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The transmissible spongiform encephalopathies are a heterogeneous group of fatal neurodegenerative
disorders occurring in humans, mink, cats, and ruminant herbivores. The occurrence of novel transmissible
spongiform encephalopathies in cattle in the United Kingdom and Europe and in mule deer and elk in parts
of the United States has emphasized the need for reliable diagnostic tests with standardized reagents.
Postmortem diagnosis is performed by histologic examination of brain sections from affected animals. The
histopathological criteria for transmissible spongiform encephalopathies include gliosis, astrocytosis, neuro-
nal degeneration, and spongiform change. These lesions vary in intensity and anatomic location depending on
the host species and genetics, stage of disease, and infectious agent source. Diagnosis by histopathology alone
may be ambiguous in hosts with early cases of disease and impossible if the tissue is autolyzed. Deposition of
the prion protein (an abnormal isoform of a native cellular sialoglycoprotein) in the central nervous system is
a reliable marker for infection, and immunohistochemical detection of this marker is a useful adjunct to
histopathology. In the present paper we describe monoclonal antibody (MAb) F89/160.1.5, which reacts with
prion protein in tissues from sheep, cattle, mule deer, and elk with naturally occurring transmissible spon-
giform encephalopathies. This MAb recognizes a conserved epitope on the prion protein in formalin-fixed,
paraffin-embedded sections after hydrated autoclaving. MAb F89/160.1.5 will be useful in diagnostic and
pathogenesis studies of the transmissible spongiform encephalopathies in these ruminant species.

The transmissible spongiform encephalopathies (TSEs) are
a heterogeneous group of fatal neurodegenerative disorders
characterized by deposition of an abnormal isoform (prion
protein Sc [PrP-Sc]) of a normal cellular glycoprotein (PrP-C)
in neural tissue. PrP-Sc, either alone or in association with
another protein, may represent a novel transmissible agent, the
prion (28), which propagates by catalyzing the conversion of
PrP-C to PrP-Sc through a nucleation or polymerization event
(9, 14). Data in support of this “protein-only” hypothesis are
based largely on rodent models of the ovine TSE, scrapie, in
which PrP-Sc is the major component of infectious tissue ex-
tracts (3). PrP-C and PrP-Sc are derived from the same single-
copy host gene (25) but differ in their physicochemical qualities
including solubility in detergent and relative resistance to di-
gestion by proteinase K (PK) (22). PK hydrolysis removes only
the 60 to 70 residues at the amino terminus of the protein,
leaving two or three fragments representing the unglycosylated
peptide and one or more differentially glycosylated forms mi-

grating between 19 and 28 kDa. Expression of PrP-C by host
genes, by transgenes, or in engrafted tissue is required for the
development of clinical disease, PrP-Sc propagation, and brain
lesions (2, 4, 5, 7). Conversion of PrP-C to PrP-Sc has been
demonstrated in a cell-free system (19) and by direct contact of
recombinant PrP-C with PrP-Sc in frozen brain slices (1). The
mechanisms of neurotoxicity in the TSEs have not yet been
delineated. Morphologic and functional changes have been
reported in neurons, microglia, and astrocytes in vivo and in
vitro in response to infection or exposure to neurotoxic peptide
fragments of PrP (6, 11, 29, 30).

TSEs occur naturally in humans, mink, cats, and ruminant
herbivores. Sheep scrapie is endemic in many parts of the
world, and control efforts have been hampered by the long
incubation time and a lack of tools for early diagnosis. Bovine
spongiform encephalopathy (BSE), a novel TSE of cattle and
exotic ruminants (34), poses a more serious threat because of
its proposed causative relationship with a new variant of hu-
man Creutzfeldt-Jakob disease (8). Chronic wasting disease
(CWD) is a relatively rare disorder reported in mule deer,
white tail deer, and elk originating from a small area of the
western United States (39). Diagnosis of ruminant TSEs is
based on the appearance of neuronal vacuolation, spongiform
changes, gliosis, and astrocytosis (15, 35, 37, 39) in neural
tissue collected postmortem. The histological lesion profiles
vary in intensity and anatomic location among species and
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individuals (13, 15); diagnosis by histopathology alone may be
equivocal for hosts with early cases of disease or autolyzed
tissue (24). Detection of PrP-Sc by immunoassay of fixed tissue
is a useful confirmatory assay (10, 12, 23, 24, 33). With one
exception (20), monoclonal antibodies (MAbs) and polyclonal
antibodies recognize PrP-C as well as PrP-Sc and immunode-
tection protocols must include a process for the selective elim-
ination of the reactivity of PrP-C. PrP-C, which is sensitive to
formalin fixation and routine tissue processing procedures
(21), is usually not detectable in formalin-fixed tissue; epitopes
on the PrP-Sc in these samples are unmasked by heat, acid, or
enzyme pretreatment (12, 16, 18). The efficacies of the fixation
and pretreatment protocols in which PrP-C reactivity is elim-
inated and PrP-Sc staining is enhanced are monitored by stain-
ing tissues from TSE-affected and healthy animals in parallel.
Under these conditions, immunohistochemical analysis with
validated reagents will provide useful diagnostic tests. Rabbit
antisera reactive with ruminant PrP-Sc cannot be standardized
for widespread use due to limitations in its quantity and spec-
ificity. In this paper, we report the use of MAb F89/160.1.5 in
the immunohistochemical analysis of formalin-fixed central
nervous system samples from cattle, sheep, mule deer, and elk
with naturally occurring TSEs.

MATERIALS AND METHODS

Antigen preparation and MAb production. A synthetic peptide, representing
residues 146 to 159 of the bovine prion protein (17) (NH2-SRPLIHFGSDY
EDR-COOH), was coupled to maleimide-activated keyhole limpet hemocyanin
(Pierce Chemical Company). Five 6-week-old BALB/c mice were each inocu-
lated subcutaneously at two sites with a total of 10 mg of conjugated peptide
emulsified in 200 ml of Freund’s complete adjuvant. Two booster inoculations of
10 mg of conjugated peptide in 200 ml of Freund’s incomplete adjuvant were
administered at 14-day intervals. Three days before cell fusion, the mice were
immunized intravenously with 10 mg of conjugated peptide in phosphate-buff-
ered saline without adjuvant. Cell fusion and cloning by limiting dilution were
performed by following standard protocols (41). Supernatants from primary and
cloned hybridomas were screened by a recombinant ovine PrP-C enzyme-linked
immunosorbent assay (ELISA). Clone 1.5 from cell line F89/160 was selected
and was transferred to an artificial capillary cell culture system (CellMax; CellCo
Inc.) for the in vitro production of an MAb supernatant. The heavy-chain isotype
was identified by ELISA, and the MAb concentration was determined by immu-
nodiffusion.

Recombinant sheep PrP-C ELISA. Supernatants from primary and cloned
hybridomas were screened by ELISA with recombinant sheep PrP-C as the
antigen.

(i) Production of recombinant sheep PrP-C in Escherichia coli. Genomic DNA
was isolated from the peripheral blood mononuclear cells of a Suffolk sheep. The
PrP open reading frame was amplified with flanking primers (38) modified to
incorporate EcoRI restriction sites (forward primer, 59-ATCGAATTCAAGAA
GCGACCAAAAC-39; reverse primer, 59-ATCGAATTCAGACACCACCACT-
39). The 786-bp PCR product was digested with EcoRI, purified on agarose gels,
and ligated into the vector pMal-cRI. Transformation of E. coli DH5 was per-
formed by conventional techniques. Transformants were screened by PCR of
colony minipreps with the cloning primers. One positive clone (pMal-1) was
selected for large-scale fusion protein expression. The fusion product ShPrP–
maltose-binding protein (MBP) was isolated from bacterial lysates by affinity
chromatography on amylose resin columns and was eluted with 10 mM maltose.
Fractions were screened by Western immunoblotting with a rabbit antiserum to
PrP peptide NH2GQGGGTHNQWNKPSK (R2843) (26).

(ii) Recombinant ShPrP ELISA. Each well of Immulon 2 plates (Dynatech,
Chantilly, Va.) was coated with 6.25 mg of the recombinant ShPrP-MBP fusion
protein in 50 ml of 0.05 M carbonate buffer (pH 9.6), and the plates were
incubated overnight at 4°C. The plates were blocked with a 1:15 dilution of
commercially available milk-based blocker (Kirkegaard & Perry Laboratories,
Gaithersburg, Md.) for 1 h. Fifty microliters of antiserum or hybridoma super-
natant was incubated in each well for 30 min at room temperature. The plates
were developed with goat anti-mouse immunoglobulin G (IgG)-horseradish per-
oxidase (HRPO) and 2,29-azino-di[3-ethyl-benzthiazoline sulfonate (6)] (ABTS;
Kirkegaard & Perry Laboratories). The optical density was read at 405 nm.
Negative controls included supernatants from isotype-matched MAbs of irrele-
vant specificity or tissue culture medium adjusted to contain 15% fetal calf
serum. Positive control wells were incubated with rabbit anti-PrP peptide anti-
serum (R2843) and were developed with goat anti-rabbit IgG-HRPO and ABTS.

Positive wells had optical densities at 405 nm higher than 2 standard deviations
above the mean for four negative control wells.

Source of brain tissue from ruminant herbivores with naturally occurring
TSEs and from control herbivores. Brain tissues from 34 sheep with histopatho-
logical lesions of scrapie were tested for reactivity with MAb F89/160.1.5 by
immunohistochemical analysis. PrP-Sc had been detected immunohistochemi-
cally with a rabbit anti-mouse PrP polyclonal antiserum in 20 of these samples
and by Western immunoblotting in 6 of the 20 samples (23). Tissues from 3 sheep
with no histological lesions of scrapie and no PrP-Sc detectable by Western blot
analysis were used as negative controls, as were tissues from an additional 12
sheep with no clinical signs of scrapie and no histological lesions. These tissues
were provided by pathologists in veterinary medical colleges and state diagnostic
laboratories or by personnel from the Animal and Plant Health Inspection
Service, U.S. Department of Agriculture, Ames, Iowa.

Unstained brain sections from 19 cattle with BSE and 5 BSE-negative cattle
were provided by the Pathobiology Laboratory, National Veterinary Services
Laboratories, Animal and Plant Health Inspection Service, U.S. Department of
Agriculture. The source of paraffin blocks for these sections was Gerald Wells,
Ministry of Agriculture, Fisheries and Food, Central Veterinary Laboratory,
New Haw, Surrey, United Kingdom. In addition, brain sections from 15 U.S.-
born cattle raised at the National Animal Disease Center, Ames, Iowa, were
examined as negative control tissues.

Brain samples from 10 mule deer (Odocoileus hemionus hemionus) and 4 elk
(Cervus elaphus nelsoni) with naturally occurring CWD and from 15 mule deer
and 12 elk with no clinical or histological evidence of CWD were provided by
the Colorado State Diagnostic Laboratory and the Colorado Division of
Wildlife.

All TSE-affected animals had neuropil spongiosis, intraneuronal vacuoles, and
gliosis within selected brain stem and midbrain nuclei, lesions diagnostic of TSE
(15, 36, 40). The myelencephalon (brain stem) at the level of the obex of all
TSE-affected and normal control animals was examined by immunohistochem-
ical analysis. Other areas examined in some TSE-affected and healthy control
animals included the telencephalon (cerebral cortex), diencephalon (rostral mid-
brain) at the level of the thalamus, mesencephalon (caudal midbrain) at the level
of the rostral colliculus, and metencephalon (rostral brainstem) at the level of the
middle cerebellar peduncle.

Western immunoblot analysis. PrP-Sc was isolated from the brains of sheep by
differential centrifugation from a high-salt Sarkosyl buffer (31). Precipitated
proteins were digested with 10 mg of PK per ml for 1 h at 37°C and were analyzed
in aliquots equivalent to 125 mg of starting material on 15% polyacrylamide
minigels (Bio-Rad), followed by transfer to polyvinylidene difluoride membranes
(Schleicher & Schuell). The filters were developed with 3 mg of MAb F89/160.1.5
per ml or a control antibody of the same isotype, goat anti-mouse IgG–HRPO,
and a chemiluminescent substrate (Amersham). Filters were exposed to film
(Amersham HyperFilm) for 8 to 20 min with no increase in background chemi-
luminescence.

Immunohistochemistry. Brains were fixed in 10% buffered formalin by im-
mersion and were embedded in paraffin. One section from each block was
stained with hematoxylin and eosin for routine histopathology. Additional tissue
sections were mounted on positively charged glass slides (Probe-On Plus; Fisher
Scientific) for immunohistochemical analysis. Sections for immunohistochemical
analysis were deparaffinized and hydrated and then autoclaved in distilled water
at 121°C for 30 min (16) and allowed to cool. The slides were immunostained,
using capillary flow technology in an automated immunostainer (Code-On Slide
Stainer; Fisher Scientific) as described previously (17, 18), with a biotinylated
second antibody, streptavidin-alkaline phosphate complex (Biomeda Corp), and
an alkaline phosphatase substrate-chromagen (Vector Red; Vector Laborato-
ries). Additional sections of selected ovine samples were immunostained as
described above except that bound primary antibody was detected with biotin-
ylated horse anti-mouse IgG second antibody, avidin-biotin-HRPO complex
(ABC-peroxidase; Vector Laboratories), and a peroxidase substrate-chromagen
(AEC; Dako Corp). All slides were counterstained with Mayer’s hematoxylin.
Negative control procedures consisted of (i) substitution of MAb F89/160.1.5
with a similar concentration of an irrelevant control MAb of the same isotype
and (ii) incubation of MAb F89/160.1.5 with brain tissue from scrapie-free sheep,
cattle, or mule deer with no evidence of TSE as indicated by histopathology of
samples from all three species and Western immunoblot analysis of ovine tissues.

Epitope mapping and PrP gene sequences. An overlapping set of octamer
peptides spanning SRPLIHFGSDYEDR was synthesized on a membrane sup-
port with commercial reagents and by following the instructions of the manu-
facturer (SPOTs Test; Genosys Biotechnologies, The Woodlands, Tex.). The
ability of MAb F89/160.1.5 to bind to individual octamer peptides was deter-
mined visually following incubation with b-galactosidase-conjugated secondary
antibody and substrate.

Conservation of the amino acid sequence bound by MAb F89/160.1.5 was
demonstrated by direct DNA sequencing of PCR-amplified genomic DNA from
some of the TSE-affected ruminants examined by immunohistochemical analysis
(12 scrapie-affected sheep and 10 mule deer and 2 elk with CWD). The Colorado
Division of Wildlife provided additional samples from healthy mule deer and elk.
The open reading frame of the PrP gene from sheep was amplified by PCR as
described above, and both strands of the polymorphic region from codons 112 to
240 were sequenced by automated fluorescent dye-labelled dideoxy strand ter-
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mination (27). Mule deer and elk genomic DNAs were amplified with the
cervid-specific primer pair 59-CTGCAAGAAGCGACCAAAACC (forward
primer) and 59-CACAGGAGGGGAGGAGAAGAGGAT (reverse primer) un-
der standard conditions, except that the Mg21 concentration was increased to 2.5
mM. Both strands of the PCR products were sequenced with forward primer
59-GGCTATCCACCTCAGGGAG and reverse primer 59-TCACACTTGCCC
CCTCTTTGGT, which typically yielded sequence information on codons 106 to
224.

Mule deer and elk PrP gene sequences. Three alleles of the mule deer PrP
sequence were identified. Alleles 138S2 and 138N1 encode Ser and Asn at codon
138, respectively. Allele 138S1 differs from allele 138S2 by a silent mutation. Two
alleles of the elk PrP gene were found and encode an M3L substitution at codon
132.

Nucleotide sequence accession numbers. The GenBank nucleotide sequence
accession numbers of alleles 138S2, 138N1, and 138S1 and the two alleles of the
elk PrP gene are AF009180, U97331, AF009181, AF016227, and AF016228,
respectively.

RESULTS

Production of MAbs. Five mice were immunized with a
keyhole limpet hemocyanin-conjugated synthetic peptide pre-
viously demonstrated to generate polyclonal antisera reactive
with bovine and ovine PrP-C proteins in Western immunoblots
(17). Antisera and hybridoma supernatants were screened
by ELISA with a recombinant sheep PrP fusion protein as
the antigen. Cell line 160 produced antibodies reactive in
the ELISA and was selected for two rounds of cloning by
limiting dilution and propagated in an in vitro artificial
capillary cell culture production system. Pooled superna-
tants from cell line F89/160.1.5 (heavy-chain isotype immu-
noglobulin G1) had a concentration of 3.64 mg/ml. The
MAb from this pool was further characterized by epitope
mapping, Western immunoblot analysis, and immunohisto-
chemical analysis.

Epitope mapping and sequence determination. The epitope
recognized by MAb F89/160.1.5 was mapped with a panel of
overlapping peptides (Table 1) immobilized on a derivatized
cellulose membrane. Sequential deletion of amino-terminal
residues S, R, P, and L (peptides 2, 3, 4, and 5, respectively) did
not eliminate antibody binding. Peptide 6, lacking the I resi-
due, and peptides 7 and 8, lacking IH and IHF, respectively,
failed to bind to MAb F89/160.1.5. Therefore, only the se-
quence IHFG is common to all peptides bound by the MAb.
This sequence is conserved in the deduced amino acid se-
quences reported to date for cattle, sheep, mule deer, and elk
PrP in the samples from the present study for which frozen
tissue was available (tissue from 12 sheep, 10 mule deer, and 2
elk) and for a larger sample of CWD-affected mule deer (n 5
26). Samples with amino acid polymorphisms outside the an-
tibody binding site (ovine codon 112, A to V; mule deer codon
138, N to S) showed no difference in the intensity or distribu-
tion of immunostaining with MAb F89/160.1.5.

Western immunoblotting reactivity with PrP-Sc from TSE-
affected sheep. MAb F89/160.1.5 was generated by inoculation

into mice with a synthetic peptide and was selected by screen-
ing the MAb against a recombinant form of PrP-C. To deter-
mine whether MAb F89/160.1.5 binds to the disease-specific,
protease-resistant fragments (PrP-Sc), brain extracts from
sheep with natural scrapie and from healthy sheep were
treated with PK, which hydrolyzes PrP-C and which leaves the
hallmark multiple peptide bands of PK-resistant PrP-Sc (22).
PK-treated extracts from scrapie-affected sheep typically
showed two or three peptide bands with apparent molecular
weights of between 19,000 and 28,000 (Fig. 1, lane 1). No bands
were detected in extracts from healthy sheep brain (Fig. 1, lane
2) or when an isotype-matched control MAb was used to probe
the Western immunoblots (data not shown).

Immunohistochemical analysis of tissues from healthy and
TSE-affected ruminants. Positive immunostaining by MAb
F89/160.1.5 immunohistochemical analysis was detected for
the brains of all TSE-affected animals examined (36 sheep, 19
cattle, 10 mule deer, and 4 elk); no immunostaining was de-
tected for the brains of any healthy control animals (15 sheep,
15 mule deer, 12 elk, and 20 cattle). Examples of positive and
negative immunostaining are shown in Fig. 2a to d. The pattern
of immunoreactivity for TSE-affected animals was basically
similar for all animals. PrP-Sc immunoreactivity was present in
the brain stem and midbrain from the level of the hypothala-
mus rostrally to the obex caudally. Immunostaining was con-
centrated within specific neurologic nuclei. At low magnifica-
tion, most immunostaining consisted of random dense
granules, globules, and plaques within the gray matter neuropil
admixed with spongiform lesions (Fig. 2a). The great majority
of PrP-Sc immunoreactivity aggregated adjacent to or sur-
rounding glial cell nuclei (Fig. 2b) and sometimes accumulated
in a branching pattern around glial cells identified histologi-
cally as microglia (small, oval to angular hyperchromatic nuclei
without a recognizable cytoplasm) (Fig. 2b) (32). There also
was rim-like perivascular and subependymal immunostaining
reminiscent of astroglial foot processes (Fig. 2c). The PrP-Sc
immunoreactivities of neurons consisted of punctate immuno-
staining within neuronal perikarya (Fig. 2c) or distinct rimming
around the periphery of neuronal perikarya (Fig. 2b) or
around the peripheral membranes of intraneuronal vacuoles
(Fig. 2a). Both neurons with and without intraneuronal vacu-
oles had PrP-Sc immunoreactivity.

FIG. 1. Western immunoblot, stained with MAb F89/160.1.5, of PK-treated
preparation from brain of a sheep with scrapie, showing PK-resistant glycopep-
tides characteristic of PrP-Sc (lane 1). No PrP-Sc was demonstrated in brain
collected from a sheep with no known exposure to scrapie (lane 2) processed
under identical conditions. Bars in the left lane correspond to molecular size
markers (in kilodaltons).

TABLE 1. Reactivity of MAb F89/160.1.5 with overlapping peptide
octamers of the immunogen SRPLIHFGSDYEDR

Peptide no. Octameric peptide sequence Reactivity with MAb
F89/160.1.5

1 SRPLIHFG 1
2 RPLIHFGS 1
3 PLIHFGSD 1
4 LIHFGSDY 1
5 IHFGSDYE 1
6 HFGSDYED 2
7 FGSDYEDR 2
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Sections from comparable regions of TSE-affected animals
and healthy control animals were prepared and immuno-
stained in parallel. Negative control tissues consisted of brain
tissue from animals with no histologic evidence of TSE. These
negative samples showed no reactivity when they were immu-
nostained with MAb F89/160.1.5 (Fig. 2d). In addition, brain

sections from 34 scrapie-affected sheep and 19 BSE-positive
cattle incubated with an isotype control MAb rather than MAb
F89/160.1.5 failed to show immunostaining. No antibody bind-
ing was observed in formalin-fixed tissues from scrapie-affected
sheep immunostained with MAb F89/160.1.5 without pretreat-
ment by hydrated autoclaving.

FIG. 2. MAb F89/160.1.5 immunohistochemical analysis assay of the brain stem of a scrapie-affected sheep (a to c) and negative control scrapie-free sheep (d). (a)
PrP-Sc antigen accumulation (red) within a brain stem nucleus with spongiform lesions consisting of neuropil spongiosis (small arrowheads) and intraneuronal vacuoles
(large arrowheads). Immunoreactivity comprising granular and globular foci randomly within the neuropil or around the periphery of intraneuronal vacuoles (large
arrowheads) is shown. ABC immunoperoxidase counterstained with Mayer’s hematoxylin was used. Bar, 60 mm. (b) PrP-Sc antigen accumulation (red) within a brain
stem nucleus. Immunoreactivity comprising linear rimming around neurons (large arrowhead), plaques in the neuropil (medium arrowheads), and aggregations around
glial cells with small hyperchromatic nuclei consistent with microglia (small arrowheads) is shown. ABC immunoperoxidase counterstained with Mayer’s hematoxylin
was used. Bar, 15 mm. (c) PrP-Sc antigen accumulation (red) within a brain stem nucleus. Immunoreactivity comprising linear rimming around blood vessels (large
arrowheads), plaques in the neuropil (medium arrowhead), and punctate granules within soma of neurons without intraneuronal vacuoles (small arrowhead) is shown.
ABC immunoperoxidase counterstained with Mayer’s hematoxylin was used. Bar, 15 mm. (d) No PrP-Sc antigen accumulation within an anatomically matched brain
stem nucleus of a scrapie-free sheep (negative control tissue). Similar results were obtained with brain tissue from a scrapie-affected sheep immunostained with
irrelevant isotype-matched MAb. ABC immunoperoxidase counterstained with Mayer’s hematoxylin was used. Bar, 15 mm.
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DISCUSSION

PrP-Sc is a marker protein for TSEs, and detection of PrP-Sc
by immunohistochemical analysis is a useful adjunct to histo-
pathology for the diagnosis of these diseases in ruminant ani-
mals. MAbs reactive with conserved epitopes on ovine, bovine,
and cervid PrP-Sc proteins will be useful reagents for standard-
ized diagnostic testing and comparative pathology studies. We
immunized mice with a peptide representing an immunogenic
region of the bovine PrP protein and screened the resulting
MAbs for their reactivities to recombinant sheep PrP-C pro-
teins to select cross-reacting antibodies. One of these MAbs,
MAb F89/160.1.5, was shown to react with PrP-Sc by Western
immunoblotting of PK-digested preparations from the brains
of sheep with natural scrapie. The MAb was also shown to be
reactive with PrP-Sc in formalin-fixed tissues from sheep, cat-
tle, mule deer, and elk under tissue fixation and pretreatment
conditions which eliminated the reactivity of PrP-C. The im-
munohistochemical staining pattern of MAb F89/160.1.5 was
similar to the patterns described for the brains of scrapie-
affected sheep and obtained with polyclonal rabbit antisera to
ovine or mouse PrP (23, 24). The present data also demon-
strate the utility of MAb F89/160.1.5 in the diagnosis of TSE
from brain tissues of cattle and wild ruminants. We are char-
acterizing the accumulation of PrP-Sc in extraneural tissues
using MAb F89/160.1.5 and other MAbs to ovine PrP to de-
termine the utility of antigen-based assays for antemortem and
preclinical diagnosis of scrapie, CWD, and BSE. MAb reagents
to conserved epitopes on PrP-Sc or cocktails of MAbs to mul-
tiple variable epitopes provide specific, reliable, and flexible
tools for the accurate diagnosis of TSE in mammals.
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