Table 7:
AD Phenotyping Performance on Balanced Testing Set in Experiment 1 BioClinical BERT)
| Model | Accuracy | Precision | Recall | F1 | NPV | Specificity |
|---|---|---|---|---|---|---|
| Logistic Regression | 0.7321 | 0.7241 | 0.7500 | 0.7368 | 0.7407 | 0.7500 |
| SVM | 0.7321 | 0.7826 | 0.6429 | 0.7059 | 0.6970 | 0.7857 |
| Decision Tree | 0.5893 | 0.6316 | 0.4286 | 0.5106 | 0.5676 | 0.7500 |
| Random Forest | 0.6964 | 0.7037 | 0.6786 | 0.6909 | 0.6897 | 0.8214 |
| KNN | 0.6786 | 0.7273 | 0.5714 | 0.6400 | 0.6471 | 0.7857 |
| XGBoost | 0.6071 | 0.6154 | 0.5714 | 0.5926 | 0.6000 | 0.8571 |
| AdaBoost | 0.6429 | 0.6538 | 0.6071 | 0.6296 | 0.6333 | 0.7857 |
| Stacking Classifier | 0.6964 | 0.7391 | 0.6071 | 0.6667 | 0.6667 | 0.7500 |