1 Carrera, et al,

2	Alphavirus	potential host	in Panama
---	------------	----------------	-----------

3	Madariaga and Venezuelan equine encephalitis virus seroprevalence in rodent
4	enzootic hosts in Eastern and Western Panama
5	
6	Jean-Paul Carrera ^{1,2,3,4,5*±} Josefrancisco Galué ^{3,4,5 ±} , William M. de Souza ^{,6,7} , Rolando
7	Torres-Cosme ⁹ , Carlos Lezcano-Coba ^{3,4,5} , Alberto Cumbrera ⁹ , Nikos Vasilakis ^{8,10-14} ,
8	Robert B. Tesh ¹⁰⁻¹⁴ , Hilda Guzman ¹⁰ , Scott C. Weaver ^{6,8,11-14} , Amy Y. Vittor ¹⁶ , Rafael
9	Samudio ¹⁷ , Juan Miguel Pascale ¹⁸ , Anayansi Valderrama ^{5,9} , Lorenzo Cáceres
10	Carrera ⁹⁺ , Christl A. Donnelly ^{2,19,20+} , Nuno R. Faria ^{1,20+}
11	
12	1. Department of Biology, University of Oxford, Oxford, United Kingdom
13	2. Pandemic Sciences Institute, University of Oxford, Oxford United Kingdom
14	3. Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of
15	Health Studies, Panama City, Panama
16	4. Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health
17	Studies, Panama City, Panama
18	5. Carson Centre for Research in Environment and Emerging Infectious Diseases, La
19	Peñita, Darien, Panama
20	6. Department of Microbiology and Immunology, University of Texas Medical Branch,
21	Galveston, Texas, USA
22	7. Department of Microbiology, Immunology, and Molecular Genetics, University of
23	Kentucky, College of Medicine, Lexington, Kentucky, USA
24	8. Institute for Human infection and Immunity, University of Texas Medical Branch,
25	Texas, USA

26	9. Department of Medical Entomology, Gorgas Memorial Institute of Health Studies,
27	Panama City, Panama
28	10. Geographic System Information Unit, Gorgas Memorial Institute of Health Studies,
29	Panama City, Panama
30	11. Department of Pathology, University of Texas Medical Branch, Galveston Texas,
31	USA
32	12. Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch,
33	Galveston, Texas, USA
34	13. Center for Biodefense and Emerging Infectious Diseases, University of Texas
35	Medical Branch, Galveston, Texas, USA
36	14. Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas,
37	USA
38	15. World Reference Center for Emerging Viruses and Arboviruses, University of Texas
39	Medical Branch, Galveston, Texas, USA
40	16. Department of Medicine, Division of Infectious Disease and Global Medicine,
41	University of Florida, Gainesville, Florida, USA
42	17. Sociedad Mastozoológica de Panamá, Panama City, Panama
43	18. Clinical Research Unit, Gorgas Memorial Institute of health Studies, Panama City,
44	Panama
45	19. Department of Statistics, University of Oxford, Oxford United Kingdom
46	20. Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious
47	Disease Analysis, J-IDEA, Imperial College London, London, UK.
48	*Correspondence: jean.carrera@biology.ox.ac.uk_or jpcarrera@gorgas.gob.pa
49	[±] Contributed equally
50	+These are joint senior authors in this study.
51	Abstract: 249 words
52	Main text: 3472 words

53 Abstract

54	While rodents are primary reservoirs of Venezuelan equine encephalitis virus
55	(VEEV), their role in Madariaga virus (MADV) transmission remains uncertain,
56	particularly given their overlapping geographic distribution. This study explores the
57	interplay of alphavirus prevalence, rodent diversity, and land use within Darien and
58	Western Panama provinces. A total of three locations were selected for rodent
59	sampling in Darien province: Los Pavitos, El Real de Santa Maria and Santa
60	Librada. Two sites were selected in Western Panama province: El Cacao and Cirí
61	Grande. We used plaque reduction neutralization tests to assess MADV and VEEV
62	seroprevalences in 599 rodents of 16 species across five study sites.
63	MADV seroprevalence was observed at higher rates in Los Pavitos (Darien
64	province), 9.0%, 95% CI: 3.6-17.6, while VEEV seroprevalence was elevated in EI
65	Cacao (Western Panama province), 27.3%, 95% CI: 16.1-40.9, and EI Real de
66	Santa María (Darien province), 20.4%, 95% CI: 12.6-29.7. Species like Oryzomys
67	coesi, 23.1%, 95% CI: 5.0-53.8, and Transandinomys bolivaris, 20.0%, 95% CI: 0.5-
68	71.6 displayed higher MADV seroprevalences than other species, whereas
69	Transandinomys bolivaris, 80.0%, 95% CI: 28.3-99.4, and Proechimys
70	semispinosus, 27.3%, 95% CI: 17.0-39.6, exhibited higher VEEV seroprevalences.
71	Our findings provide support to the notion that rodents are vertebrate reservoirs of
72	MADV and reveal spatial variations in alphavirus seropositivity among rodent
73	species, with different provinces exhibiting distinct rates for MADV and VEEV.
74	Moreover, specific rodent species are linked to unique seroprevalence patterns for
75	these viruses, suggesting that rodent diversity and environmental conditions might
76	play a significant role in shaping alphavirus distribution.

77

78 Introduction

79	Madariaga (MADV) and Venezuelan equine encephalitic (VEEV) viruses (Alphavirus
80	genus, Togaviridae family) are closely-related arthropod-borne zoonotic RNA viruses
81	associated with the human and equine disease throughout Latin America ¹ . Most
82	VEEV human-reported infections are symptomatic, and cases usually present with
83	fever, headache, chills, and arthralgia ^{2,3} . Around 14% of febrile cases develop
84	severe neurological complications ² . VEEV case fatality ratio is estimated to be
85	around 10% ² . MADV human infection is less well documented. In Panama, MADV
86	was first reported in the former Panama Canal Zone in a horse in 1936 4 . Equine
87	MADV epizootics were then reported across Panama, from the Azuero Peninsula in
88	Central Panama to the Chepo district in North Panama, in 1947, 1958, 1962, 1973
89	and 1986 ^{5–7} . An equine epizootic in the absence of human disease was also
90	observed in Argentina in 1981 8 . In Iquitos, in the Peruvian Amazon, a febrile
91	surveillance study found that 2% of participants were MADV IgM positive, indicating
92	a low level of human exposure ⁹ .
93	
94	In 2010, 13 human MADV cases were reported during an outbreak of encephalitis in
95	the Darien province, at the eastern end of Panama ¹⁰ . Prior to this, a single case of
96	human encephalitis had been reported in Brazil ¹¹ and two MADV infections had

97 been reported in Trinidad and Tobago ¹². MADV human infections during the 2010
98 Panama outbreak presented with fever and headache, and rapidly developed

99 neurological symptoms and complications ¹⁰ with an estimated case fatality ratio of 100 around 10% ¹⁰. A recent report in Haiti showed that MADV human cases can present 101 as a mild febrile disease with rash and conjunctivitis resembling symptoms observed 102 during dengue disease ¹³. Similarly, human serosurveys undertaken in Panama

103	suggested that the majority of MADV and VEEV infections are asymptomatic or
104	cause mild disease ^{3,14} . Nonetheless, follow-up studies of these individuals have
105	demonstrated that clinical sequelae of MADV and VEEV can persist for years after
106	infection ¹⁵ . Thus, the burden of both encephalitic alphaviruses could extend well
107	beyond the acute febrile or neurological disease, such as described for arthritogenic
108	alphavirus ¹⁶ . There are no VEEV- or MADV-specific treatments or licensed vaccines
109	for use in humans. Diagnostic tests of human infections are typically performed using
110	pan-alphavirus and/or virus-specific reverse transcription-polymerase chain reaction
111	(RT-PCR) approaches, plaque reduction neutralization tests and viral isolation.
112	
113	Mosquitoes within the subgenus Culex (Melanoconion) are believed to be the
113 114	Mosquitoes within the subgenus <i>Culex (Melanoconion)</i> are believed to be the principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian
114	principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian
114 115	principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian Amazon and Panama have shown frequent detection and isolation of MADV in <i>Culex</i>
114 115 116	principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian Amazon and Panama have shown frequent detection and isolation of MADV in <i>Culex</i> (<i>Mel.</i>) <i>pedroi</i> ^{17,18} <i>and Culex (Mel.) taeniopus taeniopus</i> ^{7,19} . Furthermore, vector
 114 115 116 117 	principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian Amazon and Panama have shown frequent detection and isolation of MADV in <i>Culex</i> (<i>Mel.</i>) <i>pedroi</i> ^{17,18} <i>and Culex</i> (<i>Mel.</i>) <i>taeniopus taeniopus</i> ^{7,19} . Furthermore, vector competence studies and analysis of blood feeding patterns show that <i>Culex</i> (<i>Mel.</i>)
 114 115 116 117 118 	principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian Amazon and Panama have shown frequent detection and isolation of MADV in <i>Culex</i> (<i>Mel.</i>) pedroi ^{17,18} and Culex (<i>Mel.</i>) taeniopus taeniopus ^{7,19} . Furthermore, vector competence studies and analysis of blood feeding patterns show that <i>Culex</i> (<i>Mel.</i>) spp. predominantly feed on rodents in the wild ^{2,18,19} . Indeed, experimental and field
 114 115 116 117 118 119 	principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian Amazon and Panama have shown frequent detection and isolation of MADV in <i>Culex</i> (<i>Mel.</i>) pedroi ^{17,18} and Culex (<i>Mel.</i>) taeniopus taeniopus ^{7,19} . Furthermore, vector competence studies and analysis of blood feeding patterns show that <i>Culex</i> (<i>Mel.</i>) spp. predominantly feed on rodents in the wild ^{2,18,19} . Indeed, experimental and field investigations suggest that several rodent species may act as host species for
 114 115 116 117 118 119 120 	principal enzootic vectors of both VEEV and MADV. Previous studies in the Peruvian Amazon and Panama have shown frequent detection and isolation of MADV in <i>Culex</i> (<i>Mel.</i>) pedroi ^{17,18} and Culex (<i>Mel.</i>) taeniopus taeniopus ^{7,19} . Furthermore, vector competence studies and analysis of blood feeding patterns show that <i>Culex</i> (<i>Mel.</i>) spp. predominantly feed on rodents in the wild ^{2,18,19} . Indeed, experimental and field investigations suggest that several rodent species may act as host species for VEEV, including those within the genera <i>Sigmodon, Oryzomys, Zygodontomys</i> ,

However, the vertebrate hosts for MADV remain poorly understood. Studies in wild rodents and marsupials in Brazil detected viremia in *Oryzomys* sp. (rice rat) and *Didelphis marsupialis* (common opossum) ^{22–24}. MADV antibodies have also been detected in lizards and bats in Panama ^{14,25}. Experimental studies in *Sigmodon*

127 *hispidus* (cotton rat) and evolutionary analyses further support that rodent species

128 may be a key amplifying host for MADV 26,27 .

129

130	The geographic and temporal overlap of MADV and VEEV outbreaks in Panama
131	suggests that these viruses occupy similar enzootic transmission cycles ¹⁰ . Recent
132	studies suggest that rodent species collected in agricultural areas of Darien province
133	were most likely to have MADV antibodies, while rodents with VEEV antibodies were
134	principally found in sylvatic or forested areas ¹⁴ . To elucidate the roles of distinct
135	rodent species as hosts for alphaviruses, we conducted an assessment of MADV
136	and VEEV seroprevalence within rodent populations. Additionally, we investigated
137	the potential correlation between seroprevalence rates, rodent diversity, and the
138	patterns of land use and land coverage across five distinct enzootic foci located in
139	the Darien and Western Panama provinces.

140

141 Materials and methods

- 142 **Ethics statement**
- 143 The capture, use, and euthanization of wild rodents was evaluated and approved by
- 144 the Institutional Animal Care and Use Committee of the Gorgas Memorial Institute for
- 145 Health Studies (010/ CIUCAL/ICGES18) and the Panamanian Ministry of
- 146 Environment (SC/A-21-17, ANAM) using the criteria established in the "International
- 147 Guiding Principles for Biomedical Research Involving Animals" developed by the
- 148 Council for International Organizations of Medical Sciences (CIOMIS). The study
- 149 was conducted in accordance with Law No. 23 of January 15, 1997 (Animal Welfare
- 150 Guarantee) of the Republic of Panama.

151 Collection sites

- 152 Rodent trapping efforts were undertaken in 2011 and 2012 in Darien and Western
- 153 Panama province (Figure 1). A total of three locations were selected for rodent
- 154 sampling in Darien province: Los Pavitos, El Real de Santa Maria and Santa Librada
- 155 (Figure 1). Two sites were selected in Western Panama province: El Cacao and Cirí
- 156 Grande (Figure 1). The main economic activities in both regions are agriculture and
- 157 cattle farming. Collection sites were selected based on previous reports of confirmed
- human and equine encephalitic alphavirus infection in 2001, 2004 and 2010⁶.
- 159

160 Land use and land coverage classification

161 Georeferenced coordinates of collection sites were mapped onto the 2012 land use

and land coverage (LULC) classification map obtained from the Panamanian Ministry

163 of Environment ²⁸ (Figure 1). The 2012 LULC classification was based on 5m

164 resolution Rapid Eye Satellite Imagery ²⁹.

165

166 Small mammals trapping

167 From June to November 2011 and March to April 2012, small mammals were 168 collected using Sherman traps baited with a mixture of rice, corn, sorghum, and 169 peanut butter. In the field, traps were placed and maintained from 6:00 PM and then 170 checked soon after 6:00 AM. For this study, a total of 100 Sherman traps were 171 placed in three linear transects of approximately 125m during three consecutive 172 nights at each location. Traps were placed within houses and in the peri-domiciliary 173 area of previously confirmed VEEV cases. Peri-domiciliary setting includes 174 grasslands, and crop fields as well as wooded areas near homes in each of the 175 selected locations. Trapped animals were euthanized using halothane and identified using taxonomic keys or using the field guide to the mammals of Central America ²⁸.
Blood samples were collected from the retro-orbital sinus. Heart, liver, spleen, lung,
and kidney tissues were then harvested. All samples were immediately placed into
liquid nitrogen before transportation to the Gorgas Memorial Institute (GMI) for
testing. Animal carcasses were deposited in the Vertebrate Museum of the
University of Panama and the Zoological Collection of the GMI (Panama City,
Republic of Panama).

183

184 Laboratory methods

185 Alphavirus serology in small mammals

186 Rodent blood samples were screened in a 1:20 dilution using virus-specific plaque 187 reduction neutralization tests (PRNTs) for VEEV and MADV viruses and then titred. 188 A positive sample was considered as the reciprocal of the highest dilution that 189 reduced plaque counts by >80% (plaque reduction neutralization test, PRNT₈₀), as previously described ¹⁴. For PRNT, we used the wild-type MADV strain GML-190 267113, isolated from a fatal human case in Panama in 2017³⁰, and the VEEV 191 192 vaccine strain TC83. MADV and VEEV seroprevalence was estimated along with 193 95% confidence intervals (95% CIs) by mammalian species, year of collection, and 194 collection site.

195

196 Viral isolation and molecular testing

197 Rodent tissues were used to prepare a 10% tissue suspension with 2 mL of

198 minimum essential medium supplemented with penicillin and streptomycin, and 20%

199 fetal bovine serum and homogenized using a Tissue Lyser (Qiagen, Hidden,

200 Germany). After centrifugation at 17,709 x g for 10 minutes, 200 µL of the

supernatant were inoculated into each of two 12.5 cm² flasks of Vero cells (African
green monkey-ATCC CCL-81, USA). Samples were passaged twice for cytopathic
effect confirmation.

204

Rodent tissue and cell culture supernatant were used for viral RNA extraction using the QIaAmp RNA viral extraction kit (Qiagen, Valencia, CA) and tested for alphaviruses using reverse transcription-polymerase chain reaction (RT-PCR) assays, as previously described ³¹.

209

210 Statistical methods

211 **Diversity and similarity analysis**

212 We estimated the absolute and relative abundance of small mammals in the 213 collection sites of Darien and Western Panama provinces during 2011 and 2012. To 214 compare the diversity of small mammals within collection sites we used the Shannon-Wiener index (H)³². Lower values of H correspond to lower diversity. We 215 216 also used Simpson's diversity index 1-D (SDI), which ranges from 0 (least diversity) to 1 (maximal diversity) ³³. Margalef's index was used to measure species richness. 217 with higher values corresponding to greater species richness ³⁴. Diversity analysis 218 219 was undertaken using the statistical package PAST version 4.03³⁵. Finally, a 220 pairwise analysis of species by location was also undertaken. P-values and 95% CIs 221 were adjusted for multiple comparisons using Tukey's honestly significant difference 222 (HSD) test, based on the possible pairs of means and studentized range 223 distribution³⁶.

224

225 Factors associated with alphavirus seroprevalence

226 Rodent species were grouped at the genus level to account for the small sample 227 size. Rodent species, VEEV (n=296) and MADV (n=292) seropositivity, and LULC 228 classification were used for univariate logistic regression analysis. To evaluate risk 229 factors at the community and genus level, we conducted separate univariate 230 analyses for MADV and VEEV; in each case, the outcome variable was the 231 presence/absence of antibodies against the virus, as determined by a PRNT₈₀ titer 232 >1:20. The associations between each outcome and independent variable 233 (community, genus and LULC) were estimated using logistic regression and were 234 expressed as odds ratios (ORs). Univariable and multivariable ORs were calculated 235 with 95% CIs. Statistical analyses were undertaken using the package STATA 236 version 14.1 (College Station, TX).

237

238 **Results**

239 Rodent abundance across study sites

We collected a total of 559 rodents between 2011 and 2012, with specimens belonging to 13 genera and 16 species (Figure 2 A and B, Supplementary Table 1). Most rodents were captured during 2011 (71.8% of all collections, n = 430/599). In general, the majority of rodents were captured within the Darien Province (87.6% of all collections, n = 525/599), specifically in El Real (33.7%, n = 202/599), followed by Los Pavitos (27.6%, n = 165/599) and Santa Librada (26.4%, n = 158/599) (Supplementary Table 1).

247

248 The short-tailed cane mouse (Zygodontomys brevicauda) was the most abundant

species identified across study sites (70.5% of trapped animals, n = 402/599),

followed by the Central American spiny rat (*Proechimys semispinosus*, 12.2%, *n* =

251	73/599), dusky rice rat	(Melanomys caliginosus,	3.5%. $n = 21/599$). marsh rice rat

252 (Oryzomys couesi, 2.7%, n = 16/599), the black rat (*Rattus rattus*, 2.3%), house

253 mouse (*Mus musculus, 2.2%, n* = 13/599), Alfaro's rice rat (*Handleyomys alfaroi*,

- 1.8%, n = 11/599), long-whiskered rice rat (*Transandinomys bolivaris*, 1.5%, n = 1000
- 255 9/599), and the cotton rat (*Sigmodon hirsutus*, 1.3%, n = 8/599). Species with
- abundance \leq 1% are shown in Supplementary Table 1.
- 257

258 Highest rodent diversity and richness in the Darien Province

- 259 We estimated rodent diversity in each study site using the Simpson's diversity index
- 260 (1-D) and the Shannon-Wiener (H) index. The locations of El Real de Santa Maria [
- 261 1-D=0.60; H=1.42] and El Cacao Maria [1-D=0.53; H=1.13] in the Darien province
- showed the highest rodent diversity. Lower species diversity was observed in Ciri
- 263 Grande [1-D=0.46; H=0.96], Los Pavitos [1-D=0.23; H=0.57] and Santa Librada [1-
- 264 D=0.11; H=0.29]. El Real de Santa Maria had the highest species richness
- accordingly with Margalef index [M=1.88] and Santa Librada presented the lowest
- species richness [M=0.79] (Table 1 and Supplementary Table 2).
- 267

268 Species similarity at the community level

- 269 Based on pairwise analyses, species composition was similar in Santa Librada and
- Los Pavitos in Darien province [Contrast =0.5; 95% CI: -0.5-1.4; p=0.639], and EI
- 271 Cacao and Ciri Grande in the Western province. Greater differences in species
- 272 composition were observed between Darien and Western provinces (Table 3).
- 273 Species compositions were generally most similar within provinces, with the
- 274 exception of El Cacao and El Real de Santa Maria. These sites had the largest

- smallest differences in species composition [Contrast =-1.8; 95% CI: -3.1-0.5;
- p=0.001], despite these sites being in different provinces (Table 3).
- 277

278 Viral active circulation

- 279 No active alphavirus circulation was detected by means of RT-PCR or viral isolation.
- However, we note that two strains of Madrid virus (genus, Orthobunyavirus, family,
- 281 Peribunyaviridae) were isolated from two specimens of Zygodontomys brevicauda
- trapped in El Real de Santa Maria. These strains are not analyzed in this study.
- 283

284 Widespread alphavirus seroprevalence in rodents across Panama

285 The overall MADV and VEEV seroprevalence in small mammals were 3.8% (95% CI:

286 2.0-7.0; *n* = 11/292) and 12.5% (95% CI: 8.9-16.8; *n* = 37/296), respectively

287 (Supplementary Table 3 and 4. VEEV seroprevalence was higher in 2011 (16.2%,

288 95% CI: 11.4-22.1; *n* = 32/197) compared to 2012 (5.1%, 95% CI: 1.6-11.3; *n* = 5/99)

- 289 (Supplementary Table 6). MADV seroprevalence dropped from 4.6% (95% CI: 2.1-
- 290 8.6; *n* = 9/194) in 2011 to 2.0% (95% CI: 0.2-7.0; *n* = 2/98) in 2012 (Supplementary
- Table 5). VEEV seroprevalence was widespread across the Western and Darien
- 292 provinces with the highest seroprevalence found in El Cacao (27.3%, 95% CI: 16.1-

40.9; n=15/55) in the Western province, followed by El Real de Santamaria (20.4%,

- 294 95% CI: 12.6-29.7; n=19/94) in the Darien province (Table 1, Table 2). MADV
- seroprevalence was higher in rodents collected in Los Pavitos (9.0%, 95% CI: 3.6-
- 296 17.6 18; n=7/78), followed by El Real (3.2%, 95% Cl: 1.0-9.0; n=3/94) and Santa
- 297 Librada (2.1%, 95% CI: 0.0-11.0; n=1/48) (Table 1 and Table 2). No evidence of
- 298 MADV viremia or antibodies was found in rodents collected in the Western province
- 299 (0%, 95% CI: 0.0-5.0; n= 0/72).

300 Oryzomys couesi (23.1%, 95% CI: 5.0-53.8; n=3/13) and Transandinomys bolivaris

301 (20.0%, 95% CI: 0.5-71.6 72; n=1/5) had the highest MADV seroprevalence

302 (Supplementary Table 3), while *Transandinomys bolivaris* (80.0%, 95% CI: 28.3-

- 303 99.4; n=4/5) and *Proechimys semispinosus* (27.3%, 95% CI: 17.0-39.6; n=18/66)
- 304 had the highest VEEV seroprevalence (Supplementary Table 4).
- 305

306 Factors associated with alphavirus seroprevalence in rodents

307 MADV seroprevalence was independent of collection site, but Los Pavitos (OR=0.1; 308 95% CI: 0.0-0.4; p=0.002) and Santa Librada (OR=0.1; 95% CI: 0.0-0.6; p=0.017) 309 were protective factors for VEEV seropositivity when compared with EI Real de 310 Santa María (Table 4). Univariate analysis by rodent taxa revealed that the odds of 311 MADV seropositivity was 9.0 times greater in Orizomys (OR=9.0; 95%CI: 1.9-43.2; 312 p=0.006) compared to the reference Zygodontomys. The odds of VEEV 313 seropositivity in *Proechimys* (OR=4.6; 95%CI: 2.1-10.2; p<0.001) were significantly 314 higher than in the reference, Zygodontomys (Table 4). At the univariate level, 315 pasture was significantly associated with MADV seropositivity when compared to the 316 secondary forest (OR=5.2; 95% CI: 1.5 -18.2; p=0.01). In contrast, the risk of VEEV 317 seropositivity was significantly decreased in pastures when compared with 318 secondary forest (OR=0.1; 95% CI: 0.3 - 0.6; p=0.031) (Table 4).

319

320 Discussion

321 Our findings support the hypothesis that wild rodents serve as reservoirs for both

322 MADV and VEEV ^{14,26,27}. Our results show that MADV seropositivity was confined to

323 the Darien province, whereas VEEV seropositivity was pervasive across the

324 examined study sites. Rodents captured within areas characterized by pasture

325	exhibited an elevated likelihood of MADV seropositivity in contrast to those within
326	secondary forest environments. Conversely, rodents captured within secondary
327	forest areas displayed an increased likelihood of VEEV seropositivity.
328	Overall, we observed that MADV seropositivity was lower in rodents compared to
329	VEEV (3.8% vs. 12.5%). Our seroprevalence results agree with separate
330	surveillance efforts carried out in other regions in the Darien province during 2012 ¹⁴ .
331	Higher VEEV seropositivity compared to MADV seropositivity in rodents has also
332	been observed in mosquitoes and humans ^{30,37} . Higher VEEV seroprevalence may
333	be due to intrinsic differences among viral strains, variation in vector competence,
334	viral competition within the vector, or asymmetric cross-protective immunity ^{15,38} .
335	
336	Weaver et al. has previously suggested that the genera with the greatest evidence of
337	participation in the enzootic transmission of VEEV were Sigmodon, Oryzomys,
338	Zygodontomys and Proechimys ^{2,39} . We found that Transandinomys bolivaris and
339	Proechimys semispinosus had the highest VEEV seroprevalence in Panama (80.0%
340	and 27.3%, respectively). Both species have been implicated as VEEV reservoirs in
341	prior studies ² . Moreover, the highest MADV seroprevalence was found in <i>Oryzomys</i>
342	couesi, Transandinomys bolivaris and Handleyomys alfaroi (23.1%, 20.0% and
343	14.3%, respectively). We also observed that in different communities of the Darien
344	province, Zygodontomys brevicauda and Transandinomys bolivaris presented the
345	highest MADV seroprevalence (8.3% and 3.1%) 14 .
346	
347	Proechimys semispinosus and Transandinomys bolivaris, the rodent species

348 identified in this study with the highest VEEV seroprevalence in the Darien province,

349 are often found in secondary and primary forests ¹⁴. *Oryzomys couesi* and

350 Transandinomys bolivaris, the rodents with the highest MADV seroprevalence, are 351 found in grasslands and agricultural areas. Oryzomys cousi is a semi-aquatic species that is adaptable to different environmental conditions ^{40,41}. Herbaceous 352 353 habitats, permanent and semi-permanent wetlands appear to be an important factor for the distribution of this rodent ^{40,41}. It is likely that this plasticity favors MADV 354 355 transmission in pasture or agriculture settings. However, it is unclear if the ecological 356 conditions found in Darien support the development of Culex (*Mel.*) spp., or possibly 357 other bridge vectors. The ecological profiling of the Cx. (Mel.) spp., done during the 1970s, suggest these species develop their cycles in floating plant water⁴². More 358 359 recent findings have discovered species near human settlements and in secondary forests^{30,43}, suggesting changes in their ecology. 360

361

362 VEEV was more prevalent in rodents captured in the communities of El Cacao in the 363 Panama Western province and in El Real de Santa Maria (27.3% and 20.2%) 364 located in the Darien province. Rodent diversity and richness were also higher in El 365 Real de Santa Maria and El Cacao. Notably, El Real de Santa María is also among the regions with the highest VEEV human incidence ^{14,30}. Los Pavitos had the 366 367 highest MADV rodent seroprevalence (9.0%), and we also observed that the risk of 368 MADV increased in pasture compared with the secondary forest. Interestingly, Los 369 Pavitos is a community on the Pan-American Highway where the first MADV human and equine cases were reported during the 2010 outbreak ¹⁰. Human serosurveys 370 371 have shown that the risk of human VEEV infection is associated with activities in the forest, which supports a sylvatic cycle for VEEV ^{14,30}. Previous studies have also 372 373 shown that human MADV infection risk is associated with farming and cattle

ranching activities, suggesting that MADV transmission occurs predominantly in
 areas with agricultural activity ^{14,30}.

376 It is important to note that no MADV-seropositive rodents were observed in the EI 377 Cacao and Cirí Grande communities in the Western province of Panama. This 378 observation is in agreement with recent serological evidence of MADV in rodents and humans being restricted to the Darien province ¹⁰. However, it is in contrast with 379 pre-1990s reports of MADV showing widespread circulation across Panama ⁵⁻⁷. It is 380 381 unclear why contemporary MADV transmission is limited to the Darién province, but 382 perhaps these earlier outbreaks represented epizootic expansion from a stable enzootic focus in eastern Panama⁴⁴ Evidence of geographic expansion of MADV 383 has also been previously observed in Panama^{5,6}. High rates of MADV in rodents 384 385 were recorded previously near El Real de Santa Maria in the small, heavily forested community of Pijibasal¹⁴. This community is in the Darien Gap National Park, 386 suggesting that the MADV enzootic cycle also occurs in forested areas ¹⁴. Overall, 387 388 MADV and VEEV seroprevalence levels appear to differ spatially, and our results 389 suggest that MADV seroprevalence was greater in places with low rodent diversity 390 and pasture, while VEEV seroprevalence was greater in places with rodent high 391 diversity and secondary forest. However, cross-protection immunity has also been proposed as a potential mechanism to explain these differences ^{14,15} 392 393

The limitations of this study include a lack of precise information on the environment where the rodents were collected, which means we could not describe the microecological conditions linked to the distribution and prevalence of infection in rodents. Finer-scale analyses to understand the effect of land use and land cover in diversity and alphavirus seroprevalence are currently underway by our group using additional

399	rodent data from Darien. Little volume of sample is also available for testing for
400	alphaviruses in small animals, which makes laboratory testing challenging in some
401	individuals or even other taxa. Moreover, future cross-sectional rodent surveys will
402	allow us to identify the temporal drivers of transmission and improve our
403	understanding of the seasonal dynamics of VEEV and MADV across Panama 45 .
404	
405	In summary, our study corroborates the hypothesis that wild rodents act as
406	reservoirs for both MADV and VEEV, offering unique seropositivity patterns ¹⁴ . We
407	observed distinct geographical distributions, with MADV seropositivity concentrated
408	in the Darien province and VEEV seropositivity prevalent across the surveyed sites.
409	Transandinomys bolivaris and Proechimys semispinosus exhibited the highest VEEV
410	seroprevalence, while Oryzomys couesi, Transandinomys bolivaris, and
411	Handleyomys alfaroi showcased elevated MADV seroprevalence. Furthermore,
412	ecological differences in habitat preference were linked to seroprevalence patterns,
413	with secondary forests associated VEEV with seropositivity and agricultural
414	environments associated with MADV seropositivity.
415	
416	Areas with lower rodent diversity and pasture environments correlated with
417	increased MADV seropositivity. In contrast, regions characterized by higher rodent
418	diversity and secondary forests were associated with heightened VEEV
419	seroprevalence. These patterns align with observed human infection risks ^{14,30} ,
420	supporting the potential impact of rodent-driven transmission in specific ecological
421	contexts.
422	

423 Acknowledgments

424 We wish to express appreciation to Yaneth Pittí, Isela Guerrero, David Beltran, and 425 Julio Cisneros for technical support with laboratory testing. We also thank Fatima 426 Rodriguez for funding administration. AV, JMP and LC are members of the Sistema 427 Nacional de Investigation (SNI), SENACYT, Panama.

428

429 Funding

430 JPC is funded by the Clarendon Scholarship from University of Oxford and Lincoln-431 Kingsgate Scholarship from Lincoln College, University of Oxford [grant number 432 SFF1920_CB2_MPLS_1293647]. JFG is a masters student studying Epidemiological 433 Research at Universidad Peruana Cayetano Heredia supported by training grant 434 D43 TW007393 awarded by the Fogarty International Center of the US National 435 Institutes of Health. This work was supported by SENACYT [grant number FID- 16-436 201] grant to JPC and AV. Proyecto: Estudio de las Enfermedades Emergentes y 437 Síndromes Febriles en la Población Migrante, Ministerio de Economia y Finanzas de 438 Panamá (Código: 019911.013) The Centers for Research in Emerging Infectious 439 Diseases (CREID) Coordinating Research on Emerging Arboviral Threats 440 Encompassing the **NEO**tropics (CREATE-NEO) 1U01AI151807 grant awarded to 441 WMS is supported by the Global Virus Network fellowship and the NIH NV. 442 (Al12094). CAD acknowledges funding the National Institute of Health Research for 443 support of the Health Protection Research Unit in Emerging and Zoonotic Infections. 444 WMS is supported by the Global Virus Network fellowship and the NIH (Al12094) 445 Global Virus Network fellowship, Burroughs Wellcome fund (#1022448) and 446 Wellcome Trust-Digital Technology Development award (Climate Sensitive Infectious 447 Disease Modelling; (226075/Z/22Z). NRF acknowledges support from Wellcome 448 Trust and Royal Society Sir Henry Dale Fellowship (204311/Z/16/Z), Bill and Melinda

- 449 Gates Foundation (INV034540) and Medical Research Council-Sao Paulo Research
- 450 Foundation (FAPESP) CADDE partnership award (MR/S0195/1 and FAPESP
- 451 18/14389-0).
- 452 **Disclaimers**. The opinions expressed by authors contributing to this journal do not
- 453 necessarily reflect the opinions of the Gorgas Memorial Institute of Health Studies,
- 454 The Panamanian Government, or the institutions with which the authors are
- 455 affiliated.
- 456 Potential conflicts of interest. All Authors: No reported conflicts of interest. Conflicts
- 457 that the editor consider relevant to the content have been disclosed.
- 458

459 **References**

1. Navarro JC, Carrera JP, Liria J, Auguste AJ, Weaver SC., 2017. Alphaviruses in Latin
America and the introduction of chikungunya virus. *Human Virology in Latin America: From Biology to Control*

463 2. Aguilar P v., Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD, Weaver
464 SC., 2011. Endemic Venezuelan equine encephalitis in the Americas: Hidden under the
465 dengue umbrella

Carrera JP, Bagamian KH, Travassos Da Rosa AP, Wang E, Beltran D, Gundaker
ND, Armien B, Arroyo G, Sosa N, Pascale JM, Valderrama A, Tesh RB, Vittor AY, Weaver
SC., 2018. Human and equine infection with alphaviruses and flaviviruses in panamá during
2010: A cross-Sectional study of household contacts during an encephalitis outbreak. *American Journal of Tropical Medicine and Hygiene*

- 471 4. Kelser R.A., 1937. Equine encephalomyelitis in Panama . *Veterinary bulletin* : 19–21
 472 5. Medina G, Gleiser CA, Mackenzei RB., 1965. Brote de encefalomielitis equina en la
- 473 Republica de Panama. *Boletín de la Oficina Sanitaria Panamericana 58*: 390–394
 474 6. Obaldía N, Dutary B, Clavel F, Zarate JL, Alvarez O, Evans E, Molina A, Serrano R,
- 475 Villareal A, Boy RR, de Gracia A, Chalmers F, Vega B. J, George M, Saa E, et al., 1991.
- 476 Encefalomielitis Equina del Este, Epizootia de 1986 en Panamá. Notas veterinarias 1: 4–7
- 477 7. Dietz WH, Galindo P, Johnson KM., 1980. Eastern equine encephalomyelitis in
- 478 Panama: The epidemiology of the 1973 epizootic. *American Journal of Tropical Medicine*479 *and Hygiene*
- 480 8. Sabattini MS, Daffner JF, Monath TP, Bianchi TI, Cropp CB, Mitchell CJ, Aviles G.,
 481 1991. Localized eastern equine encephalitis in Santiago del Estero Province, Argentina,
 482 without human infection. *Medicina (B Aires) 51*
- 483 9. Aguilar P v., Robich RM, Turell MJ, O'Guinn ML, Klein TA, Huaman A, Guevara C,
- 484 Rios Z, Tesh RB, Watts DM, Olson J, Weaver SC., 2007. Endemic eastern equine
- 485 encephalitis in the Amazon region of Peru. American Journal of Tropical Medicine and
- 486 Hygiene

487 10. Carrera J-P, Forrester N, Wang E, Vittor AY, Haddow AD, López-Vergès S, Abadía 488 I, Castaño E, Sosa N, Báez C, Estripeaut D, Díaz Y, Beltrán D, Cisneros J, Cedeño HG, et al., 489 2013. Eastern Equine Encephalitis in Latin America. New England Journal of Medicine 490 Alice F., 1956. Infeccao humana pelo virus "leste" da encefalite equina . Bol Inst Biol 11. 491 da Bahia (Brazil) 3: 3–9 492 12. Corniou B, Ardoin P, Bartholomew C, Ince W, Massiah V., 1972. First isolation of a 493 South American strain of Eastern Equine virus from a case of encephalitis in Trinidad. Trop 494 Geogr Med 24 495 13. Lednicky JA, White SK, Mavian CN, el Badry MA, Telisma T, Salemi M, OKech 496 BA, Beau De Rochars VM, Morris JG., 2019. Emergence of Madariaga virus as a cause of 497 acute febrile illness in children, Haiti, 2015-2016. PLoS Negl Trop Dis 498 14. Vittor AY, Armien B, Gonzalez P, Carrera J-P, Dominguez C, Valderrama A, Glass 499 GE, Beltran D, Cisneros J, Wang E, Castillo A, Moreno B, Weaver SC., 2016. Epidemiology 500 of Emergent Madariaga Encephalitis in a Region with Endemic Venezuelan Equine 501 Encephalitis: Initial Host Studies and Human Cross-Sectional Study in Darien, Panama. PLoS 502 Negl Trop Dis 10 503 Carrera JP, Pittí Y, Molares-Martínez JC, Casal E, Pereyra-Elias R, Saenz L, 15. 504 Guerrero I, Galué J, Rodriguez-Alvarez F, Jackman C, Pascale JM, Armien B, Weaver SC, 505 Donnelly CA, Vittor AY., 2020. Clinical and serological findings of madariaga and 506 venezuelan equine encephalitis viral infections: A follow-up study 5 years after an outbreak 507 in Panama. Open Forum Infect Dis 508 16. Doran C, Elsinga J, Fokkema A, Berenschot K, Gerstenbluth I, Duits A, Lourents N, 509 Halabi Y, Burgerhof J, Bailey A, Tami A., 2022. Long-term Chikungunya sequelae and 510 quality of life 2.5 years post-acute disease in a prospective cohort in Curação. *PLoS Negl* 511 Trop Dis 16 512 17. Turell MJ, O'Guinn ML, Jones JW, Sardelis MR, Dohm DJ, Watts DM, Fernandez R, 513 Travassos Da Rosa A, Guzman H, Tesh R, Rossi CA, Ludwig G v., Mangiafico JA, Kondig 514 J, Wasieloski LP, et al., 2006. Isolation of Viruses from Mosquitoes (Diptera: Culicidae) 515 Collected in the Amazon Basin Region of Peru. J Med Entomol 42: 891-898 516 18. Turell MJ, O'Guinn ML, Dohm D, Zyzak M, Watts D, Fernandez R, Calampa C, 517 Klein TA, Jones JW., 2008. Susceptibility of peruvian mosquitoes to eastern equine 518 encephalitis virus. J Med Entomol 519 19. Srihongse S, Galindo P., 1967. The isolation of eastern equine encephalitis virus from 520 Culex (Melanoconion) taeniopus Dyar and Knab in Panama. Mosquito News 27: 74-76 521 20. Deardorff ER, Forrester NL, Travassos Da Rosa AP, Estrada-Franco JG, Navarro-522 Lopez R, Tesh RB, Weaver SC., 2009. Experimental infection of potential reservoir hosts 523 with venezuelan equine encephalitis virus, Mexico. Emerg Infect Dis 15 524 21. Sotomayor-Bonilla J, Abella-Medrano CA, Chaves A, Alvarez-Mendizábal P, Rico-525 Chávez Ó, Ibáñez-Bernal S, Rostal MK, Ojeda-Flores R, Barbachano-Guerrero A, Gutiérrez-526 Espeleta G, Aguirre AA, Daszak P, Suzán G., 2017. Potential sympatric vectors and 527 mammalian hosts of venezuelan equine encephalitis virus in Southern Mexico. J Wildl Dis 53 528 Lopes OS, Sacchetta LA., 1974. Epidemiological studies on Eastern Equine 22. 529 Encephalitis virus in Sao Paulo, Brazil. Rev Inst Med Trop Sao Paulo 16 530 23. Ferreira IB, Pereira LE, Rocco IM, Marti AT, de Souza LT, Iversson LB., 1994. 531 Surveillance of arbovirus infections in the Atlantic Forest Region, State of São Paulo, Brazil. 532 I. Detection of hemagglutination-inhibiting antibodies in wild birds between 1978 and 1990. 533 Rev Inst Med Trop Sao Paulo 36 534 Grayson MA, Galindo P., 1969. Ecology of Venezuelan equine encephalitis virus in 24.

535 Panama. J Am Vet Med Assoc 155: 2141–5

536 25. Craighead JE, Shelokov A, Peralta PH., 1962. The lizard: A possible host for eastern 537 equine encephalitis virus in panama. Am J Epidemiol 538 26. Arrigo NC, Paige Adams A, Watts DM, Newman PC, Weaver SC., 2010. Cotton rats 539 and house sparrows as hosts for north and south american strains of eastern equine 540 encephalitis virus. Emerg Infect Dis 541 Arrigo NC, Adams AP, Weaver SC., 2010. Evolutionary Patterns of Eastern Equine 27. 542 Encephalitis Virus in North versus South America Suggest Ecological Differences and 543 Taxonomic Revision. J Virol 544 28. Anon., 2010. A field guide to the mammals of Central America & southeast Mexico. 545 Choice Reviews Online 546 29. Sang H, Zhang J, Zhai L, Xie W, Sun X., 2015. Analysis of RapidEye imagery for 547 agricultural land mapping. International Conference on Intelligent Earth Observing and 548 Applications 2015 549 30. Carrera JP, Cucunuba ZM, Neira K, Lambert B, Pitti Y, Liscano J, Garzon JL, Beltran 550 D, Collado-Mariscal L, Saenz L, Sosa N, Rodriguez-Guzman LD, Gonzalez P, Lezcano AG, 551 Pereyra-Elias R, et al., 2020. Endemic and epidemic human alphavirus infections in eastern 552 Panama: An analysis of population-based cross-sectional surveys 553 Sánchez-Seco MP, Rosario D, Quiroz E, Guzmán G, Tenorio A., 2001. A generic 31. 554 nested-RT-PCR followed by sequencing for detection and identification of members of the 555 alphavirus genus. J Virol Methods 556 32. Ortiz-Burgos S., 2016. Shannon-weaver diversity index. Encyclopedia of Earth 557 Sciences Series 558 33. Gregorius HR, Gillet EM., 2008. Generalized Simpson-diversity. Ecol Modell 211 559 34. Death R., 2021. Margalefs Index - Population Dynamics - Ecology Center 560 35. Hammer Ø, Harper DAT, Ryan PD., 2001. PAST: Paleontological statistics software 561 package for education and data analysis. Palaeontologia electronica. Curr Sci 4 562 36. Nanda A, Mohapatra DrBB, Mahapatra APK, Mahapatra APK, Mahapatra APK., 563 2021. Multiple comparison test by Tukey's honestly significant difference (HSD): Do the 564 confident level control type I error. International Journal of Statistics and Applied 565 Mathematics 6 566 37. Carrera J-P, Arauz D, Rojas A, Cardozo F, Stittleburg V, Galue J, Lezcano-Coba C, 567 Vasilakis N, Pascale JM, Valderrama A, Donnelly CA, Faria NR, Waggoner JJ., 2022. Real-568 time RT-PCR for Venezuelan equine encephalitis complex, Madariaga and Eastern equine 569 encephalitis viruses: application in clinical diagnostic and mosquito surveillance. medRxiv 570 38. Kantor AM, Lin J, Wang A, Thompson DC, Franz AWE., 2019. Infection Pattern of 571 Mayaro Virus in Aedes aegypti (Diptera: Culicidae) and transmission potential of the virus in 572 mixed infections with chikungunya virus. J Med Entomol 56 573 39. Weaver SC, Ferro C, Barrera R, Boshell J, Navarro JC., 2004. Venezuelan Equine 574 Encephalitis 575 del Campo JTF, Olvera-Vargas M, Silla-Cortés F, Figueroa-Rangel BL, Iñiguez-40. Dávalos LI., 2022. Composition and structure of vegetation and tide regulate the occurrence 576 577 of Oryzomys couesi and Hodomys alleni in mangrove forests of Laguna de Cuyutlán, West-578 Central Mexico. Wetl Ecol Manag 30 579 Eubanks BW, Hellgren EC, Nawrot JR, Bluett RD., 2011. Habitat associations of the 41. 580 marsh rice rat (Oryzomys palustris) in freshwater wetlands of southern Illinois. J Mammal 92 581 42. Galindo P, Adames AJ., 1973. Ecological Profile of Culex (Melanoconion) aikenii 582 (Diptera: Culicidae), Vector of Endemic Venezuelan Encephalitis in Panama1. Environ

583 Entomol 2

- 43. Torres R, Samudio R, Carrera JP, Young J, Maârquez R, Hurtado L, Weaver S,
- 585 Chaves LF, Tesh R, Caâceres L., 2017. Enzootic mosquito vector species at equine
- 586 encephalitis transmission foci in the República de Panama. PLoS One
- 587 44. Brault AC, Powers AM, Villarreal Chavez CL, Navarro Lopez R, Cachón MF,
- 588 Gutierrez LFL, Kang W, Tesh RB, Shope RE, Weaver SC., 1999. Genetic and antigenic
- 589 diversity among eastern equine encephalitis viruses from North, Central, and South America.
- 590 American Journal of Tropical Medicine and Hygiene 61
- 591 45. Raghwani J, Faust CL, François S, Nguyen D, Marsh K, Raulo A, Hill SC, Parag K
- 592 V., Simmonds P, Knowles SCL, Pybus OG., 2022. Seasonal dynamics of the wild rodent
- 593 faecal virome. *Mol Ecol*
- 594 46. Solano M., 2012. Panama 2012 Forest Cover and Land Use
- 595

- 597
- 598

600 Table 1. Characteristics of collection sites, small mammal diversity and alphavirus seroprevalence. The total of small

601 mammals included in the analysis was 599 from a total of 16 species.

Sites		Western Panama Province		Darien Province	
Location	El Cacao	Cirí Grande	El Real de Santa María	Los Pavitos	Santa Librada
Latitude and	8,76613418;	8,8712848; -	8,13021585; -	8,47052; -	8,157787; -
Longitude	-80,0168149	80,053276	77,727379	77,9549	77,691809
Forest cover/ land use	Secondary forest	Secondary forest	Secondary forest	Pasture	Secondary forest
*No. rodents captured (n)	56	18	202	165	158
**No. rodent species (n)	6	5	11	7	5
†VEEV	15/55 (27.3, 95% CI:	0/17 (0.0%, 95% CI:	19/94 (20.2%, 95%	2/81 (2.4%, 95%	1/49 (2.0%, 95%
seroprevalence	16.1-40.9)	0.0-19.5)	CI:12.6-29.7)	CI:0.3-8.6)	CI:0.0-10.8)

††MADV	0/55 (0.0%, 95%	0/17 (0.0%, 95% CI:	3/94 (3.2%, 95%	7/78 (9.0%, 95%	1/48 (2.1%, 95%
seroprevalence	CI:0.0 - 6.0)	0.0- 19.5)	CI:0.6-9.0)	CI:3.6-17.6)	CI:0.0-11.8)
Simpson's diversity (Ds)	0.53	0.46	0.60	0.23	0.11
Shannon-Wiener (H)	1.13	0.96	1.42	0.57	0.29
Margalef index (M)	1.24	1.38	1.88	1.18	0.79

602 †VEEV: n=296

603 †† MADV: n=292

604

Table 2. Seroprevalences by virus, collection sites and year of trapping.

		MADV				VEEV			
Sites	20	2011†		2012*		2011††		2012**	
	n/N (%)	95% CI	n/N (%)	95% CI	n/N (%)	95% CI	n/N (%)	95% CI	
El real	3/72 (4.2)	0.01 - 0.12	0/22 (0.0)	0.00 - 0.15	17/72	0.14 - 0.35	2/22 (9.1)	0.01 - 0.29	

						(23.6)			
	Los pavitos	6/60 (10.0)	0.04 - 0.21	1/18 (5.6)	0.00 - 0.27	2/63 (3.2)	0.00 - 0.11	0/18 (0.0)	0.00 - 0.19
	Santa librada	0/9 (0.0)	0.00 - 0.34	1/39 (5.6)	0.00 - 0.13	0/9 (0.0)	0.00 - 0.34	1/40 (2.5)	0.00 - 0.13
	El cacao	0/41 (0.0)	0.00 - 0.86	0/14 (0.0)	0.00 - 0.23	13/41	0.18 - 0.48	2/14 (14.3)	0.18 - 0.43
						(31.7)			
	Cirí grande	0/12 (0.0)	0.00 - 0.26	0/5 (0.0)	0.00 - 0.52	0/12 (0.0)	0.00 - 0.26	0/5 (0.0)	0.00 - 0.52
606	†Seroprevalence total of MADV by 2011: n=9/194; 4.6%, 95% CI (0.02 to 0.09)								
607	*Seroprevalence total of MADV by 2012: n=2/98; 2.0 %, 95% CI (0.00 to 0.07)								
608	††Seroprevalence total of VEEV by 2011: n=32/197; 16.2%, 95% CI (0.11 to 0.22)								
609	**Seroprevalence total of VEEV by 2012: n=5/99; 5.1%, 95% CI (0.02 to 0.11)								
610									

612 Table 3. Pairwise comparison of rodent species by collection site.

Sites	Contrast	95% CI	P-value
Ciri Grande vs El Real	-2.3	-4.4 0.2	0.023
El Cacao vs El Real	-1.8	-3.1 0.5	0.001
Los Pavitos vs El Real	2.1	1.2 - 3.0	<0.001
Santa Librada vs El Real	2.6	1.6 - 3.5	<0.001
El Cacao vs Ciri Grande	0.5	-1.8 - 2.8	0.974
Los Pavitos vs Ciri Grande	4.4	2.3 - 6.5	<0.001
Santa Librada vs Ciri Grande	4.9	2.8 - 7.0	<0.001
Los Pavitos vs El Cacao	3.9	2.6 - 5.2	<0.001
Santa Librada vs El Cacao	4.4	3.0 - 5.7	<0.001
Santa Librada vs Los Pavitos	0.5	-0.5 - 1.4	0.639

613

614

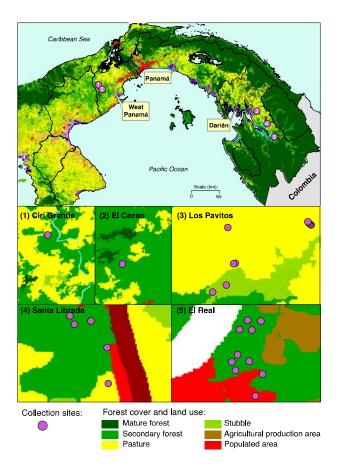
616 Table 4. Univariable and multivariable logistic regression. Associated factors

617 with MADV and VEEV seroprevalence.

Variables		MADV*		VEEV*		
Collection Site	OR	95% CI	P-value†	OR	95% CI	P-value†
El Real de Santa María	Ref.	-	-	Ref.	-	-
Los Pavitos	3	0.8 – 12.0	0.122	0.1	0.0 - 0.4	0.002
Santa Librada	0.6	0.1 - 6.4	0.708	0.1	0.0 - 0.6	0.017
El Cacao	-	-	-	1.5	0.7 - 3.2	0.323

Environme nt						
Secondary forest	Ref.	-	-	7.7	1.8 - 32.7	0.006
Pasture	5.2	1.5 - 18.2	0.01	Ref.	-	-
Genus						
Zygodonto mys	Ref.	-	-	Ref.	-	-
Melanomy s	2.3	0.3 - 21.3	0.460	-	-	-
Handleyo mys	5.0	0.5 - 49.7	0.170	2.0	0.2 - 18.4	0.524

Transandi nomys**	7.5	0.7 - 79.9	0.095	49.0	5.1 - 473.8	0.001
Oryzomys	9.0	1.9 - 43.2	0.006	1.0	0.1 - 8.5	0.985
Proechimy s	-	-	-	4.6	2.1 - 10.2	<0.001
Sigmodon	-	-	-	1.8	0.2 - 15.4	0.614


619

620 MADV = Madariaga virus; OR = odds ratio; VEEV = Venezuelan equine encephalitis virus.

621 *Based on plaque reduction neutralization test results.

622 ** Small simple size, n=5

623 \ddagger Results with P < 0.05 are shown in boldface type.

625

Figure 1. Study site and small mammal species. Study site map using the land use
 and land coverage (LULC) shapes ⁴⁶. Classification of categories using the 2012
 land use and land coverage shape. LULC categories were represented across all
 collection sites.

630

631

632

634

635 Figure 2. Alphavirus seropositivity in small mammals collected across study

sites in Panama. A) Number of sampled small mammal species by site and year. B)
Proportion of sampled small mammals by site and year. C) Number of small
mammals seropositive for Madariaga virus (MADV). D) Number of small mammals
seropositive for Venezuelan equine encephalitis virus (VEEV).

640

- 642
- 643
- 644