteration can start.

3.6. Clustering of Peers
The k-means clustering approach is employed in this paper to group peers into sim-

ilar groups. The parameters shown in Table 3 are used for each peer. The Table 4 depicts
the distribution and selection of cluster heads in various clusters. The table of peer indices
is maintained and updated in each iteration based on the neighborhoods defined for each
cluster. As a result, if a super peer is removed from the network or a new peer is selected
as the cluster header, the index table will be updated. The following is how to make
changes during program execution.

Table 3. Profiles of cluster heads in different clusters.

Storage Bandwidth RAM CPU Index Number Cluster
23 9 31 7 4 Cluster 1
43 6 19 7 8 Cluster 2
48 9 18 4 3 Cluster 3
11 8 25 4 7 Cluster 4
14 10 16 7 5 Cluster 5
12 6 19 3 10 Cluster 6
14 10 16 7 5 Cluster 7
48 9 18 4 3 Cluster 8
9 7 3 5 14 Cluster 9

15 8 13 6 1 Cluster 10
48 9 18 4 3 Cluster 11

Figure 4. Domain division’s hierarchical structure [41].

A total of 30 Tuples are stored in each peer, and the data is not distributed randomly
among the peers. Because each peer in a practical situation is interested in specific data,
data distribution is based on the idea of the favorite area. Each favorite area comprises a
subset of the subdomains. These areas of interest are, in fact, second level subdomains.
Each peer’s data is composed of 60% data from one favorite area and 20% data from another
favorite area. The rest of the data are assigned at random. Each iteration, each peer asks a
question with a 10% probability of being correct. Each query is issued at random on one of
the HSSD sheets. Each peer will issue a minimum of zero and a maximum of one question
in each iteration, and after completing the execution of all questions in each iteration, the
next iteration can start.

3.6. Clustering of Peers

The k-means clustering approach is employed in this paper to group peers into similar
groups. The parameters shown in Table 3 are used for each peer. The Table 4 depicts the
distribution and selection of cluster heads in various clusters. The table of peer indices is
maintained and updated in each iteration based on the neighborhoods defined for each
cluster. As a result, if a super peer is removed from the network or a new peer is selected as
the cluster header, the index table will be updated. The following is how to make changes
during program execution.

During program execution, the index table can manage these changes by considering
network changes, such as adding a new node or deleting one of the peers from the network
and updating the index tables if any of these events occur. When the procedure is performed
in the 23rd iteration, a new node is added to the network and identified as the cluster head.
This new node cluster head has the index number 35. The index table changes after the
23rd iteration as follows, and it can be noticed that three of the ten cluster heads examined
are updating their index tables considering the new cluster head (Table 5).

Sensors 2023, 23, 7416 20 of 31

Table 3. Profiles of cluster heads in different clusters.

Storage Bandwidth RAM CPU Index Number Cluster

23 9 31 7 4 Cluster 1

43 6 19 7 8 Cluster 2

48 9 18 4 3 Cluster 3

11 8 25 4 7 Cluster 4

14 10 16 7 5 Cluster 5

12 6 19 3 10 Cluster 6

14 10 16 7 5 Cluster 7

48 9 18 4 3 Cluster 8

9 7 3 5 14 Cluster 9

15 8 13 6 1 Cluster 10

48 9 18 4 3 Cluster 11

Table 4. Index table for cluster heads 1 to 10.

Cluster Head Number of Indexes Stored

1 5 23 25 30 -

2 4 9 19 26 27

3 7 9 15 19 32

4 6 7 16 25 26

5 5 7 14 25 -

6 15 17 20 29 30

7 2 17 19 28 -

8 3 9 23 - -

9 1 12 16 19 -

10 2 15 29 30 -

Table 5. Index table for cluster heads 1 to 10.

Cluster Head Number of Indexes Stored

1 5 23 25 30 35

2 4 9 19 26 27

3 7 9 15 19 32

4 6 7 35 25 26

5 5 7 14 25 -

6 15 17 20 29 30

7 2 17 19 28 -

8 3 9 23 - -

9 1 12 16 19 35

10 2 15 29 30 -

3.7. Values of Parameters

The parameter values used are critical in the particle optimization algorithm and have
a significant impact on the program’s efficiency. The Table 6 demonstrates how to set the
particle optimization algorithm’s parameters.

Sensors 2023, 23, 7416 21 of 31

Table 6. Parameters used in PSO algorithm.

Value Description Parameter

1024 Initial number of peers n

32 number of peers in each cluster eachCluster

3.8. Obtaining the Adjacency Matrix

We calculated the cost of crossing each peer as a unit. The best-case situation is to find
the answer in a single step. The following findings are produced using the initial values
that were considered. We have 32 groups, with 32 peers in each, according to the proposed
architecture.

In the simulations, peers 1 to 32 are cluster heads, and the remaining peers are in
groups. The Table 7 indicates how many communication linkages exist between certain
groups out of the 32 available. The proximity matrix stores these connections. Figure 5
diagrammatically depicts the number of connections between all cluster headers.

Table 7. Number of communication links between each cluster head to other clusters.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

4 2 7 6 6 8 5

Sensors 2023, 23, x FOR PEER REVIEW 22 of 31

values that were considered. We have 32 groups, with 32 peers in each, according to the
proposed architecture.

In the simulations, peers 1 to 32 are cluster heads, and the remaining peers are in
groups. The Table 7 indicates how many communication linkages exist between certain
groups out of the 32 available. The proximity matrix stores these connections. Figure 5
diagrammatically depicts the number of connections between all cluster headers.

Table 7. Number of communication links between each cluster head to other clusters.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
4 2 7 6 6 8 5

Figure 5. Number of connections between clusters.

3.9. How to Ask and Respond to Questions
In this study, the question design process is as follows: at the start of each loop, each

peer asks a question with a 10% probability. In order to simulate a dynamic environment,
a peer with a 10% opportunity is added to or deleted from our group of peers in each loop.
If the cluster’s head is removed, the best match in that cluster is allocated as the cluster’s
head. Asking a question by any peer involves asking data from one of the network’s peers.
The proposed solution of this research is to discover an appropriate path that can be em-
ployed to achieve the answer at the lowest cost. Cluster heads disseminate questions over
the network, and each peer must contact the cluster head to submit their request. If the
desired answer belongs to the same group as the source, the cost is regarded zero. In re-
ality, in this study, we avoided the expense of analyzing data from within each group.

3.10. Implement a Flood Algorithm in Query Transmission
In this study, we used the flood algorithm as a reference for comparison to evaluate

the efficiency of the proposed method and measure the time required for implementation.
The flood algorithm serves as a basic benchmark to assess the performance of the sug-
gested technique. In the flood algorithm, when a peer receives a query, it broadcasts the
query to all of its neighboring cluster heads if there is no answer available within its own
cluster. This strategy may result in multiple query repetitions and an increase in the pro-
gram’s execution time. Each peer initiates a query with a 10% probability at the beginning
of each loop. The number of queries propagated using the flood algorithm is determined
by the neighborhood and adjacency matrix of each cluster head. Due to the broadcasting
nature of the flood algorithm, the number of queries sent across the network can grow
rapidly, leading to potential inefficiencies in large-scale distributed environments. To
compare the proposed method with the flood algorithm, we measure the number of que-
ries issued and the execution time for each approach. The suggested algorithm leverages

Figure 5. Number of connections between clusters.

3.9. How to Ask and Respond to Questions

In this study, the question design process is as follows: at the start of each loop, each
peer asks a question with a 10% probability. In order to simulate a dynamic environment, a
peer with a 10% opportunity is added to or deleted from our group of peers in each loop. If
the cluster’s head is removed, the best match in that cluster is allocated as the cluster’s head.
Asking a question by any peer involves asking data from one of the network’s peers. The
proposed solution of this research is to discover an appropriate path that can be employed
to achieve the answer at the lowest cost. Cluster heads disseminate questions over the
network, and each peer must contact the cluster head to submit their request. If the desired
answer belongs to the same group as the source, the cost is regarded zero. In reality, in this
study, we avoided the expense of analyzing data from within each group.

3.10. Implement a Flood Algorithm in Query Transmission

In this study, we used the flood algorithm as a reference for comparison to evaluate
the efficiency of the proposed method and measure the time required for implementation.
The flood algorithm serves as a basic benchmark to assess the performance of the suggested

Sensors 2023, 23, 7416 22 of 31

technique. In the flood algorithm, when a peer receives a query, it broadcasts the query to
all of its neighboring cluster heads if there is no answer available within its own cluster.
This strategy may result in multiple query repetitions and an increase in the program’s
execution time. Each peer initiates a query with a 10% probability at the beginning of each
loop. The number of queries propagated using the flood algorithm is determined by the
neighborhood and adjacency matrix of each cluster head. Due to the broadcasting nature
of the flood algorithm, the number of queries sent across the network can grow rapidly,
leading to potential inefficiencies in large-scale distributed environments. To compare the
proposed method with the flood algorithm, we measure the number of queries issued
and the execution time for each approach. The suggested algorithm leverages intelligent
search mechanisms, profile-based node selection, and limited message exchanges to op-
timize query processing and reduce the overall number of queries and execution time
(Tables 8 and 9). The comparison aims to demonstrate the effectiveness and scalability of
the proposed method in handling query processing more efficiently than the flood algo-
rithm. By mitigating unnecessary query repetitions and optimizing resource utilization,
the suggested algorithm showcases improved performance and reduced execution times,
making it a promising solution for large-scale peer-to-peer distributed collaborative appli-
cations. The use of the flood algorithm as a reference allows us to assess the advantages and
drawbacks of the proposed method in terms of query processing, execution time, and re-
source utilization. The results obtained through this comparison provide valuable insights
into the performance of the suggested algorithm and its potential benefits for real-world
peer-to-peer systems with dynamic and varying network conditions (Figures 6 and 7).

Table 8. Comparison of the overall number of peers examined.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration

617 632 480 4101 3290

Table 9. Numerical value of the average cost per iteration to obtain the answer.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration

4.93 5.05 3.84 32.80 26.32

Sensors 2023, 23, x FOR PEER REVIEW 23 of 31

intelligent search mechanisms, profile-based node selection, and limited message ex-
changes to optimize query processing and reduce the overall number of queries and exe-
cution time (Tables 8 and 9). The comparison aims to demonstrate the effectiveness and
scalability of the proposed method in handling query processing more efficiently than the
flood algorithm. By mitigating unnecessary query repetitions and optimizing resource
utilization, the suggested algorithm showcases improved performance and reduced exe-
cution times, making it a promising solution for large-scale peer-to-peer distributed col-
laborative applications. The use of the flood algorithm as a reference allows us to assess
the advantages and drawbacks of the proposed method in terms of query processing, ex-
ecution time, and resource utilization. The results obtained through this comparison pro-
vide valuable insights into the performance of the suggested algorithm and its potential
benefits for real-world peer-to-peer systems with dynamic and varying network condi-
tions (Figures 6 and 7).

Figure 6. Number of queries submissions in achieving the optimal answer in the first iteration of
the flood algorithm.

Figure 7. The number of queries submitted to achieve the best answer in the flood algorithm’s hun-
dredth iteration.

Table 8. Comparison of the overall number of peers examined.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration
617 632 480 4101 3290

-5

0

5

10

15

20

1 4 7 101316192225283134374043464952555861646770737679828588

nu
m

be
r o

f q
ue

rie
s

iteration

-20

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

nu
m

be
r o

f q
ue

rie
s

iteration

Figure 6. Number of queries submissions in achieving the optimal answer in the first iteration of the
flood algorithm.

Sensors 2023, 23, 7416 23 of 31

Sensors 2023, 23, x FOR PEER REVIEW 23 of 31

intelligent search mechanisms, profile-based node selection, and limited message ex-
changes to optimize query processing and reduce the overall number of queries and exe-
cution time (Tables 8 and 9). The comparison aims to demonstrate the effectiveness and
scalability of the proposed method in handling query processing more efficiently than the
flood algorithm. By mitigating unnecessary query repetitions and optimizing resource
utilization, the suggested algorithm showcases improved performance and reduced exe-
cution times, making it a promising solution for large-scale peer-to-peer distributed col-
laborative applications. The use of the flood algorithm as a reference allows us to assess
the advantages and drawbacks of the proposed method in terms of query processing, ex-
ecution time, and resource utilization. The results obtained through this comparison pro-
vide valuable insights into the performance of the suggested algorithm and its potential
benefits for real-world peer-to-peer systems with dynamic and varying network condi-
tions (Figures 6 and 7).

Figure 6. Number of queries submissions in achieving the optimal answer in the first iteration of
the flood algorithm.

Figure 7. The number of queries submitted to achieve the best answer in the flood algorithm’s hun-
dredth iteration.

Table 8. Comparison of the overall number of peers examined.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration
617 632 480 4101 3290

-5

0

5

10

15

20

1 4 7 101316192225283134374043464952555861646770737679828588

nu
m

be
r o

f q
ue

rie
s

iteration

-20

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

nu
m

be
r o

f q
ue

rie
s

iteration

Figure 7. The number of queries submitted to achieve the best answer in the flood algorithm’s
hundredth iteration.

3.11. The Proposed Method’s Results

The diagram below compares the number of questions submitted by peers during the
answering process during program execution. The eligibility criterion here is to keep the
expense of answering the query to a minimum (Figure 8).

Sensors 2023, 23, x FOR PEER REVIEW 24 of 31

Table 9. Numerical value of the average cost per iteration to obtain the answer.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration
4.93 5.05 3.84 32.80 26.32

3.11. The Proposed Method’s Results
The diagram below compares the number of questions submitted by peers during

the answering process during program execution. The eligibility criterion here is to keep
the expense of answering the query to a minimum (Figure 8).

Figure 8. Number of question submissions in achieving the optimal answer in the first iteration.

The number of scrolls required to achieve the answer in the suggested algorithm is
shown in Table 10 and Figure 9. The resulting numbers are related to a few sample queries
from all of the particles.

Figure 9. The number of question submissions required to obtain the best response in the hundredth
iteration.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Nu
m

be
r o

f s
te

ps

number of queries

0

1

2

3

4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

Nu
m

be
r o

f s
te

ps

number of queries

Figure 8. Number of question submissions in achieving the optimal answer in the first iteration.

The number of scrolls required to achieve the answer in the suggested algorithm is
shown in Table 10 and Figure 9. The resulting numbers are related to a few sample queries
from all of the particles.

Sensors 2023, 23, 7416 24 of 31

Table 10. The number of scrolls necessary in the proposed algorithm to obtain the answer.

First Iteration Tenth Iteration Fiftieth Iteration Hundredth Iteration

3 4 4 3

4 4 2 2

4 3 3 3

5 4 4 3

4 3 4 3

3 3 2 2

3 3 2 3

4 4 3 2

Sensors 2023, 23, x FOR PEER REVIEW 24 of 31

Table 9. Numerical value of the average cost per iteration to obtain the answer.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration
4.93 5.05 3.84 32.80 26.32

3.11. The Proposed Method’s Results
The diagram below compares the number of questions submitted by peers during

the answering process during program execution. The eligibility criterion here is to keep
the expense of answering the query to a minimum (Figure 8).

Figure 8. Number of question submissions in achieving the optimal answer in the first iteration.

The number of scrolls required to achieve the answer in the suggested algorithm is
shown in Table 10 and Figure 9. The resulting numbers are related to a few sample queries
from all of the particles.

Figure 9. The number of question submissions required to obtain the best response in the hundredth
iteration.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Nu
m

be
r o

f s
te

ps
number of queries

0

1

2

3

4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

Nu
m

be
r o

f s
te

ps

number of queries

Figure 9. The number of question submissions required to obtain the best response in the hundredth
iteration.

You can also see the statistics of the total number of peers examined in each iteration
in Tables 11 and 12. It can be seen that although the number of measurements performed
in the proposed algorithm is initially high, with the implementation of the algorithm, the
results are converged, and the number of analogies is reduced (Figure 10).

Table 11. Comparison of the total number of peers examined.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration

215 287 206 186 170

Table 12. Numerical value of the average cost per repetition to achieve the answer.

First Iteration Tenth iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration

1.73 2.31 1.66 1.5 1.4

Sensors 2023, 23, 7416 25 of 31

Sensors 2023, 23, x FOR PEER REVIEW 25 of 31

Table 10. The number of scrolls necessary in the proposed algorithm to obtain the answer.

First Iteration Tenth Iteration Fiftieth Iteration Hundredth Iteration
3 4 4 3
4 4 2 2
4 3 3 3
5 4 4 3
4 3 4 3
3 3 2 2
3 3 2 3
4 4 3 2

You can also see the statistics of the total number of peers examined in each iteration
in Tables 11 and 12. It can be seen that although the number of measurements performed
in the proposed algorithm is initially high, with the implementation of the algorithm, the
results are converged, and the number of analogies is reduced (Figure 10).

Table 11. Comparison of the total number of peers examined.

First Iteration Tenth Iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration
215 287 206 186 170

Table 12. Numerical value of the average cost per repetition to achieve the answer.

First Iteration Tenth iteration Fiftieth Iteration Seventieth Iteration Hundredth Iteration
1.73 2.31 1.66 1.5 1.4

Figure 10. Sum of the costs per repetition to achieve the answer.

3.12. Compare the Proposed Method
In this section, we look at various distinct strategies and compare them to the sug-

gested algorithm. Flood technique, study]16 [, parallel diffusion algorithm, ISM intelli-
gent search mechanism method, and Breath First Search (BFS) are examples of compara-
tive approaches. The diagram below depicts the results of comparing various proposed
methods. The purpose of the ISM technique is to limit the number of messages exchanged
for each request as well as the number of nodes evaluated. They are above the present
request and employ the two components of the Profile Mechanism and the Rating Mech-
anism to accomplish this. The structure of P2P networks with Super Peer (SP) is used in
the proposed study technique]16[, as it is in our study. The distinction is that in the study

]16 [, a fuzzy logic-based system was employed to transmit the message. In this study,

Figure 10. Sum of the costs per repetition to achieve the answer.

3.12. Compare the Proposed Method

In this section, we look at various distinct strategies and compare them to the suggested
algorithm. Flood technique, study [16], parallel diffusion algorithm, ISM intelligent search
mechanism method, and Breath First Search (BFS) are examples of comparative approaches.
The diagram below depicts the results of comparing various proposed methods. The
purpose of the ISM technique is to limit the number of messages exchanged for each
request as well as the number of nodes evaluated. They are above the present request
and employ the two components of the Profile Mechanism and the Rating Mechanism
to accomplish this. The structure of P2P networks with Super Peer (SP) is used in the
proposed study technique [16], as it is in our study. The distinction is that in the study [16],
a fuzzy logic-based system was employed to transmit the message. In this study, three P2P
network input parameters are employed to generate output factor parameters: number
of documents per peer (NDP), repetition percentage (RP), and scale of repetition per peer
(SRP) (RF). In the parallel propagation approach, each node sends a request message to one
of its neighbours, known as a walker, at random, and to save time, it can send numerous
neighbours, known as k-walkers, instead of one. The number of messages increases linearly
in relation to the number of nodes in this approach, and no consideration is given to the
contents of the nodes used to transmit the message. Finally, in many existing systems,
the first-level search approach is utilised, in which each node, after receiving the message,
advertises the request to all neighbours excluding the sender, and then searches its local
sources for the answer. If it discovers a response, it generates a QueryHit message and
transmits it to the search node, with this packet following the precise path as the request
message. This package provides information such as the quantity of relevant files and
this node’s bandwidth, which will be useful in prioritizing the answer. This method, in
addition to its simplicity, does not work well and does not use network resources well.
Because each request consumes a large amount of network resources as it is transmitted to
all links, low-bandwidth links can be problematic. In practice, to overcome this issue, a
TTL (Time To Live) parameter is supplied for each request message, which determines the
number of nodes that a request message can pass through, and this parameter decreases to
zero after passing each node. This method finds a good percentage of responses for a large
number of messages (Figures 11 and 12).

Sensors 2023, 23, 7416 26 of 31

Sensors 2023, 23, x FOR PEER REVIEW 26 of 31

three P2P network input parameters are employed to generate output factor parameters:
number of documents per peer (NDP), repetition percentage (RP), and scale of repetition
per peer (SRP) (RF). In the parallel propagation approach, each node sends a request mes-
sage to one of its neighbours, known as a walker, at random, and to save time, it can send
numerous neighbours, known as k-walkers, instead of one. The number of messages in-
creases linearly in relation to the number of nodes in this approach, and no consideration
is given to the contents of the nodes used to transmit the message. Finally, in many exist-
ing systems, the first-level search approach is utilised, in which each node, after receiving
the message, advertises the request to all neighbours excluding the sender, and then
searches its local sources for the answer. If it discovers a response, it generates a QueryHit
message and transmits it to the search node, with this packet following the precise path
as the request message. This package provides information such as the quantity of rele-
vant files and this node’s bandwidth, which will be useful in prioritizing the answer. This
method, in addition to its simplicity, does not work well and does not use network re-
sources well. Because each request consumes a large amount of network resources as it is
transmitted to all links, low-bandwidth links can be problematic. In practice, to overcome
this issue, a TTL (Time To Live) parameter is supplied for each request message, which
determines the number of nodes that a request message can pass through, and this pa-
rameter decreases to zero after passing each node. This method finds a good percentage
of responses for a large number of messages (Figures 11 and 12).

Figure 11. Average number of steps per repetition to achieve the answer.

Figure 12. Comparison of the number of steps taken by the proposed method, flood, study]16[,
parallel diffusion algorithm and ISM method.

0 0.5 1 1.5 2 2.5

1

2

3

4

5

Steps

ite
ra

tio
n

Figure 11. Average number of steps per repetition to achieve the answer.

Sensors 2023, 23, x FOR PEER REVIEW 26 of 31

three P2P network input parameters are employed to generate output factor parameters:
number of documents per peer (NDP), repetition percentage (RP), and scale of repetition
per peer (SRP) (RF). In the parallel propagation approach, each node sends a request mes-
sage to one of its neighbours, known as a walker, at random, and to save time, it can send
numerous neighbours, known as k-walkers, instead of one. The number of messages in-
creases linearly in relation to the number of nodes in this approach, and no consideration
is given to the contents of the nodes used to transmit the message. Finally, in many exist-
ing systems, the first-level search approach is utilised, in which each node, after receiving
the message, advertises the request to all neighbours excluding the sender, and then
searches its local sources for the answer. If it discovers a response, it generates a QueryHit
message and transmits it to the search node, with this packet following the precise path
as the request message. This package provides information such as the quantity of rele-
vant files and this node’s bandwidth, which will be useful in prioritizing the answer. This
method, in addition to its simplicity, does not work well and does not use network re-
sources well. Because each request consumes a large amount of network resources as it is
transmitted to all links, low-bandwidth links can be problematic. In practice, to overcome
this issue, a TTL (Time To Live) parameter is supplied for each request message, which
determines the number of nodes that a request message can pass through, and this pa-
rameter decreases to zero after passing each node. This method finds a good percentage
of responses for a large number of messages (Figures 11 and 12).

Figure 11. Average number of steps per repetition to achieve the answer.

Figure 12. Comparison of the number of steps taken by the proposed method, flood, study]16[,
parallel diffusion algorithm and ISM method.

0 0.5 1 1.5 2 2.5

1

2

3

4

5

Steps

ite
ra

tio
n

Figure 12. Comparison of the number of steps taken by the proposed method, flood, study [16],
parallel diffusion algorithm and ISM method.

To evaluate the scalability of the proposed method, we conducted simulations for
different network sizes, ranging from 10 nodes to 1000 nodes. The results of these simula-
tions are presented in Figure 13 below. The figure compares the number of steps taken by
the suggested technique with other approaches, including the flood algorithm, study [16],
parallel diffusion algorithm, and the ISM method. Upon analyzing Figure 13, several key
observations can be made. For a small number of nodes (e.g., 10 nodes), the suggested
technique exhibits a relatively higher number of steps compared to other approaches,
such as flood and the study [16]. As the number of nodes increases (e.g., 100 nodes and
1000 nodes), the number of steps taken by the suggested technique decreases significantly
and converges with the number of steps taken by other approaches.

This convergence of the number of steps across different network sizes indicates that
the proposed method demonstrates good scalability. It efficiently handles larger networks
without compromising the effectiveness of query processing and node evaluation.

Sensors 2023, 23, 7416 27 of 31

Sensors 2023, 23, x FOR PEER REVIEW 27 of 31

To evaluate the scalability of the proposed method, we conducted simulations for
different network sizes, ranging from 10 nodes to 1000 nodes. The results of these simula-
tions are presented in Figure 13 below. The figure compares the number of steps taken by
the suggested technique with other approaches, including the flood algorithm, study [16],
parallel diffusion algorithm, and the ISM method. Upon analyzing Figure 13, several key
observations can be made. For a small number of nodes (e.g., 10 nodes), the suggested
technique exhibits a relatively higher number of steps compared to other approaches, such
as flood and the study [16]. As the number of nodes increases (e.g., 100 nodes and 1000
nodes), the number of steps taken by the suggested technique decreases significantly and
converges with the number of steps taken by other approaches.

This convergence of the number of steps across different network sizes indicates that
the proposed method demonstrates good scalability. It efficiently handles larger networks
without compromising the effectiveness of query processing and node evaluation.

To provide a more comprehensive analysis of the suggested method’s scalability,
Figure 14 below presents a separate comparison of the number of steps performed by the
proposed technique for each network size. The figure illustrates the efficiency of the sug-
gested method in terms of the number of steps taken for 10 nodes, 100 nodes, and 1000
nodes separately. It shows how the number of steps decreases as the network size in-
creases, demonstrating the scalability of the proposed algorithm. The evaluation of scala-
bility through simulations reveals that the suggested technique adapts well to different
network sizes, showcasing good scalability characteristics. While the number of steps may
be slightly higher for smaller networks, it quickly converges as the network size increases.
This demonstrates the efficiency and effectiveness of the proposed method in handling
large-scale distributed collaborative applications. The analysis further supports the suita-
bility of the suggested technique for peer-to-peer systems with varying numbers of nodes,
making it a robust choice for real-world scenarios with dynamic and changing network
environments.

Figure 13. Comparison of the number of steps taken by the proposed method in the number of
different nodes, flood, study]16[, parallel diffusion algorithm and ISM method.

Figure 13. Comparison of the number of steps taken by the proposed method in the number of
different nodes, flood, study [16], parallel diffusion algorithm and ISM method.

To provide a more comprehensive analysis of the suggested method’s scalability,
Figure 14 below presents a separate comparison of the number of steps performed by
the proposed technique for each network size. The figure illustrates the efficiency of the
suggested method in terms of the number of steps taken for 10 nodes, 100 nodes, and
1000 nodes separately. It shows how the number of steps decreases as the network size
increases, demonstrating the scalability of the proposed algorithm. The evaluation of
scalability through simulations reveals that the suggested technique adapts well to different
network sizes, showcasing good scalability characteristics. While the number of steps
may be slightly higher for smaller networks, it quickly converges as the network size
increases. This demonstrates the efficiency and effectiveness of the proposed method in
handling large-scale distributed collaborative applications. The analysis further supports
the suitability of the suggested technique for peer-to-peer systems with varying numbers
of nodes, making it a robust choice for real-world scenarios with dynamic and changing
network environments.

Sensors 2023, 23, x FOR PEER REVIEW 28 of 31

Figure 14. Comparing the number of steps taken by the proposed method with the number of dif-
ferent nodes.

3.13. Comparison of Execution Times
To further assess the performance of the suggested algorithm, we conducted a com-

prehensive comparison of its execution time with the flood algorithm. In order to obtain
accurate results, we ran each program multiple times and measured the run time in dif-
ferent scenarios. The execution times of both algorithms were recorded, and the results
are presented in Figure 15 below. The figure illustrates the comparison of the average
execution times of the suggested algorithm and the flood algorithm. It provides a visual
representation of the efficiency of both approaches in terms of run time.

Observations from the comparison indicate the following:
• The suggested algorithm exhibits competitive execution times compared to the flood

algorithm. This demonstrates the effectiveness of the proposed intelligent search
mechanism and profile-based node selection in optimizing query processing.

• As the network size and complexity increase, the advantage of the suggested algo-
rithm becomes more pronounced, showing its ability to handle larger-scale distrib-
uted environments efficiently.

• The flood algorithm, while straightforward, may suffer from increased run time as it
involves broadcasting requests to all nodes, leading to higher network resource uti-
lization and potential bottlenecks.

• On the other hand, the suggested algorithm, leveraging intelligent node selection and
limited message exchanges, demonstrates better scalability and resource manage-
ment, contributing to its overall reduced execution time.
It is important to note that execution times may vary depending on factors such as

network topology, the number of participating peers, and the nature of the queries. The
presented comparison reflects the general performance trends of the algorithms under
consideration. The comparison of execution times confirms that the suggested algorithm
offers competitive performance and outperforms the flood algorithm in terms of run time.
Its intelligent search mechanism and profile-based node selection contribute to enhanced
efficiency and scalability, making it a promising choice for large-scale peer-to-peer dis-
tributed collaborative applications. Further experimentation and analysis may be con-
ducted to explore the algorithm’s performance in diverse network scenarios and real-
world environments.

Figure 14. Comparing the number of steps taken by the proposed method with the number of
different nodes.

Sensors 2023, 23, 7416 28 of 31

3.13. Comparison of Execution Times

To further assess the performance of the suggested algorithm, we conducted a com-
prehensive comparison of its execution time with the flood algorithm. In order to obtain
accurate results, we ran each program multiple times and measured the run time in dif-
ferent scenarios. The execution times of both algorithms were recorded, and the results
are presented in Figure 15 below. The figure illustrates the comparison of the average
execution times of the suggested algorithm and the flood algorithm. It provides a visual
representation of the efficiency of both approaches in terms of run time.

Sensors 2023, 23, x FOR PEER REVIEW 29 of 31

Flood Algorithm

Proposed method

Figure 15. Comparison of execution time of the proposed algorithm and flood algorithm.

4. Conclusions
Answering a query is one of the most difficult challenges in peer-to-peer databases,

because receiving a complete answer is costly and time consuming. As a result, the use of
approximation queries in these systems was contemplated. The primary goal of this re-
search was to develop an intelligent system for answering approximate set-value inquir-
ies. In this paper, the particle optimization algorithm is used to improve intelligence, and,
contrary to previous work, it is attempted not to use sampling in the proposed method;
because even with the best sampling methods with the highest accuracy, there is still the
possibility of error, and there is never a guarantee that the desired accuracy will be
achieved. However, in approximate queries, the most important goal is to achieve the
user’s desired accuracy. In reality, the accuracy of sampling procedures is determined by
various factors. The results of the studies reveal that the suggested method has improved
in terms of the number of queries issued and the number of peers examined, as well as its
execution time, which is significantly faster than the flood approach. Answering a query
is one of the most difficult challenges in peer-to-peer databases, because receiving a com-
plete answer is costly and time consuming. As a result, the use of approximation queries
in these systems was considered. The primary goal of this research was to develop an
intelligent system for answering approximate set-value queries. In this paper, the particle
optimization algorithm is used to improve intelligence, and, contrary to previous work, it
is attempted not to use sampling in the proposed method, as even with the best sampling
methods with the highest accuracy, there is still the possibility of error, and there is never
a guarantee that the desired accuracy will be achieved.

Author Contributions: Conceptualization, L.A.G.; Methodology, A.J. and L.A.G.; software, A.K.S.,
A.J. and P.P.; validation, A.J.; formal analysis, A.J.; investigation, A.K.S., A.J., H.C. and L.A.G.; re-
sources, A.J.; data curation, A.J. and L.A.G.; writing—original draft, A.K.S., A.J. and H.C.; writing—
review and editing, A.K.S., A.J. and P.P.; visualization, A.K.S.; supervision, A.J. and P.P. Funding
acquisition, L.A.G. All authors have read and agreed to the published version of the manuscript.

Funding: Funding: for this joint research project, "Cloud-Enabled Virtualization and Switch Migra-
tion: A New Approach to Congestion Control in Software-Defined Networking," We are grateful
for the support received from the Princess Nourah bint Abdulrahman University Researchers Sup-
porting Project (PNURSP2023R178) at Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 15. Comparison of execution time of the proposed algorithm and flood algorithm.

Observations from the comparison indicate the following:

• The suggested algorithm exhibits competitive execution times compared to the flood
algorithm. This demonstrates the effectiveness of the proposed intelligent search
mechanism and profile-based node selection in optimizing query processing.

• As the network size and complexity increase, the advantage of the suggested algorithm
becomes more pronounced, showing its ability to handle larger-scale distributed
environments efficiently.

• The flood algorithm, while straightforward, may suffer from increased run time as
it involves broadcasting requests to all nodes, leading to higher network resource
utilization and potential bottlenecks.

• On the other hand, the suggested algorithm, leveraging intelligent node selection and
limited message exchanges, demonstrates better scalability and resource management,
contributing to its overall reduced execution time.

It is important to note that execution times may vary depending on factors such as
network topology, the number of participating peers, and the nature of the queries. The
presented comparison reflects the general performance trends of the algorithms under
consideration. The comparison of execution times confirms that the suggested algorithm
offers competitive performance and outperforms the flood algorithm in terms of run
time. Its intelligent search mechanism and profile-based node selection contribute to
enhanced efficiency and scalability, making it a promising choice for large-scale peer-to-
peer distributed collaborative applications. Further experimentation and analysis may
be conducted to explore the algorithm’s performance in diverse network scenarios and
real-world environments.

Sensors 2023, 23, 7416 29 of 31

4. Conclusions

Answering a query is one of the most difficult challenges in peer-to-peer databases,
because receiving a complete answer is costly and time consuming. As a result, the
use of approximation queries in these systems was contemplated. The primary goal of
this research was to develop an intelligent system for answering approximate set-value
inquiries. In this paper, the particle optimization algorithm is used to improve intelligence,
and, contrary to previous work, it is attempted not to use sampling in the proposed method;
because even with the best sampling methods with the highest accuracy, there is still the
possibility of error, and there is never a guarantee that the desired accuracy will be achieved.
However, in approximate queries, the most important goal is to achieve the user’s desired
accuracy. In reality, the accuracy of sampling procedures is determined by various factors.
The results of the studies reveal that the suggested method has improved in terms of the
number of queries issued and the number of peers examined, as well as its execution time,
which is significantly faster than the flood approach. Answering a query is one of the most
difficult challenges in peer-to-peer databases, because receiving a complete answer is costly
and time consuming. As a result, the use of approximation queries in these systems was
considered. The primary goal of this research was to develop an intelligent system for
answering approximate set-value queries. In this paper, the particle optimization algorithm
is used to improve intelligence, and, contrary to previous work, it is attempted not to use
sampling in the proposed method, as even with the best sampling methods with the highest
accuracy, there is still the possibility of error, and there is never a guarantee that the desired
accuracy will be achieved.

Author Contributions: Conceptualization, L.A.G.; Methodology, A.J. and L.A.G.; software, A.K.S.,
A.J. and P.P.; validation, A.J.; formal analysis, A.J.; investigation, A.K.S., A.J., H.C. and L.A.G.;
resources, A.J.; data curation, A.J. and L.A.G.; writing—original draft, A.K.S., A.J. and H.C.; writing—
review and editing, A.K.S., A.J. and P.P.; visualization, A.K.S.; supervision, A.J. and P.P. Funding
acquisition, L.A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Princess Nourah bint Abdulrahman University Re-
searchers Supporting Project number (PNURSP2023R178), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A.; Masdari, M.; Shakarami, H. Data replication schemes in cloud computing: A

survey. Cluster Comput. 2021, 24, 2545–2579. [CrossRef]
2. Chang, C.-Y.; Yen, H.-C.; Deng, D.-J. V2V QoS Guaranteed Channel Access in IEEE 802.11p VANETs. IEEE Trans. Dependable Secur.

Comput. 2016, 13, 5–17. [CrossRef]
3. Javadpour, A.; Wang, G.; Rezaei, S. Resource management in a peer to peer cloud network for IoT. Wirel. Pers. Commun. 2020, 115,

2471–2488. [CrossRef]
4. Cherba, S.; Barouchi, I. ZRR-P2P: Zone-Based Mechanism for Data Replication and Research Optimization in Unstructured P2P

Systems. Ingénierie Systèmes d’Information 2021, 26, 23–32. [CrossRef]
5. Masinde, N.; Graffi, K. Peer-to-Peer-Based Social Networks: A Comprehensive Survey. SN Comput. Sci. 2020, 1, 299. [CrossRef]
6. Moreno-Díaz, R.; Pichler, F.; Quesada-Arencibia, A. Computer Aided Systems Theory—EUROCAST 2011: 13th International Conference,

Las Palmas de Gran Canaria, Spain, 6–11 February 2011, Revised Selected Papers, Part 1; Springer: Berlin/Heidelberg, Germany, 2012.
7. Ismail, A.; Kastner, W. Co-operative peer-to-peer systems for industrial middleware. In Proceedings of the 2016 IEEE World

Conference on Factory Communication Systems (WFCS), Aveiro, Portugal, 3–6 May 2016; pp. 1–8.
8. Shene, S.J.; Emmanuel, W.R.S. An energy aware modified PAM clustering with cluster head modulation in Mobile cloud sensor

environment. Peer-to-Peer Netw. Appl. 2021, 14, 2084–2098. [CrossRef]

https://doi.org/10.1007/s10586-021-03283-7
https://doi.org/10.1109/TDSC.2015.2399912
https://doi.org/10.1007/s11277-020-07691-7
https://doi.org/10.18280/isi.260103
https://doi.org/10.1007/s42979-020-00315-8
https://doi.org/10.1007/s12083-021-01149-8

Sensors 2023, 23, 7416 30 of 31

9. Yan, J.; Vyatkin, V. Distributed Software Architecture Enabling Peer-to-Peer Communicating Controllers. IEEE Trans. Ind. Inform.
2013, 9, 2200–2209. [CrossRef]

10. Feng, S.; Chen, Y.; Zhai, Q.; Huang, M.; Shu, F. Optimizing computation offloading strategy in mobile edge computing based on
swarm intelligence algorithms. EURASIP J. Adv. Signal Process. 2021, 2021, 36. [CrossRef]

11. Javadpour, A.; Wang, G. cTMvSDN: Improving resource management using combination of Markov-process and TDMA in
software-defined networking. J. Supercomput. 2022, 78, 3477–3499. [CrossRef]

12. Javadpour, A.; Abadi, A.M.H.; Rezaei, S.; Zomorodian, M.; Rostami, A.S. Improving load balancing for data-duplication in big
data cloud computing networks. Cluster Comput. 2022, 25, 2613–2631. [CrossRef]

13. Gage, J. Some Thoughts on How ICTs Could Really Change the World. In The Global Information Technology Report 2001–2002:
Readiness for the Networked World; 2002; pp. 4–9. Available online: https://cyber.harvard.edu/itg/libpubs/gitrr2002_ch01.pdf
(accessed on 1 August 2023).

14. To, O.; On, C. Commitments to Action on Building a Sustainable Water Future. The Executive Office of the President. 2016. Avail-
able online: https://obamawhitehouse.archives.gov/sites/whitehouse.gov/files/documents/White_House_Water_Summit_
commitments_report_032216_v3_0.pdf (accessed on 1 August 2023).

15. Rahmani, A.M.; Mohammadi, M.; Mohammed, A.H.; Karim, S.H.T.; Majeed, M.K.; Masdari, M.; Hosseinzadeh, M. Towards Data
and Computation Offloading in Mobile Cloud Computing: Taxonomy, Overview, and Future Directions. Wirel. Pers. Commun.
2021, 119, 147–185. [CrossRef]

16. Javadpour, A.; Ja’fari, F.; Pinto, P.; Zhang, W. Mapping and embedding infrastructure resource management in software defined
networks. Clust. Comput. 2023, 26, 461–475. [CrossRef]

17. Mohammadi, S.; Pedram, H.; Abdi, S.; Farrokhian, A. An Enhanced Data Replication Method in P2P Systems. J. Comput. 2010, 2,
1–5.

18. Xhafa, F.; Kolici, V.; Potlog, A.D.; Spaho, E.; Barolli, L.; Takizawa, M. Data Replication in P2P Collaborative Systems. In
Proceedings of the 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Victoria, BC,
Canada, 12–14 November 2012; pp. 49–57.

19. Charrada, F.B.; Ounelli, H.; Chettaoui, H. A Model for Dynamic Period in Data Grid Replication. Int. J. Model. Optim. 2013, 3,
163–166. [CrossRef]

20. Yang, J.-P. Elastic Load Balancing Using Self-Adaptive Replication Management. IEEE Access 2016, 5, 7495–7504. [CrossRef]
21. Zhang, Y.; Liu, L. Distributed Line Graphs: A Universal Technique for Designing DHTs Based on Arbitrary Regular Graphs. IEEE

Trans. Knowl. Data Eng. 2012, 24, 1556–1569. [CrossRef]
22. Qi, X.; Qiang, M.; Liu, L. A balanced strategy to improve data invulnerability in structured P2P system. Peer-to-Peer Netw. Appl.

2020, 13, 368–387. [CrossRef]
23. Lodi, S.; Sartori, C. Distributed Data Clustering in Multi-Dimensional Peer-To-Peer Networks. In Proceedings of the 21st

Australasian Database Conference (ADC 2010), Brisbane, Australia, 18–22 January 2010; pp. 171–178.
24. Marin, M.; Gil-Costa, V.; Hernandez, C. Dynamic P2P Indexing and Search Based on Compact Clustering. In Proceedings of the

2009 Second International Workshop on Similarity Search and Applications, Prague, Czech Republic, 29–30 August 2009; pp.
124–131.

25. Raigoza, J.; Sun, J. Temporal join processing with the adaptive Replacement Cache—Temporal Data policy. In Proceedings of the
2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS), Taiyuan, China, 4–6 June 2014; pp.
131–136.

26. Peng, L.; Man, Y. A novel data exchange model based on P2P and ontology. In Proceedings of the 2013 International Conference
on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, China, 20–22 December 2013; pp. 1693–1696.

27. Yang, D.; Fang, X.; Xue, G. OPRA: Optimal Relay Assignment for Capacity Maximization in Cooperative Networks. In Proceedings
of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; pp. 1–6.

28. Li, X.; Wu, J. Searching techniques in peer-to-peer networks. Asp. Ad Hoc Sens. Peer-to-Peer Netw. 2006, 1–31.
29. Silhavy, R.; Senkerik, R.; Oplatkova, Z.K.; Prokopova, Z.; Silhavy, P. Artificial Intelligence Perspectives and Applications: Proceedings

of the 4th Computer Science Online Conference 2015 (CSOC2015), Vol 1: Artificial Intelligence Perspectives and Applications; Springer
International Publishing: Berlin/Heidelberg, Germany, 2015.

30. Awaysheh, F.M.; Alazab, M.; Garg, S.; Niyato, D.; Verikoukis, C. Big Data Resource Management amp; Networks: Taxonomy,
Survey, and Future Directions. IEEE Commun. Surv. Tutor. 2021, 23, 2098–2130. [CrossRef]

31. Wang, Y.; Wang, W. On Studying P2P Topology Based on Modified Fuzzy Adaptive Resonance Theory. In Computational
Intelligence: International Conference on Intelligent Computing, ICIC 2006 Kunming, China, August 16–19, 2006 Proceedings, Part II;
Huang, D.-S., Li, K., Irwin, G.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 410–420.

32. Liu, H.; Huizhu, X.; Dapeng, D.; Fengming, L.; Jian, S.; Haofei, M.; Qiang, W. Topology Identification of Low-voltage Transformer
Area Based on Improved Particle Swarm Algorithm. J. Phys. Conf. Ser. 2021, 1972, 12049. [CrossRef]

33. Liu, H.; Chen, G.; Chen, Y.; Chen, Q. A trust-based P2P resource search method integrating with Q-learning for future Internet.
Peer-to-Peer Netw. Appl. 2015, 8, 532–542. [CrossRef]

34. Pham, Q.-V.; Nguyen, D.C.; Mirjalili, S.; Hoang, D.T.; Nguyen, D.N.; Pathirana, P.N.; Hwang, W.J. Swarm intelligence for
next-generation networks: Recent advances and applications. J. Netw. Comput. Appl. 2021, 191, 103141. [CrossRef]

https://doi.org/10.1109/TII.2013.2258164
https://doi.org/10.1186/s13634-021-00751-5
https://doi.org/10.1007/s11227-021-03871-9
https://doi.org/10.1007/s10586-021-03312-5
https://cyber.harvard.edu/itg/libpubs/gitrr2002_ch01.pdf
https://obamawhitehouse.archives.gov/sites/whitehouse.gov/files/documents/White_House_Water_Summit_commitments_report_032216_v3_0.pdf
https://obamawhitehouse.archives.gov/sites/whitehouse.gov/files/documents/White_House_Water_Summit_commitments_report_032216_v3_0.pdf
https://doi.org/10.1007/s11277-021-08202-y
https://doi.org/10.1007/s10586-022-03789-8
https://doi.org/10.7763/IJMO.2013.V3.259
https://doi.org/10.1109/ACCESS.2016.2631490
https://doi.org/10.1109/TKDE.2011.258
https://doi.org/10.1007/s12083-019-00773-9
https://doi.org/10.1109/COMST.2021.3094993
https://doi.org/10.1088/1742-6596/1972/1/012049
https://doi.org/10.1007/s12083-014-0279-x
https://doi.org/10.1016/j.jnca.2021.103141

Sensors 2023, 23, 7416 31 of 31

35. Zhou, X.; Lu, Z.; Gao, Y.; Yu, Z. An Effective Cooperative Caching Scheme for Mobile P2P Networks. In Proceedings of the 2014
International Conference on Computational Intelligence and Communication Networks, Bhopal, India, 14–16 November 2014;
pp. 408–411.

36. Wang, Y.; Song, B.; Wang, J.; Zhang, L.; Wang, L. Geometry-Based Distributed Spatial Skyline Queries in Wireless Sensor Networks.
Sensors 2016, 16, 454. [CrossRef] [PubMed]

37. Chen, Y.; Singh, G. Graph Indexing for Efficient Evaluation of Label-constrained Reachability Queries. ACM Trans. Database Syst.
2021, 46, 1–50. [CrossRef]

38. Shen, H.; Liu, G.; Ward, L. A Proximity-Aware Interest-Clustered P2P File Sharing System. IEEE Trans. Parallel Distrib. Syst. 2015,
26, 1509–1523. [CrossRef]

39. Shen, W.W.; Su, S.; Shuang, K.; Yang, F.C. SKIP: An efficient search mechanism in unstructured P2P networks. J. China Univ. Posts
Telecommun. 2010, 17, 64–71. [CrossRef]

40. Reddyvari, V.; Bobbili, S.C.; Parag, P.; Shakkottai, S. Mode-Suppression: A Simple, Stable and Scalable Chunk-Sharing Algorithm
for P2P Networks. IEEE/ACM Trans. Netw. 2021, 29, 2548–2559. [CrossRef]

41. Ebrahimi, M.; Rankoohi, S.M.T.R. An ant-based approach to cluster peers in P2P database systems. Knowl. Inf. Syst. 2015, 43,
219–247. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s16040454
https://www.ncbi.nlm.nih.gov/pubmed/27043563
https://doi.org/10.1145/3451159
https://doi.org/10.1109/TPDS.2014.2327033
https://doi.org/10.1016/S1005-8885(09)60509-4
https://doi.org/10.1109/TNET.2021.3092008
https://doi.org/10.1007/s10115-014-0743-1

	Introduction
	Peer-to-Peer System Characteristics
	Ad-Hoc
	Limited Capacity and Reliance on Members

	Advantages of Peer-to-Peer Systems
	Split and Reduce Costs
	Improve Scalability and Reliability
	Increase Autonomy
	Anonymous
	Model of Software Architecture

	The Necessity and Importance of Conducting Research
	Hypotheses
	Peer-to-Peer Systems and Research Background

	Research Statement and Proposed Methods
	Intelligent Object Search
	Network Structure in a Peer-to-Peer System
	The Proposed Structure
	How to Select a Peer to Transmit Information
	Local Indexing Policy
	Routing Indices
	How to Conduct a Client Queries
	Search Algorithm
	In-Depth Explanation of the Proposed Method

	Simulation and Results
	Simulation Environment
	Initial Values
	Simulated Peer-to-Peer System
	The Implementation Process
	A Peer-to-Peer System’s Data Structure
	Clustering of Peers
	Values of Parameters
	Obtaining the Adjacency Matrix
	How to Ask and Respond to Questions
	Implement a Flood Algorithm in Query Transmission
	The Proposed Method’s Results
	Compare the Proposed Method
	Comparison of Execution Times

	Conclusions
	References

