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Abstract

Chronic motor impairments are a leading cause of disability after stroke. Previous studies have

predicted motor outcomes based on the degree of damage to predefined structures in the motor

system, such as the corticospinal tract. However, such theory-based approaches may not take full

advantage of the information contained in clinical imaging data. The present study uses

data-driven approaches to predict chronic motor outcomes after stroke and compares the

accuracy of these predictions to previously-identified theory-based biomarkers.

Using a cross-validation framework, regression models were trained using lesion masks and

motor outcomes data from 789 stroke patients (293 female/496 male) from the ENIGMA Stroke

Recovery Working Group (age 64.9±18.0 years; time since stroke 12.2±0.2 months; normalised

motor score 0.7±0.5 (range [0,1]). The out-of-sample prediction accuracy of two theory-based

biomarkers was assessed: lesion load of the corticospinal tract, and lesion load of multiple

descending motor tracts. These theory-based prediction accuracies were compared to the

prediction accuracy from three data-driven biomarkers: lesion load of lesion-behaviour maps,

lesion load of structural networks associated with lesion-behaviour maps, and measures of

regional structural disconnection.
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In general, data-driven biomarkers had better prediction accuracy - as measured by higher

explained variance in chronic motor outcomes - than theory-based biomarkers. Data-driven

models of regional structural disconnection performed the best of all models tested (R2 = 0.210, p

< 0.001), performing significantly better than predictions using the theory-based biomarkers of

lesion load of the corticospinal tract (R2 = 0.132, p< 0.001) and of multiple descending motor

tracts (R2 = 0.180, p < 0.001). They also performed slightly, but significantly, better than other

data-driven biomarkers including lesion load of lesion-behaviour maps (R2 =0.200, p < 0.001)

and lesion load of structural networks associated with lesion-behaviour maps (R2 =0.167, p <

0.001). Ensemble models - combining basic demographic variables like age, sex, and time since

stroke - improved prediction accuracy for theory-based and data-driven biomarkers. Finally,

combining both theory-based and data-driven biomarkers with demographic variables improved

predictions, and the best ensemble model achieved R2 = 0.241, p < 0.001.

Overall, these results demonstrate that models that predict chronic motor outcomes using

data-driven features, particularly when lesion data is represented in terms of structural

disconnection, perform better than models that predict chronic motor outcomes using

theory-based features from the motor system. However, combining both theory-based and

data-driven models provides the best predictions.
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Introduction
Motor impairments are the most common type of deficit after stroke, and up to 50

percent of stroke survivors will have lasting hemiparesis.1 Providing accurate predictions of

long-term motor outcomes is an ongoing goal of stroke research, as predictions based on acute

clinical information can inform individualised rehabilitation strategies and can guide patient

selection in clinical trials.2,3 Biomarkers derived from routinely-collected structural

neuroimaging data that reflect lesion location with respect to critical white matter tracts have

been related to motor outcomes,4–8 but there is no consensus on how to optimally model lesion

damage to produce generalizable predictions of chronic motor deficits.

Historically, theory-based biomarkers, selected a priori based on their involvement in

motor function, have been used to model motor outcomes after stroke. The most well-studied

theory-based biomarker is the corticospinal tract (CST) lesion load, or the proportion of

voxels in the ipsilesional corticospinal tract originating from primary motor cortex (M1) that

intersect with the lesion.9–13 M1-CST lesion load has been related to motor deficits in the acute

and chronic phase of stroke,3,14 but M1-CST damage in itself may not capture enough variance

in lesion data to explain motor deficits in patients with a wide range of lesion

topographies.11,15,16 Incorporating measures of damage to higher-order motor structures into

linear models (e.g., lesion load of all tracts in the sensorimotor tract template atlas,

SMATT-LL) helps to explain more variance in post-stroke motor outcomes compared to

models based on measures of damage to M1-CST alone.11,15–20 Although lesion load to these

tracts has been significantly associated with motor deficits within individual samples, the

out-of-sample prediction performance of theory-based biomarkers has not been

well-assessed.14

As an alternative to theory-based biomarkers, data-driven approaches assume that

useful lesion-deficit associations can be discovered with sufficient data and proper

representations of lesion damage.21,22 These approaches may be more suitable for predictive

models than theory-based biomarkers: measures that are significantly related to motor
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outcomes in one sample may not predict outcomes in a new sample.23 Whether such

data-driven approaches have value in stroke motor outcome prediction is unknown, and how

to best represent lesion damage such that data-driven approaches can discover lesion-deficit

associations that are predictive of motor outcomes is unclear. One approach is to discover

voxels in which lesion damage is associated with motor deficits.8,23 The extent of overlap

between a patient’s lesion and maps of lesion-deficit association - called lesion-behaviour

maps (LBMs) - can be used as a biomarker in predictive models. Similarly, the extent of

lesion overlap with structural lesion-network maps (sLNM), which reflect the white matter

networks associated with peak LBM voxels, referred to previously as the sLNM lesion

load,8,23 may be able to capture relationships between motor deficits and tract damage. One

limitation of using voxelwise representations of damage to develop lesion-behaviour maps is

that non-overlapping lesions that impact the same white matter tract are treated separately,

which may reduce the power of a model to identify robust lesion-deficit associations.24

Transforming voxelwise lesions into structural disconnection measures may better represent

the neural correlates of post-stroke deficits and improve statistical power to detect critical

features.24 This type of representation is, in effect, a non-linear dimensionality reduction of

voxelwise lesion data that can collapse damage to the same white matter tract by

non-overlapping lesions into a single feature. To this end, the Network Modification tool25 can

be used to calculate lesions’ Change in Connectivity (ChaCo) scores, reflecting the amount of

structural disconnection to/from each grey matter region in the brain, by identifying white

matter tracts that pass through the lesion using structural connectomes from healthy subjects.25

We hypothesised that data-driven biomarkers would outperform theory-based

biomarkers in their ability to accurately predict chronic motor outcomes in held-out patients.

Within data-driven biomarkers, we hypothesised that modelling lesion damage with

whole-brain regional structural disconnection scores (ChaCo scores) would yield more

accurate out-of-sample predictions of chronic motor scores than modelling lesion damage

with lesion behaviour maps (LBM lesion load) and structural lesion network maps (sLNM

lesion load), but that sLNM-LL would perform better than LBM-LL due to the inclusion of

relevant structural networks.

Accurate, individualised outcome predictions inherently require that patient

information is combined across several data sources. In addition to lesion damage,

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.06.19.545638doi: bioRxiv preprint 

https://paperpile.com/c/x0eW42/ecGm
https://paperpile.com/c/x0eW42/ecGm+v1qU
https://paperpile.com/c/x0eW42/ecGm+v1qU
https://paperpile.com/c/x0eW42/qO5j
https://paperpile.com/c/x0eW42/qO5j
https://paperpile.com/c/x0eW42/6TFE
https://paperpile.com/c/x0eW42/6TFE
https://doi.org/10.1101/2023.06.19.545638
http://creativecommons.org/licenses/by-nd/4.0/


demographic factors such as age, sex, and time since stroke influence an individual’s chronic

outcome. Models that employ combinations of imaging and demographic variables will likely

be necessary for optimised predictions.2 Additionally, the strength of one imaging biomarker

may be able to compensate for the weaknesses of others. Therefore, we hypothesised that

predictive performance would be improved by incorporating demographic information and by

combining predictions from several different biomarkers using ensemble models.

The variability between stroke subjects owing to the significant heterogeneity within

the disease poses a challenge for clinical trials to identify effective therapies, presenting a

need for biomarkers that are predictive of motor deficits and their ability to improve with

treatment.26,27

Materials and methods

Sample demographics
A subset of cross-sectional data from the Enhancing Neuroimaging Genomics through

Meta Analysis (ENIGMA) Stroke Recovery Working Group database (available as of 10

September 2021) from subjects with acute/subacute and chronic stroke was used in the study.

Details of the ENIGMA Stroke Recovery procedures and methods are available in Liew et

al.28 The data originated from 22 research studies carried out at different sites (Table 1).

Informed consent was obtained from all subjects, and data were collected in compliance with

each institution’s local ethical review boards and in accordance with the Declaration of

Helsinki.

ENIGMA Stroke Recovery subjects with the following data were included: (1)

high-resolution (1-mm isotropic) T1-weighted brain MRI (T1w) acquired with a 3T MRI

scanner; (2) information about time since stroke at time of imaging, as well as (3) age, (4),

sex, and (5) a measure of sensorimotor function from one of the following assessments: i)

Fugl-Meyer Assessment of Upper Extremities (FMA-UE), a performance-based measure of

paretic upper extremity impairment,29 ii) the Barthel index, which measures the extent to

which a person can function independently and has mobility in their activities of daily

living,30 or iii) the National Institutes of Health Stroke Score (NIHSS), a broad measure of
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stroke severity that includes assessment of non-motor and motor functions.31 For most

subjects with chronic stroke, motor deficits are normalised FMA-UE scores, whereas

normalised FMA-UE scores were available for fewer of the subjects with acute/subacute

stroke (Supplementary Table 1); for simplicity, we refer to all outcomes as ‘motor’ scores,

though the main models were replicated with a single motor assessment (Fugl Meyer UE

scores) as well. Motor scores were normalised to the range [0, 1] by dividing the raw score by

the maximum possible score for that assessment. Behavioural data were collected within

approximately 72 hours of the MRI. Subjects were considered in the chronic phase of stroke if

their time since stroke at the time of assessment was greater than or equal to 180 days, and

were considered to be in an acute/subacute phase if they were assessed within 180 days after

the stroke. See Supplementary Fig. 1 for lesion distribution in MNI space.

Table 1: Demographic information of the ENIGMA dataset, broken down by chronicity (acute/chronic) and by site
within each chronicity group (some sites have both acute and chronic subjects that are listed separately). Total
sample size (N), number of females (F) and males (M), and information about age (years), normalised motor scores,
time since stroke at the time of assessment (months), and lesion volume (cm3). IQR, interquartile range

Site ID Total N. Median age Median motor Median time Median lesion vol.

N (F/M) in years

(IQR)

score (IQR) since stroke in cm3 (IQR)

Acute +

subacute

in mos. (IQR)

r005 1 (0/1) 50.0 (0.0) 0.29 (0.00) 5.1 (0.0) 1.69 (0.00)

r009 50 (13/37) 70.0 (18.5) 1.00 (0.05) 0.2 (0.1) 1.65 (6.96)

r025 9 (4/5) 70.0 (19.0) 1.00 (0.09) 3.0 (1.0) 0.52 (1.44)

r028 1 (0/1) 63.0 (0.0) 0.74 (0.00) 5.5 (0.0) 23.87 (0.00)

r031 36 (10/26) 58.5 (13.2) 0.52 (0.38) 4.5 (1.7) 10.83 (38.77)

r038 72 (30/42) 66.5 (21.2) 0.78 (0.66) 2.9 (2.3) 11.53 (41.64)

r040 57 (32/25) 64.0 (22.0) 0.40 (0.50) 1.8 (1.5) 14.72 (58.63)

r047 2 (1/1) 71.0 (2.0) 0.59 (0.26) 4.4 (0.2) 23.78 (19.19)

r049 21 (12/9) 65.0 (16.0) 0.95 (0.00) 0.0 (0.0) 1.30 (2.18)

r050 14 (7/7) 68.0 (16.8) 0.92 (0.10) 0.0 (0.0) 0.33 (0.40)

r053 52 (20/32) 63.5 (20.5) 0.92 (0.17) 3.0 (3.0) 13.50 (28.27)
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r054 12 (5/7) 65.5 (11.8) 0.67 (0.83) 0.4 (0.2) 4.06 (14.15)

Chronic

r001 39 (10/29) 61.0 (17.0) 0.65 (0.23) 23.5 (40.0) 6.27 (18.06)

r002 12 (6/6) 69.5 (11.5) 0.50 (0.41) 73.2 (51.9) 28.24 (31.71)

r003 15 (6/9) 61.0 (16.5) 0.24 (0.20) 48.8 (67.6) 20.28 (76.88)

r004 19 (7/12) 44.0 (14.5) 0.17 (0.16) 50.4 (81.9) 36.85 (44.29)

r005 27 (12/15) 66.0 (16.5) 0.79 (0.45) 31.4 (27.8) 1.61 (40.27)

r009 60 (17/43) 71.0 (7.2) 0.96 (0.12) 27.4 (9.3) 1.43 (4.65)

r025 16 (3/13) 64.5 (13.2) 0.98 (0.58) 14.2 (10.2) 5.92 (14.26)

r027 28 (8/20) 57.0 (10.2) 0.30 (0.16) 19.3 (24.7) 12.30 (62.13)

r028 21 (6/15) 63.0 (9.0) 0.82 (0.24) 26.5 (37.5) 5.25 (41.28)

r031 1 (0/1) 52.0 (0.0) 0.68 (0.00) 6.1 (0.0) 1.54 (0.00)

r034 15 (6/9) 58.4 (11.1) 0.82 (0.20) 61.3 (68.3) 6.68 (34.99)

r035 15 (6/9) 64.0 (18.0) 0.64 (0.52) 33.5 (22.9) 3.89 (31.56)

r038 18 (7/11) 67.0 (10.0) 1.00 (0.12) 15.1 (10.1) 1.98 (1.63)

r040 14 (7/7) 63.5 (9.8) 0.68 (0.47) 14.1 (17.5) 8.65 (82.65)

r042 22 (11/11) 48.5 (15.5) 0.64 (0.19) 29.6 (36.4) 14.16 (49.53)

r044 4 (0/4) 68.0 (9.2) 0.52 (0.25) 43.7 (52.9) 23.65 (67.00)

r045 4 (1/3) 62.0 (5.2) 0.49 (0.24) 96.1 (59.0) 7.97 (6.66)

r046 11 (3/8) 62.0 (10.5) 0.50 (0.29) 86.3 (83.4) 4.62 (19.82)

r047 44 (14/30) 65.5 (12.0) 0.65 (0.44) 38.1 (53.7) 12.72 (41.33)

r048 43 (16/27) 68.0 (12.5) 0.79 (0.44) 46.2 (49.8) 7.93 (43.45)

r052 32 (12/20) 63.0 (13.5) 0.41 (0.09) 39.1 (42.2) 6.98 (51.55)

All

789 (293/496) 64.0 (18.0) 0.7 (0.5) 12.2 (0.2) 6.45 (32.48)
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General overview
We built several models to predict chronic motor scores from imaging data and

minimal demographic information. Each model used lesion-derived information as input to

predict normalised motor scores in subjects with chronic stroke. We compared several

different biomarkers that reflect different aspects of lesion damage. These biomarkers include:

Theory-based biomarkers:
■ M1-CST LL (1 feature)

■ SMATT-LL (6 features for ipsilesional tracts, 12 features for

bilateral tracts)

Data-driven biomarkers:
■ LBM-LL (1 feature)

■ sLNM-LL (5 features; 5 components derived from principal components analysis of

structural connectivity seeded from lesion-behaviour map)

■ ChaCo scores (86 or 268 features depending on the atlas, fewer when using feature

selection)

Nested cross-validation was performed during model training and performance was

assessed on unseen test data. For ChaCo score models, we assessed whether feature selection

improved performance. Additionally, we evaluated whether including acute subjects in the

training set, but not in the test set, improved prediction of chronic deficits, with the idea that

the larger variance in motor scores in the acute data would be useful in predicting motor

deficits in the chronic phase. We also evaluated whether adding basic demographic

information (age, sex, time since stroke) via ensemble models improved performance. Finally,

we assessed whether using ensemble models to combine predictions from multiple different

lesion damage metrics improved performance.
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Figure 1. Cross-validation framework. A. Overview of 5-fold cross-validation. Subject data are partitioned into five
non-overlapping training and test folds, such that no training subjects are in the test set, and no subject is in the test
fold more than once. B. Use of acute/subacute subjects in training folds but not test folds. When using all training
data, chronic subjects were included in the test folds and training folds, whereas acute/subacute stroke subjects were
only included in training folds.

Machine learning framework
Regression models were trained and evaluated using repeated 5-fold nested

cross-validation (Figure 1). Model implementation differed for each lesion biomarker based

on the dimensionality of the data; see below for implementation details for each biomarker

(section: Description of models and their inputs). For biomarkers with more than one feature,

ridge regression models were fit with a single hyperparameter indicating the degree of

regularisation. In the outer loop, the data were split into 5 training and test partitions. First,

models were trained using all data (including acute, subacute, and chronic timepoints), and

tested only on chronic subjects, yielding 696 subjects in the training set and 92 subjects in the

test set. Using only chronic data to train the models, there were approximately 370 subjects in

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.06.19.545638doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.19.545638
http://creativecommons.org/licenses/by-nd/4.0/


the training set and 92 subjects in the test set. Out-of-sample performance was calculated as

the average performance across 5 outer test folds. We obtained a distribution of out-of-sample

performance by splitting the data into 5 train/test folds 100 times, shuffling the indices of the

splits each time.

Replication with Fugl-Meyer Upper Extremity Assessments only
Although the majority of the chronic stroke subjects had FMA-UE scores as their

outcome measure, the acute/subacute stroke subjects had more varied assessments, including

measures that describe more general functional outcomes like the Barthel index and NIHSS.

Although these measures can be correlated with motor endpoints, they are influenced by

many factors beyond motor status. We therefore replicated the main models using a subset of

the data with FMA-UE scores (N subset = 392) to compare data-driven versus theory-based

biomarkers on their ability to predict a single motor measure.

Model performance
Model performance was assessed by comparing true normalised motor scores with

predicted scores. Performance was calculated with both Pearson’s correlation coefficient and

explained variance, or R2, which captures the percent of variation in motor scores explained

by variation in the model predictors:

R2 = 1 - var(y-ŷ)/var(y)

Where y is a vector of true motor outcomes, and ŷ is a vector of predicted motor

outcomes. These two performance metrics were used to compare results with prior literature,

but differences between models were assessed using R2, as it is a more robust metric to assess

model quality.

Differences in performance between models were assessed using two-sided Wilcoxon

signed-rank tests and p-values were corrected for multiple comparisons using Bonferroni

correction (p < 0.05).

For each predictive model, we generated a null distribution for assessing model

significance by permuting the predicted variable (motor score) 100 times. Then, as for each
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normal model, we ran 100 5-fold train/test cross validation splits for each permutation. This

yielded a distribution of 100 out-of-sample mean performance measures for each permutation.

The median across these 100 measures was then calculated for each permutation. In total, 100

null median performance measures were calculated. The p-value for the model’s significance

is the proportion of null models that had median prediction accuracies greater than or equal to

the median performance of the true model.

Ensemble models
The idea of ensemble learning is to build a single prediction model by combining the

strengths of a collection of simpler base models; we used ensemble models that average

predictions from different biomarkers.32 We tested whether models including demographic

information (age, sex, and days post stroke), ensembled with lesion models, performed better

than models with lesion data or demographic data alone (i.e., we hypothesised that the

variance explained from lesion data and demographic data is not redundant). We also assessed

whether models including both lesion load and ChaCo scores would perform better than

models with lesion load or ChaCo scores alone. Ensemble models were generated by training

ChaCo-models and lesion load models separately, on the same subjects and with the same

training/test/validation splits, and averaging the final predicted scores for each test subject.

Standard linear regression was used to model the relationship between demographic

information and motor impairment.

Analysing feature weights
Feature weights in high-dimensional models can be unstable and therefore only

provide limited interpretability.33 To assess the robustness of feature weights (i.e., beta

coefficients), the Pearson correlation in regional feature weights across all training folds was

calculated. For this specific feature stability analysis (but not for model evaluation),

acute/subacute subjects were split for each training fold such that different folds did not

contain the same set of acute/subacute subjects (all acute/subacute subjects were included in

all training folds in the model evaluation phase to maximise the amount of data available for

training). For the 86-region ChaCo models, the average of the 86-region β vector,

representing the model weights for each region, across 5 folds was calculated for each of the
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100 train/test splits. The median across these 100 splits was visualised on a glass brain. For

the 268-region ChaCo models with feature selection, the most consistently-selected regions

(selected in at least 475/500 folds or 99% of outer folds) were identified. The average of the

268-region β vector across the 5 folds was calculated for each of 100 train/test splits. The

median average β weight for consistently-selected regions across these 100 splits was

visualised on a glass brain.

Description of models and their inputs

Primary motor cortex CST lesion load (M1-CST-LL) models

The lesion load of the corticospinal tract originating from the primary motor cortex

(M1-CST-LL) was calculated (Figure 2A). Here, as in previous work, M1-CST-LL was

calculated as the proportion of lesioned voxels intersecting with a binarized ipsilesional

M1-CST template.9 Specifically, lesion load was calculated in 1-mm MNIv6 space as:

Lesion load = Number of lesioned voxels intersecting with tract

Number of voxels in tract

Left and right hemisphere M1-CST segmentations in MNI space were obtained from

the high-resolution sensorimotor area tract template (SMATT).34 Few subjects had non-zero

M1-CST-LL values (Supplementary Fig. 2A). Linear regression was used to model the

relationship between ipsilesional M1-CST-LL and chronic motor scores. The weights from the

best-performing model in the inner loop were used to predict motor scores for new subjects in

the test folds.
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Figure 2. Theory-based biomarkers. A. The M1-CST, here displaying only right hemisphere tracts relative to an
MNI template. B. Tracts from the sensorimotor tract template atlas (SMATT), displaying only right hemisphere
tracts relative to an MNI template, including pre-supplementary motor area (pre-SMA), supplementary motor
area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), primary motor cortex (M1), and
primary sensory cortex (S1). Pre-SMA is the most anterior tract, S1 is the most posterior tract.

Sensorimotor tract lesion load (SMATT-LL) models
Sensorimotor tract segmentations were obtained from the sensorimotor area tract

template (SMATT),34 which contains 12 tracts derived from probabilistic tractography seeded in

the left and right primary motor cortex (M1), dorsal and ventral premotor cortex (PMd and
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PMv, respectively), supplementary motor area (SMA), pre-supplementary motor area

(pre-SMA), and primary somatosensory cortex (S1) performed in healthy controls (Figure 2B).

Lesion load was calculated as above for all 12 bilateral tracts (L/R SMATT-LL) and for

6 ipsilesional tracts (ipsilesional SMATT-LL). L/R SMATT-LL was calculated in order to

assess whether preserving hemispheric information improved predictions. For subjects with

brainstem, cerebellar, and/or bilateral cerebral strokes, ipsilesional lesion load was calculated as

the average lesion load of the left and right hemisphere tracts (Supplementary Fig. 2B,C).

Ridge regression models were used to predict chronic motor deficits from ipsilesional

SMATT- LL (6 features) and from L/R-SMATT-LL (12 features). Ridge regression was used

to account for multicollinearity of lesion load values between tracts (Supplementary Fig. 3, 4).

Lesion load values were normalised (after train/test split) by subtracting the mean across

subjects and dividing by the l2-norm prior to model fitting. In the inner loop, the degree of

model regularisation (λ) was determined via grid-search over 30 values ranging from 10−2 to

102. The training data was fit with the selected λ and this model was used to predict motor

scores for held-out subjects in the test folds.

Lesion-behaviour map lesion load (LBM-LL) models
A lesion behaviour map (Figure 3A) was obtained as described by Bowren et al.

(2022). Specifically, Bowren et al. used sparse canonical correlation analysis to produce maps

of voxels in which damage was associated with Fugl-Meyer scores.35 Lesion load to this

lesion-behaviour map (LBM-LL) was calculated as the sum of voxels in the LBM that

intersect with the lesion. Standard linear regression models were used to predict chronic

motor deficits from LBM-LL.
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Figure 3. Data-driven biomarkers. A. Lesion-behaviour map (LBM) representing the association between
voxelwise damage and Fugl-Meyer scores, derived from multivariate lesion-behaviour mapping with Fugl-Meyer
scores. B. Structural lesion network maps (sLNMs), derived from seed-based tractography run on peak regions
identified from LBM (A) and then performing principal components analysis to identify 3 components, split into
positive and negative weights. C. Change in Connectivity (ChaCo) scores derived from the Network Modification
(NeMo) tool. Binary lesion masks in MNI space representing the presence of a stroke lesion (turquoise) in a given
voxel are provided by the user. Each lesion mask is embedded into 420 unrelated healthy structural connectomes
(separately for each healthy subject) and the regional ChaCo scores are calculated and averaged across healthy
subjects (parcellation shown here is the Shen 268-region atlas).
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Structural lesion-network mapping lesion load (sLNM-LL) models
Structural lesion network maps (Figure 3B) were obtained from Bowren et al. (2022).

Specifically, peak white matter (WM) voxels from lesion-behaviour maps (described above)

were identified. Then, tractography was seeded from these peak WM voxels to identify

associated structural networks, called structural lesion network maps (sLNMs). Principal

components analysis of sLNMs was performed, which produced 3 principal components that

correspond to 5 sLNM maps (PC1, and positive/negative weights of PC2 and PC3). Lesion

load on each sLNM map was calculated for each subject as the sum of the voxel intensities

from the principal component map that intersected the lesion mask (Supplementary Fig. 5).

Ridge regression models were used to predict chronic motor deficits from sLNM lesion loads

(5 features). As above, lesion load values were normalised (after train/test split) by subtracting

the mean across subjects and dividing by the l2-norm prior to model fitting. Hyperparameter

optimization was performed as described above for SMATT models.

Regional change in connectivity (ChaCo) models
Lesion masks in 1-mm3 MNI v6 space were processed with the Network Modification

Tool (NeMo Tool) v2 pipeline,25 available at

https://kuceyeski-wcm-web.s3.us-east-1.amazonaws.com/upload.html; see

https://github.com/kjamison/nemo for documentation. Given a lesion mask, the NeMo tool

produces outputs that reflect the impact of the lesion on white matter tracts using healthy

structural connectomes as a reference. The NeMo tool embeds a lesion mask into healthy

structural connectomes, identifies all white matter streamlines that intersect with the lesion,

and determines the brain regions at the endpoints of those streamlines (Figure 3C). Regional

change in connectivity (ChaCo) scores, or the ratio of the number of disrupted streamlines

divided by the total number of streamlines terminating in each region, were calculated for all

grey matter regions (see Supplementary Fig. 6A,B for distribution of mean and standard

deviation of ChaCo scores). The NeMo tool uses structural connectivity from 420 unrelated

subjects from the Human Connectome Project (HCP) Young Adult database. Regional ChaCo

scores from two different atlases were compared: the 86-region Desikan-Killiany Atlas (68

cortical regions + 18 subcortical regions, excluding brainstem) from FreeSurfer ("fs86" for

short), which contains coarse anatomically parcellated regions,36,37 and the 268-region Shen

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 1, 2023. ; https://doi.org/10.1101/2023.06.19.545638doi: bioRxiv preprint 

https://paperpile.com/c/x0eW42/6TFE
https://paperpile.com/c/x0eW42/SSLH+bpRb
https://doi.org/10.1101/2023.06.19.545638
http://creativecommons.org/licenses/by-nd/4.0/


atlas ("shen268" for short), which contains more fine-grained functionally parcellated cortical

and subcortical regions.38

First, the performance of ridge regression models was assessed, as described above,

with regional ChaCo scores as inputs (86 features for the fs86 atlas, 268 features for the

shen268 atlas). Then, a filter-based feature selection step was added to the ridge regression

models to obtain a subset of features that were the most useful for prediction .39 Features were

ranked by their association with the outcome variable (p-value from univariate regression)

and only the κ most associated variables were included in the model. In the inner

hyperparameter selection loop, both the amount of regularisation on regression coefficients (λ)

and the number of features to retain in the model (κ) were selected via grid search. The λ

value was chosen by searching over 30 values ranging 10−2 to 102, and the κ value was chosen

by searching 30 values ranging from 5 to the maximum number of features possible (for fs86:

86, for shen268: 268). This feature selection approach was implemented to identify sparse sets

of correlated variables, as opposed to more basic embedded feature selection techniques such

as LASSO40 that randomly suppresses collinear features.

Code availability
The scikit-learn package was used to implement machine learning models

(http://scikit-learn.org). All analysis scripts that generated the results of the present study are

available as open source (https://github.com/emilyolafson/lesion_predictions), and the LBM

and sLNM maps are also available on the repository. The script can be easily modified to

predict any outcome score from ChaCo scores/lesion load data.

Data availability
To protect the privacy of research participants, individual subject data used in this study

are not available in a public repository. Participating research cohorts vary in public data‐sharing

restrictions as determined by the following: (1) ethical review board and consent documents; (2)

national and transnational sharing laws; and (3) institutional processes that may require signed

data transfer agreements for limited, predefined data use. However, data sharing is possible for

new and participating ENIGMA Stroke Recovery Working Group members who agree to the
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consortium’s ethical standards for data use and upon the submission of a secondary analysis plan

for group review. Upon the approval of the proposed analysis plan, access to relevant data is

provided contingent on local principal investigator approval, data availability, and compliance

with supervening regulatory boards. Deidentified summary data used for this study can be made

available upon reasonable request to the corresponding author.

Results

Relative performance of models
The out-of-sample performances of the models using all training data can be found in

Figure 4A,B. All models performed significantly better than chance (p < 0.001). With the

exception of sLNM-LL models, all data-driven models (i.e., LBM-LL and ChaCo models)

outperformed all theory-based models when using all training data (Figure 5A). When using

only chronic data for training, only LBM-LL models outperformed all theory-based models

(Figure 5B, Supplementary Fig. 7A,B).

Within the theory-based biomarkers, M1-CST-LL models performed worse than

ipsilesional SMATT-LL models (difference in R2 = -0.043, p < 0.001, 95% CI [−0.044,

−0.041]) and worse than left/right SMATT-LL models (difference in R2 = -0.047, p < 0.001,

95% CI [−0.049, −0.045]).

Within the data-driven biomarkers, models using ChaCo scores parcellated with the

Shen 268-region atlas and with correlation-based feature selection outperformed LBM-LL

models (difference in R2 = -0.010, p < 0.001, 95% CI [−0.013, −0.007]). However, ChaCo

models performed comparably to LBM-LL models when using only chronic training data

(Supplementary Fig. 7A,B). Using all training data, all ChaCo models outperformed

sLNM-LL models. When using only chronic training data, the differences between sLNM-LL

models and ChaCo scores parcellated with the 268-region atlas were non-significant

(Supplementary Fig. 7A,B). sLNM-LL models performed worse than LBM-LL models using

all training data (difference in R2 = -0.034, p < 0.001, 95% CI [−0.035, −0.032]) and chronic

training data (difference in R2 = -0.029, p < 0.001, 95% CI [−0.031, −0.028]).
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Figure 4. Summary of model performance metrics across all models tested and feature weights (regression
coefficients β) for the two best-performing models. A. and B. Distribution of model performance (mean Pearson
correlation/R2 across 5 outer folds for 100 permutations of the data). Asterisks (*) indicate that model
performance is significantly above chance (*, p < 0.001), as assessed via permutation testing. The boxes extend
from the lower to upper quartile values of the data, with a line at the median. Whiskers represent the range of the
data from [Q1-1.5*IQR, Q3+1.5*IQR]. C. and D.Mean feature weights for the top two best-performing models
(ChaCo (fs86) without feature selection, ChaCo (shen268) with feature selection, respectively). For the
fs86-ChaCo model (left), we display the mean regression coefficients β across 100 permutations. For ChaCo
(shen268) (right), we display the median regression coefficients of regions that were selected in at least 95% of
outer folds (i.e., for regions that were included in the model in at least 475/500 outer folds, mean β coefficients
were calculated across 5 outer folds, and the median value across 100 permutations is plotted).
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Figure 5. Statistical comparison of model performance for predicting motor scores using Mann-Whitney
signed-rank tests. Colours shown indicate the differences in median explained variance scores for each model. A.
Models trained using all (acute and chronic) training data. B. Models trained only using chronic data. ***
denotes corrected p < 0.001 after Bonferroni correction. A positive difference indicates that the model on the
y-axis (vertical) has a greater explained variance than the model on the x-axis (horizontal).

For all models tested, ensemble models combining predictions from demographic data (subjects’

age, sex, and time since stroke) had better predictions than base models (Figure 6A-E, Table 2).

Similarly, ensemble models merging predictions with the best-performing ChaCo models

performed better than base lesion-load models. With the exception of LBM-LL models,

ensemble models combining information from demographic data as well as ChaCo scores

performed best (Figure 6A-E, Table 2). The best overall ensemble model included LBM-LL and

268-region ChaCo scores with feature selection.
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Figure 6. Statistical comparison of model performance for ensemble models. Demog. = demographic
information (age, sex, days since stroke). ChaCo = model using 268-region ChaCo scores w/ feature selection.
Significance of differences in explained variance were evaluated using Mann-Whitney signed-rank tests;
***denotes corrected p < 0.001 after Bonferroni correction. A positive difference value indicates that the model
on the y-axis (vertical) has a greater explained variance than the model on the x-axis (horizontal).

Featured selected by ChaCo models
Model weights for the best-performing ChaCo models are shown in Figure 4C, D,

reflecting the median regression weight for each region across 100 train/test splits. There were

several spatial similarities in the pattern of regression weights for the 86-region ChaCo model
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and 268-region ChaCo model with feature selection. For both atlases, negative model weights

(indicating that more disconnection is associated with worse motor outcomes, holding all

other factors constant) are assigned to left and right motor areas, as well as subcortical

structures like the putamen and thalamus, whereas positive weights are assigned to frontal,

parietal, and cingulate areas. In the 268-region ChaCo models, more regions in the right

hemisphere are consistently included in the model than the left hemisphere.

The average correlation in feature weights between training folds was stable for the

268-region ChaCo score models, with an average r = 0.79 (Figure 7). Furthermore, many

regions with high magnitude median feature weights had consistent weights across training

folds. Finally, we observed evidence that 268-region ChaCo models were able to distinguish

two regions’ relationships to motor outcomes, despite those regions being frequently damaged

together (Supplementary Fig. 8).

Replication with subset data with FMA-UE scores
When predicting FMA-UE scores only, LBM-LL models performed best of all models

tested (R2 = 0.145, p < 0.001), and performed significantly better than all theory-based models

(Supplementary Fig. 9), though all models were still significant compared to chance.
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Figure 7. Analysis of feature stability for 268-region ChaCo models (with feature selection) and investigation of
paradoxical feature weights. A. Correlation between beta coefficients across five training folds for one permutation.
Each point corresponds to one region, and points are coloured by the mean beta coefficient for that region across 500
training folds (i.e. coloured based on y-axis value). B. Boxplots show the distribution of beta coefficients of
consistently-weighted regions (defined as having median beta coefficients that are zero or of an opposite sign <5%
of the time). In total, 30 regions with consistent negative weights and 5 regions with consistent positive weights
remained. Median weights for consistently-weighted regions are plotted on a brain. The boxes extend from the lower
to upper quartile values of the data, with a line at the median. Whiskers represent the range of the data from
[Q1-1.5*IQR, Q3+1.5*IQR].
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Discussion
In this study, we compared the performance of several structural imaging biomarkers in

their ability to predict post-stroke motor outcomes. We found that, in general, data-driven models

performed better than theory-based models in their ability to predict motor deficits in

out-of-sample data, and this was replicated with a subset of the original data when predicting

only FMA-UE scores. Among the data-driven models, we found that the best performance was

obtained by modelling lesion damage using regional ChaCo scores. Contrary to our hypothesis,

models using lesion-behaviour maps performed significantly better than structural

lesion-network maps. Finally, we saw that combining predictions from demographic information

and combining multiple biomarkers improved prediction of post-stroke motor ability over

baseline models.

Data-driven biomarkers outperform theory-based biomarkers
Using all training data, the best performing data-driven models used regional

structural disconnection scores. These models, in addition to another data-driven biomarker,

the extent of lesion damage to lesion-behaviour maps, outperformed all theory-based

biomarkers.

Data-driven biomarkers may have outperformed theory-based biomarkers for two

reasons. First, there may be regions outside of the primary motor system where lesions have

an impact on motor performance. Damage to higher order motor areas in the frontal and

parietal lobes41 that have been implicated in motor planning and execution,42 as well as

damage to regions important for attention43 may be causally related to chronic motor

outcomes. The same rationale underlies the most successful theory-driven models in a

previous prediction study.18 Further, a patient’s ability to recover from or compensate for

deficits may depend on a larger extent of lesion damage, the related overall stroke outcome,

and related physiological consequences, such as autonomic dysfunction44 or inflammatory

processes.45 Second, there may be features that are not causally related to motor function but

are nonetheless predictive of long-term motor deficits. An in silico study has shown that

imaging features with peak anatomo-clinical correlations can be located outside of the true

neural correlates of a deficit46; in this specific example, damage in a temporal area correlated
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highly with a deficit that originated from either inferior parietal or inferior frontal damage.

This can be explained by the typical lesion anatomy, which does not damage anatomical

structures independently, but in highly systematic patterns imposed by the typical anatomy of

the brain vasculature.47 Moreover, information from outside critical areas may supplement

information in critical areas. For example, an imaging feature within a critical brain region or

network may be damaged either by a small lacunar lesion that only causes a minor deficit

which can be compensated for, or by a large lesion that fully disrupts a functional brain

module and causes an irrevocable deficit. Damage to features outside of the critical area and

that are indicative of a larger lesion might enable differentiation of these cases.

Hence, the direct damage to specific motor structures alone may not be optimally

predictive of poor outcomes. In this paper, structural disconnection of areas outside of the

primary motor system was predictive of worse motor outcomes. Similarly, the extent of

damage to a lesion behaviour map including voxels that lie mostly outside of the motor

system (Supplementary Fig. 10) was able to predict motor outcomes better than damage to

known motor tracts. This study suggests that regardless of whether these extra-primary motor

structures are causally related to a deficit, they are more useful biomarkers of chronic motor

deficits than the extent of damage to white matter tracts of the motor system that are currently

implemented in prediction studies.

Lesion-based structural disconnectivity for prediction
Models using ChaCo scores performed best of all models tested, particularly when

feature selection was employed. These are high-dimensional models that may require more

data to start outperforming simpler models,22 which may explain the drop in their relative

performance when using smaller subsets of the data for training, including using only chronic

data and using only subjects with FMA-UE scores. However, with sufficient data, one

strength of models using ChaCo scores can be understood, in part, by considering how lesion

data is represented relative to LBM and sLNM models. For LBM and sLNM, the data on

which feature selection takes place are voxels. On the other hand, in ChaCo models, the data

on which feature selection takes place are regional measures of structural disconnection. This

data transformation essentially reduces the number of "rare" features compared to voxelwise

representations (Supplementary Fig. 11). Statistical power may be increased when voxelwise
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lesion data is first transformed into regional ChaCo scores; non-overlapping lesions that affect

different portions of the same tract are mapped onto ChaCo scores of the same region or set of

regions. The drawback to this approach is that regional ChaCo scores do not enable the

detection of associations between damage to specific tracts and motor outcomes; if such

associations exist then that signal may be diluted in regional measures.

Feature weights of the ChaCo models
In this paper, our main aim was to identify stroke imaging biomarkers that predict

motor outcome. We did not aim to uncover the precise nature of the neural correlates of motor

deficits. However, further investigation of model features and their weights can provide some

clarity in understanding the model’s performance.

Several grey matter regions that are part of the known motor system were incorporated

into ChaCo models with negative weights, suggesting that more damage to these regions is

associated with worse motor outcomes. Such regions include the primary somatomotor cortex

and subcortical structures, as well as secondary motor structures in frontal and parietal

cortices. Many regions that were consistently assigned negative weights were neighbouring

regions, in line with the spatial distribution of motor networks and somatotopy of the motor

system. However, several regions, in particular in the right frontal cortex and medial surface,

were consistently assigned a positive weight. In other words, some brain regions existed for

which feature weights indicated a paradoxical lesion-deficit relationship in the sense that

brain damage was linked to a more favourable motor outcome. Some cases of genuine

facilitation due to brain damage have been documented,24,48 and inhibitory interregional brain

modes that can explain paradoxical lesion effects are assumed.49,50 Hence, paradoxical lesion

effects underlying motor outcome may provide a counter-intuitive, but still viable explanation

of our findings. On the other hand, methodological aspects could also be an explanation for

apparently paradoxical effects. First, paradoxical associations might arise as an artefact from

the lesion anatomy.51 For illustration, imagine a stroke population in which some patients

suffer from visual field defects after posterior brain damage to the visual cortex or the optic

radiation. The existence of a frontal lesion might then be anticorrelated with visual field

defects - not because of a true paradoxical lesion effect due to inhibition, but as a mere

statistical effect following from the lesion anatomy: a patient with a frontal lesion is unlikely
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to simultaneously suffer from a posterior lesion and, hence, is unlikely to suffer from visual

field defects. Similar effects are imaginable on a smaller scale affecting neighbouring brain

regions.51

Second, paradoxical effects might also emerge as a simple statistical artefact. The

feature weights in a high-dimensional prediction model can be unstable33 and, especially with

highly correlated data, can somehow be decoupled from causality and the actual structure of

the investigated entity. In our study, the stability of features was decent, though still markedly

inferior to some previous studies that explicitly optimised feature replicability to create

interpretable high-dimensional models.52,53 Accordingly, we identified some areas where

paradoxical feature weights emerged but were unstable across replications in subsamples.

Only for some areas, the paradoxical feature weights were stable across replications. In the

current study, we are unable to come to final conclusions regarding the generalizability of

these paradoxical weights. Future studies are needed to validate or optimise our modelling

and model interpretation strategies.

Shared variance dimensionality reduction approaches: diluting

signals that should be separated?
Structural disconnection-behaviour mapping has been recently employed to identify

white matter correlates of motor function,54 and to predict 2-week motor scores from

lesion-induced pairwise structural disconnection.7 In the latter, most conceptually similar to

this study, tractography is seeded from voxels in a lesion, and a map representing the

probability of disconnection from the lesion is generated. Features for ridge regression models

are generated via principal components analysis (PCA) on the voxelwise structural

disconnectivity maps. This is a reasonable dimensionality reduction step that has been applied

in voxelwise lesion-symptom mapping to identify primary axes of variance, but is a

fundamentally different approach for representing structural disconnection compared to

regional ChaCo scores derived from NeMo tool, in which dimensionality is reduced by

summarising the degree of disconnection for each brain region separately. As demonstrated in

this paper, regions that are frequently damaged together (and whose tracts may load onto the

same principal component in the PCA approach) may have opposite relationships to motor
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scores, so dimensionality reduction steps based on shared variance that do not consider

relationships between structural disconnections and outcome variables may compress relevant

individual signals into single features, reducing the predictive performance of a model.

Surprisingly strong performance of a simple biomarker: LBM

lesion load
We hypothesised that because of previously-identified relationships between structural

disconnections and motor deficits, lesion load to structural lesion-network maps would

outperform lesion load to basic lesion-behaviour maps. On the contrary, we saw that lesion

load to a lesion-behaviour map performed better than structural lesion network maps. In some

cases, lesion-behaviour map lesion-load performed as well as complex, high-dimensional

ChaCo models. This lesion-behaviour map was derived from an independent dataset,

suggesting that the voxelwise feature selection performed produced a map of association that

is generalizable to new data. Predicting motor deficits using lesion load to a lesion-behaviour

map can be done with simple linear regression, making this biomarker accessible to those

with a limited coding background. Hence, even though a single lesion load measure might at

first glance appear to be overly simple and unfit to represent the complexity of the human

brain and its pathology, it might still provide a biomarker that can be meaningful in clinical

studies with simple, straightforward interpretable design. However, high-precision

personalised medicine should rely on more complex, high dimensional imaging markers such

as ChaCo disconnection scores.

Higher-order motor areas are relevant for motor outcome

prediction
This study supports previous results showing that M1-CST-LL alone may not capture

variance associated with chronic post-stroke motor outcomes as well as other metrics,16,17,19

although few studies have directly compared the out-of-sample performance of M1-CST-LL

against more complex metrics like those assessed in this paper. Damage to descending fibres

from higher order motor areas has been associated with motor deficits after stroke,17,55 and

may explain additional variance in chronic motor outcome that is not captured by damage to
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the M1 corticospinal tract alone. This study supports the notion that further development of

non-M1-CST biomarkers is justified and that taking into account damage to non-primary

motor regions may be important for understanding variation in motor outcome.

Ensemble models
Finally, we saw that averaging predictions from multiple models generally improves

performance. This suggests that the information captured by each data type is not redundant,

and that using multiple different lesion metrics may compensate for weaknesses of different

feature representations. In this study, SMATT-LL models have the ability to distinguish

between damage to several adjacent descending corticospinal tracts, but are unable to measure

lesion-deficit associations outside this area, or in any grey matter regions. On the other hand,

ChaCo models can detect associations across the entire brain and in the grey matter but may

not have sufficient resolution between different descending motor tracts to capture relevant

variance there. Beyond predictions of chronic motor scores, prediction models may be

improved by testing and possibly combining multiple features as well as multiple feature

representations (specifically, LBM-LL and ChaCo scores) to obtain an optimal model.21,56

Limitations
There are several limitations of this study. Without baseline motor scores, we cannot

evaluate the relative predictive power of lesion damage versus baseline behavioural

information, which may share variance. Since this information would likely be accessible for

future clinical trials or prediction contexts, it is important to determine to what degree lesion

information provides explanatory power above baseline motor scores. Previous studies have

shown that prediction models with behavioural predictors and imaging biomarkers explain

more variance in motor outcomes than the models with behavioural predictors alone14

Similarly, the lack of subject-level rehabilitation data is another limitation. Patients likely

completed different levels of rehabilitation, which would impact their chronic motor scores.

Ultimately, any additional variance that is not captured by the model limits the predictive

accuracy of the models and future predictive work should attempt to incorporate as many
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recovery-relevant variables as possible. Additionally, the inclusion of metrics that are not

specific to motor deficits (i.e., NIHSS) may have reduced the performance of models.

Finally, the strength of LBM-LL/sLNM-LL models relative to ChaCo models may be

reduced because of the distribution shift in the training vs. testing dataset: the sample used to

generate the LBM was different from the sample on which it was tested, whereas for ChaCo

models, feature selection was performed using the same dataset on which the models were

tested.
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Table 2: Test performance of all models evaluated, displaying median R2 and median

correlation of average hold-out performances (i.e. average across 5 outer folds) across 100

permutations. Lighter blue shades represent better performance, and models are listed from

theory-based to data-driven. Bemog. = demographics, Ipsi. = Ipsilesional, SMATT LL =

sensorimotor tract template lesion load, L/R SMATT LL = left and right sensorimotor tract

template lesion load, M1 CST LL = M1 corticospinal tract lesion load, ChaCo = Change in

Connectivity, fs86 = FreeSurfer 86-region atlas, feat. select. = feature selection
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Figure legends

Figure 1. Cross-validation framework. A. Overview of 5-fold cross-validation. Subject data is

partitioned into five non-overlapping training and test folds, such that no training subjects are in

the test set, and no subject is in the test fold more than once. B. Use of acute/subacute subjects in

training folds but not test folds. When using all training data, chronic subjects were included in

the test folds and training folds, whereas acute/subacute stroke subjects were only included in

training folds.

Figure 2. Theory-based biomarkers. A. The M1-CST, here displaying only right

hemisphere tracts relative to an MNI template. B. Tracts from the sensorimotor tract template

atlas (SMATT), displaying only right hemisphere tracts relative to an MNI template, including

pre-supplementary motor area (pre-SMA), supplementary motor area (SMA), dorsal premotor

cortex (PMd), ventral premotor cortex (PMv), primary motor cortex (M1), and primary

sensory cortex (S1). Pre-SMA is the most anterior tract, S1 is the most posterior tract.

Figure 3. Data-driven biomarkers. A. Lesion-behaviour map (LBM) representing the

association between voxelwise damage and Fugl-Meyer scores, derived from multivariate

lesion-behaviour mapping with Fugl-Meyer scores. B. Structural lesion network maps

(sLNMs), derived from seed-based tractography run on peak regions identified from LBM (A)

and then performing principal components analysis to identify 3 components, split into

positive and negative weights. C. Change in Connectivity (ChaCo) scores derived from the

Network Modification (NeMo) tool. Binary lesion masks in MNI space representing the

presence of a stroke lesion (turquoise) in a given voxel are provided by the user. Each lesion

mask is embedded into 420 unrelated healthy structural connectomes (separately for each

healthy subject) and the regional ChaCo scores are calculated and averaged across healthy

subjects (parcellation shown here is the Shen 268-region atlas)
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Figure 4. Summary of model performance metrics across all models tested and feature

weights (regression coefficients β) for the two best-performing models. A. and B.

Distribution of model performance (mean Pearson correlation/R2 across 5 outer folds for 100

permutations of the data). Asterisks (*) indicate that model performance is significantly above

chance (*, p < 0.001), as assessed via permutation testing. The boxes extend from the lower

to upper quartile values of the data, with a line at the median. Whiskers represent the range of

the data from [Q1-1.5*IQR, Q3+1.5*IQR]. C. and D.Mean feature weights for the top two

best-performing models (ChaCo (fs86) without feature selection, ChaCo (shen268) with

feature selection, respectively). For the fs86-ChaCo model (left), we display the mean

regression coefficients β across 100 permutations. For ChaCo (shen268) (right), we display

the median regression coefficients of regions that were selected in at least 95% of outer folds

(i.e., for regions that were included in the model in at least 475/500 outer folds, mean β

coefficients were calculated across 5 outer folds, and the median value across 100

permutations is plotted).

Figure 5. Statistical comparison of model performance for predicting motor scores using

Mann-Whitney signed-rank tests. Colours shown indicate the differences in median

explained variance scores for each model. A.Models trained using all (acute and chronic)

training data. B. Models trained only using chronic data. *** denotes corrected p < 0.001

after Bonferroni correction. A positive difference indicates that the model on the y-axis

(vertical) has a greater explained variance than the model on the x-axis (horizontal).

Figure 6. Statistical comparison of model performance for ensemble models. Demog. =

demographic information (age, sex, days since stroke). ChaCo = model using 268-region

ChaCo scores w/ feature selection. Significance of differences in explained variance were

evaluated using Mann-Whitney signed-rank tests; ***denotes corrected p < 0.001 after

Bonferroni correction. A positive difference value indicates that the model on the y-axis

(vertical) has a greater explained variance than the model on the x-axis (horizontal).
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Figure 7. Analysis of feature stability for 268-region ChaCo models (with feature selection)

and investigation of paradoxical feature weights. A. Correlation between beta coefficients

across five training folds for one permutation. Each point corresponds to one region, and points

are coloured by the mean beta coefficient for that region across 500 training folds (i.e. coloured

based on y-axis value). B. Boxplots show the distribution of beta coefficients of

consistently-weighted regions (defined as having median beta coefficients that are zero or of an

opposite sign <5% of the time). In total, 30 regions with consistent negative weights and 5

regions with consistent positive weights remained. Median weights for consistently-weighted

regions are plotted on a brain. The boxes extend from the lower to upper quartile values of the

data, with a line at the median. Whiskers represent the range of the data from [Q1-1.5*IQR,

Q3+1.5*IQR].
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