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Abstract

This paper presents a vision-based Human-Machine Interface (HMI) for an assistive exoskeleton
glove, designed to incorporate force planning capabilities. While Electroencephalogram (EEG) and
Electromyography (EMG)-based HMIs allow direct grasp force planning via user signals, voice and
vision-based HMIs face limitations. In particular, two primary force planning methods encounter issues
in these HMIs. First, traditional force optimization struggles with unfamiliar objects due to lack of
object information. Second, the slip-grasp method faces a high failure rate due to inadequate initial
grasp force. To address these challenges, this paper introduces a vision-based HMI to estimate the
initial grasp forces of the target object. The initial grasp force estimation is performed based on the
size and surface material of the target object. The experimental results demonstrate a grasp success
rate of 87. 5%, marking significant improvements over the slip-grasp method (71.9%).

Keywords: Human Machine Interface, Exoskeleton Glove Force Planning, Material Classification.

1 Introduction

Exoskeleton gloves are used to restore the grasp-
ing ability to perform Activities of Daily Living
(ADLs) for patients with brachial plexus Injuries
(BPI) (Xu et al., 2020; Jian et al., 2018; Ge et al.,
2020) or for post-stroke rehabilitation (Rahman
and Al-Jumaily, 2012; Stilli et al., 2018; Sun et al.,
2021; Iqbal and Baizid, 2015; Bauer et al., 2021).
BPI is usually caused by motorcycle or snowmo-
bile accidents that damage the neural system of
the hand, resulting in lost mobility and sensation

First author and second author contribute equally to this work.

(Midha, 1997). Stroke, caused by disruption of
blood flow to the brain, can damage the area of
the brain that controls muscle movement, result-
ing in reduced mobility and sensation in the hand
(Hunter and Crome, 2002). In both cases men-
tioned above, an exoskeleton glove is a promising
solution to improve the quality of life for patients
with hand disabilities.

In recent decades, numerous wearable robotic
rehabilitation exoskeleton gloves have been devel-
oped to assist patients with hand disabilities (Xu
et al., 2020; Jian et al., 2018; Ge et al., 2020;
Rahman and Al-Jumaily, 2012; Stilli et al., 2018;
Sun et al., 2021; Iqbal and Baizid, 2015; Bauer
et al., 2021; Ma and Ben-tzvi, 2015; Ma and Ben-
Tzvi, 2015; Lee and Bae, 2015; Popov et al., 2017;
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Refour et al., 2019). Unlike robotic hands and
grippers, which require a full automated grasping
system, exoskeleton gloves require a semi-human
guided control system. Patients who wear the
exoskeleton glove will manually aim at the object
during grasping. Also, the exoskeleton glove can
only provide a limited number of degrees of free-
dom in terms of mobility, thereby limiting the
types of grasps it can exhibit. Thus, human-
machine interfaces (HMIs) for robotic exoskeleton
gloves only need to determine the grasp type and
force.

Various HMIs have been developed to con-
trol exoskeletons, including Electroencephalogram
(EEG), Electromyography (EMG), vision, and
voice-based, with each HMI having its advan-
tages and disadvantages. An EMG-based HMI
is the most commonly used method. It can be
used to provide real-time motion and force plan-
ning directly from the wearer through EMG sen-
sors placed on the forearm (Bronks and Brown,
1987; Artemiadis and Kyriakopoulos, 2008). Most
researchers only used EMG sensors to detect ges-
tures due to their good wearability (Chen et al.,
2021; Cheon et al., 2020; Li et al., 2021; Yun
et al., 2017; Lalitharatne et al., 2013; Huang
et al., 2021). However, patients with paralysis of
the hand have significantly weaker muscle EMG
signals than normal people (Zhou et al., 2021).
Therefore, EMG-based approaches are not suit-
able for patients with extremely weak or no hand
function. The researchers designed multiple other
HMIs to control the exoskeleton gloves. EEG-
based HMI can provide a force planning feature
(Paek et al., 2015) similar to the EMG approach,
but suffers from wearability issues of the EEG
sensor (Araujo et al., 2021; Li et al., 2019). Vision-
based HMI requires minimal user action, but is
low in precision and lacks initial grasp force plan-
ning ability (Kim et al., 2019; Pham et al., 2015;
Ko et al., 2023; Calandra et al., 2018; Yamaguchi
and Atkeson, 2017; Takamuku and Gomi, 2019).
Voice-based HMI is known for its outstanding high
accuracy, but lacks force planning ability (Guo
et al., 2020; Wang et al., 2019; Kim et al., 2020).
Force planning is critical for exoskeleton HMIs and
can only be provided by the user through EMG-
based HMIs. The lack of force planning ability
will result in a slow and unstable grasp. Provid-
ing force planning on non-EMG-based HMIs has

Fig. 1 The assistive exoskeleton glove used in this
research. This assistive exoskeleton glove is designed for
patients with BPI. (A) Overview of the exoskeleton glove.
(B) The user grasps a water bottle using voice-based HMI.
(C) The user grasps a paper box with a tip grasp. (D) The
user grasps a plastic pen with a tripod grasp. (E) The user
grasps a ceramic bowl with a lateral grasp. (F) The user
grasps a plastic ball with a sphere grasp. (G) The user
grasps a plastic marker pen with a tripod grasp. (H) The
user grasps a plastic bottle with a cylinder grasp.

become one of the most challenging problems in
exoskeleton glove control.

In this research, we focus on solving the afore-
mentioned force planning issue by adding a vision-
based HMI to a voice-controlled exoskeleton glove.
Computer vision techniques are used to estimate
the size, weight, and surface material of the target
object. The estimated weight and size information
is used to estimate the initial grasp force.

The main contributions of this study are sum-
marized as follows. Initially, transfer learning was
applied to state-of-the-art house interior surface
materials detection techniques, adapting them to
effectively identify materials on common objects
in constrained contexts. Subsequently, a novel
computer vision based HMI system was created,
specifically tailored for assistive robotic exoskele-
tons. This inventive system tackles challenges in
force planning by precisely estimating the dimen-
sions, weight, and surface material of the target
object. Lastly, grasp experiments were employed
to showcase the effectiveness of the vision-based
HMI in approximating the initial grasp force. The
outcomes revealed a notably elevated success rate
in grasping, surpassing that of the traditional
slip-grasp method.
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1.1 Exoskeleton Glove Hardware

This research employs an assistive exoskeleton
glove tailored for patients with BPI (Xu et al.,
2020, 2023). As individuals with BPI lack control
over their muscles, this exoskeleton glove serves
as a replacement for hand function. Key features
of the exoskeleton glove include the utilization of
Series Elastic Actuators (SEAs) alongside data-
driven control and calibration for precise force
measurement and control (Guo et al., 2021). The
exoskeleton glove incorporates 7 SEAs to man-
age finger extension and contraction, thumb joint
rotation, and wrist bending motion, enabling it
to perform five rudimentary grasp types: cylin-
der grasp, sphere grasp, tip grasp, tripod grasp,
and lateral grasp (as shown in Fig. 1). Each grasp
type has been specifically designed to handle cer-
tain types of objects, as illustrated in Fig. 3.
For instance, the cylinder grasp is well-suited for
grasping water bottles and cups, while the tip
grasp is ideal for handling spoons and forks.

The exoskeleton’s operation can be outlined
in three steps. First, the user interacts with
the exoskeleton through a voice-based Human-
Machine Interface (HMI) to instruct it on the
desired grasp type (Guo et al., 2020, 2022). Sec-
ond, the user, having a functional arm, selects an
appropriate grasp position based on the object’s
location and places the exoskeleton accordingly.
Third, force planning is carried out using a slip-
grasp force planning method to adjust the grasp
force (Guo et al., 2022; Xu et al., 2022). How-
ever, this method encounters challenges due to
sensor limitations, as discussed in the related
work section (Sec. 2.1). To address this issue, a
vision-based HMI is proposed, which estimates the
object’s size and weight, thus aiding in the force
planning of the exoskeleton.

2 Related Work

2.1 Limitations of Force Planning

Methods used for Exoskeleton

Gloves

Previous research proposed several methods to
solve the force planning problem in non-EMG-
based HMIs. However, force planning strategies
suffer from two problems, as described below.

First, exoskeleton gloves need to grasp objects
with unknown shapes, surface material, and
weight. Nevertheless, all force planning algorithms
require the setting of equations with precise grasp
position, friction coefficient, and weight to calcu-
late the optimal contact forces. Vanteddu et al.
developed two methods to satisfy two of the con-
ditions required for a stable grasp. These include
deformation prevention of soft objects and main-
taining force and moment equilibrium of the
objects being grasped. Like exoskeleton gloves,
some robotic hands and grippers also face the
same problem. Cheng and Orin used the compact-
dual linear programming method to find the force
distribution for a robotic grasping system called
DIGITs. Youshen Xia et al. proposed using recur-
rent neural networks for grasp force optimization
for multi-fingered robotic hands. Xiong and Xiong
used an algorithm based on an artificial neu-
ral network to determine the joint torques that
must be applied to a multifingered robotic hand
required for a successful grasp. However, during
normal usage of assistive exoskeleton gloves, the
grasping position, object weight, surface material,
and object size are almost impossible to determine
accurately, thus making the above algorithms
difficult to use.

Second, exoskeleton gloves need to predict the
grasp force before lifting the object. Previous
researchers designed a slip-grasp method to find
the appropriate force through trial and error. Lee
et al. proposed a slip detection method using a
customized pressure sensor to measure slippage
at the fingertips of the SAFER exoskeleton glove.
A hybrid slip detection method for an exoskele-
ton glove was proposed by Xu et al.. This method
utilizes both Serial Elastic Actuators (SEA) and
pressure sensors to enhance its accuracy. The
force controller adds force to the fingertips if the
object slips. However, the reinforcement process
typically results in a tedious grasping process in
which the user must continue to find the optimal
grasp force through failures, which is not practical
for exoskeleton glove users. Moreover, slip detec-
tion on a robotic exoskeleton glove differs from
a robotic hand or gripper due to space and size
limitations. Previous researchers have designed
multiple slip detection sensors for robotic hands
and grippers and have achieved good results in
the slip-grasp force planning method (Romeo and
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Zollo, 2020; James and Lepora, 2020). However,
there is not enough space for larger and more
accurate slip detection sensors to be fitted at the
fingertips in an exoskeleton glove application. The
limitation of sensors makes the slip-grasp method
suffer from accuracy issues.

2.2 Vision-Based Force Planning on

Exoskeleton Gloves

Researchers have previously performed extensive
research on vision-based force planning using
robotic grippers. Pham et al. used a computer
vision system to estimate the pose of the hand and
object to assist in force planning. However, their
research assumed that the weight of the object
is known. Similarly, most vision-based grasping
methods focused on position estimation to assist
force planning (Yu et al., 2013; Liu et al., 2019;
Zhang et al., 2021). Ko et al. and Takamuku
and Gomi used the RGB camera to predict the
grasp force based on the motion of the object.
Their methods are used mainly to improve the
synchronicity between the grasp and load forces.
However, their methods do not provide an initial
prediction of the grasp force. Calandra et al. and
Yamaguchi and Atkeson designed vision-based
reinforcement learning methods to predict the
optimal initial grasp force. However, their method
shares performance issues similar to the slip detec-
tion methods. Initial estimation of the grasping
force remains an ongoing research challenge.

Humans can grasp and lift an object without
knowing its exact weight, surface material, and
size. Studies have shown that even with restricted
haptic feedback, humans can still perform a stable
grasp based on visual input (Stone and Gonza-
lez, 2015). Humans can use vision to estimate the
grasp force. If the object’s actual size, weight, and
surface friction coefficient match the estimation,
the predicted force will be close to the optimal
grasp force. Haptic feedback is used to detect
slippage when the estimated force is inaccurate.
Humans can adjust the grasp force according to
the haptic feedback.

Humans can perform accurate force planning
even with restricted haptic feedback. Researchers
working on the development of exoskeletons have
attempted to capture these biological signals from
force planning using EMG or EEG methods to
assist force planning (Bronks and Brown, 1987;

Artemiadis and Kyriakopoulos, 2008). However,
these methods require conversion of the user’s
intention to biological signals to create control
outputs, which suffer from low signal-to-noise
ratios, significant processing time, and long reac-
tion times. This research is inspired by the human
force planning method. Instead of capturing the
EEG or EMG signal, this paper proposes a com-
puter vision-based HMI that mimics a human
grasping procedure to directly estimate the size,
weight, and surface material of an object and can
calculate the initial grasp force based on static
force analysis.

2.3 Material Recognition in the

Wild and MINC-2500 Dataset

Surface material detection using computer vision
is the key to solving the aforementioned force
planning issues. Weight can be estimated based
on the surface material, and the surface friction
coefficient can be directly acquired. The state-of-
the-art material detection datatset is MINC-2500.
Bell et al. built the MINC dataset with images
of human-labeled material in the real world and
proposed a deep learning-based material segmen-
tation method. This method uses a convolution
neural network to generate a probability map
and the conditional random field (CRF) algorithm
to calculate a label for each pixel. The advan-
tage of this method is that it does not require
a pixel-wise label, which is ideal for applications
with limited segmented data. MINC-2500 is a sub-
set of the MINC dataset, which contains 57,500
image patches for 23 different types of materials.
However, the MINC-2500 dataset mainly contains
long-shot (LS) or extra-long-shot (ELS) interior
design images, which are taken from a distance
and contain many different objects in context.
This research focuses on detecting the surface
material of objects in images that are taken in a
close-up (CU) or medium-close-up (MCU) view.
Transfer learning was performed to transfer the
learned weight from MINC-2500 to the collected
dataset to improve the accuracy of material classi-
fication. The setup of the neural network and the
experimental results are discussed in Sec. 5 and
Sec. 8.4.
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Fig. 2 Overview of vision-based initial grasp force prediction procedure.

3 HMI System Overview

The vision-based force planning method is
designed to grasp an object without the need for
detailed measurements in advance. The goal is to
find the initial grasp force by estimating the size,
shape, weight, and surface material of the object
to be grasped.

This vision-based initial grasp force estima-
tion method uses voice input from a microphone
to initiate grasping and releasing (input voice
command: “grasp” and “release”). Such a voice
command system is proposed by Guo et al. (2022).
After receiving a grasp command, the camera
embedded in the glasses will start to take pictures
and perform the following three steps on the image
to calculate the initial grasp force.

(1) The input images are sent to an object
detector trained on the Common Objects in Con-
text (COCO) dataset. This step will help the
vision-based force planning method to under-
stand the environment by detecting all objects
in the view and extracting the target object
using an ARUCO marker on the exoskeleton glove
(ARUCO marker is shown in Fig. 2). In this step,
the target object category and size are acquired
and the grasp type is determined according to the
target object’s category.

(2) The surface material of the target object is
acquired by performing a material classification or
material segmentation on the image patch of the
target object. Given the object’s size and surface
material, the object’s weight can be estimated.

(3) The initial grasp force is calculated based
on the spatial location of the exoskeleton, the
surface material of the target object, and the
weight.

The initial grasp force is then sent to the
exoskeleton. The SEAs are FSRs on the exoskele-
ton glove will detect slip while applying the
predicted initial grasp force, and the slip-grasp
method will adjust the grasp force as needed.
The structure of the vision-based force planning
method is shown in Fig. 2. Sample images for
the exoskeleton grasping environment, object cat-
egory, and object material are shown in Fig.
3.

3.1 HMI System Characteristic

The proposed HMI has the following characteris-
tics:

(1) The vision HMI is designed specifically for
human-guided assistive robotic exoskeleton gloves.
In this application, the location where the object
is located in reference to the location of the glove
is controlled by the user, and the vision HMI can
generate initial grasp force to help the exoskeleton
grasp target objects.

(2) The initial grasp force generated by the
HMI is not the optimal grasp force. For exam-
ple, a non-transparent plastic cup full of water
and an empty plastic cup shows no difference in
the proposed vision-based estimation system. The
estimation system can set a range for the initial
grasp force that is not too far from the optimal
grasp force to help the system grasp the object.
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Fig. 3 Sample images for the exoskeleton grasping envi-
ronment, object category, and object material.

(3) The vision HMI can generalize to detect
objects only in the MS COCO dataset because the
object detector is trained using MS COCO. Mate-
rial detection can generalize to detect the surface
material of different objects but may be limited
to contexts. This system cannot detect the new
material category without training.

4 Object Detection

There are two common approaches for detecting
and locating an object in an image: object detec-
tion (Gao et al., 2020; Chen et al., 2019; Girshick,
2015; Tan et al., 2020) or instance object seg-
mentation (Liang et al., 2018; Siddique et al.,
2021). Object detection requires image annota-
tion using a bounding box during training. The
detection result for object detection is a bounding
box that contains background information. Thus,
object detection is faster during training and
inference. Instance object segmentation requires
pixel-wise image annotation for training, and the
detection result consists of pixels of the object
without backgrounds. Object segmentation can
better understand the object’s shape, but is slower
during training and inference than object detec-
tion. In this research, object detection was used
over object segmentation for two reasons.

(1) Object detection is faster than object seg-
mentation during inference proccess. Two-stage
object segmentation will first detect the object in
a bounding box and then extract the object pixels
from the background. Single-stage object segmen-
tation uses a decoder network to find the object
and an encoder to propagate the object’s pixels.
Both methods mentioned above need additional
calculations during inference, thus being slower
than object detection using bounding boxes. The
need for speed in this application necessitated the
use of object detection instead of object segmen-
tation.

(2) Object detection techniques have better
data availability. Object detection does not neces-
sitate pixel-level labeling, and this study may
address the difficulty of grasping items that are
not included in publicly accessible datasets. To
detect uncommon objects in a small-scale project,
transfer learning or fine-tuning on a public dataset
is usually employed. Therefore, object detection
techniques are utilized in this research as they
require less annotation and will have better data
availability.

The state-of-the-art object detection methods
are based on Single Shot Detector (SSD) (Chen
et al., 2019), Faster R-CNN (Girshick, 2015), Effi-
cientDet (Tan et al., 2020), and YOLOV4 (Gao
et al., 2020). Researchers have previously tested
these methods on the COCO dataset (Lin et al.,
2014). The inference speed and Mean Average
Precision (mAP) at 50% Intersection over Union
(IOU) of seven different object detection meth-
ods are compared on the collected validation
dataset in order to select the most suitable object
detection method. Sample images of the collected
validation dataset are shown in Fig. 3. The exper-
imental results are shown in Fig. 8. According
to the experiments, YOLOV4 was selected as the
object detection method used in this research;
it better balanced speed and mAP than other
methods.

4.1 Size Estimation for Target

Object

The data output from object detection will be an
object category vector c, an object bounding box
vector B, and an object center vector S. The 𝑛𝑡ℎ

object detected in an image belongs to category
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𝑛𝑐.

c = [1𝑐,2 𝑐, ...,𝑛 𝑐] (1)

For the 𝑛𝑡ℎ object detected in an image, the
object’s bounding box nb is the combination of the
upper left corner npul = (𝑛𝑥𝑢𝑙 ,

𝑛 𝑦𝑢𝑙) and the lower
right corner nplr = (𝑛𝑥𝑙𝑟 ,

𝑛 𝑦𝑙𝑟 ).

B = [1b, 2b, ..., nb]

= [(1𝑥𝑢𝑙 ,
1 𝑦𝑢𝑙 ,

1 𝑥𝑙𝑟 ,
1 𝑦𝑙𝑟 ), ..., (

𝑛𝑥𝑢𝑙 ,
𝑛 𝑦𝑢𝑙 ,

𝑛 𝑥𝑙𝑟 ,
𝑛 𝑦𝑙𝑟 )]

(2)

For the 𝑛𝑡ℎ object detected in an image, the
center of the pixel of the detected object is located
at ns calculated from the bounding box nb.

S = [1s, 2s, ..., ns]

= [(1𝑥𝑠,
1 𝑦𝑠), ..., (

𝑛𝑥𝑠,
𝑛 𝑦𝑠)]

(3)

The target object is selected on the basis of
the distance to the ARUCO marker located on
the exoskeleton glove. The output of the ARUCO
Application Programming Interface (API) con-
tains the center coordinate of the marker: sm =

(𝑥𝑚, 𝑦𝑚).
The exoskeleton glove used in this research is

right-handed with the ARUCO marker placed on
the index finger linkage (see Fig. 3). The object
to be grasped is likely to be on the lower right
of the ARUCO marker. A weighted distance func-
tion was customized to find the distance between
the ARUCO marker center coordinate sm and the
detected 𝑛𝑡ℎ object center ns:

𝑛𝑑 = 𝑤0 (𝑥𝑚 −𝑛 𝑥𝑠) + 𝑤1 (
𝑛𝑦𝑠 − 𝑦𝑚)

+
√︁

(𝑥𝑚 −𝑛 𝑥𝑠)2 + (𝑦𝑚 −𝑛 𝑦𝑠)2
(4)

where, 𝑛𝑑 is the 𝑛𝑡ℎ object distance between the
object center and the ARUCO marker center. 𝑤0

is the weight that serves as the penalty for the
object located on the right of the marker, and 𝑤1

is the weight that serves as the penalty for the
object located above the marker. (𝑛𝑥𝑠,

𝑛 𝑦𝑠) is the
coordinate of the center of the object from the
vector of the center of the object ns. The grasped
object’s index 𝑖 can be found by minimizing the
customized distance function 𝑛𝑑:

𝑖𝑑 = 𝑚𝑖𝑛(1𝑑,2 𝑑, ...,𝑛 𝑑) (5)

Fig. 4 Illustration of the camera, marker, and pixel coor-
dinates.

The category of the target object is 𝑖𝑐, the bound-
ing box is ib, and the center coordinate is is.

4.2 Finding the Target Object Size

using ARUCO Marker

Theoretically, it is not possible to obtain the exact
size of an object without using a stereoscopic cam-
era. However, it was assumed that the ARUCO
marker and the target object have the same dis-
tance from the camera. Thus, the size of the target
object can be estimated on the basis of the size of
the ARUCO marker.

The marker width and height are 2 centime-
ters. The coordinates are explained in Fig. 4. The
coordinates of the detected object’s bounding box
ib can be transferred from pixel coordinates to
camera coordinates, and then to marker coordi-
nates. The Euclidean distance between the points
e and f in the marker coordinates is the length
of the object (𝑤) in centimeters (the points are
shown in Fig. 4). The Euclidean distance between
points f and g in the marker coordinates is the
height of the object (ℎ) in centimeters.

The following method can be used to convert
points from pixel coordinates to marker coordi-
nates. The ARUCO API outputs the rotation
vector (r) in the axis-angle representation, and the
center coordinate (t) of the marker in the camera
coordinates. To transfer a point pp = (𝑢, 𝑣) from
the pixel coordinates to the camera coordinates
pc = (𝑥𝑐, 𝑦𝑐, 𝑧𝑐), the following equations are used:
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𝑥𝑐 =

𝑢 − 𝑠𝑥

𝑓𝑥
𝑑𝑧 (6)

𝑦𝑐 =

𝑣 − 𝑠𝑦

𝑓𝑦
𝑑𝑧 (7)

where, 𝑑𝑧 is the distance from the marker to the
camera in the camera coordinates. 𝑠𝑥 and 𝑠𝑦 are
the coordinates of the principle point in the cam-
era coordinates (640 and 360 in this application).
𝑓𝑥 and 𝑓𝑦 are focal lengths of 𝑥 and 𝑦 axes in pixels
(1184 and 1249 in this application).

To transfer a point pc = (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) from the
camera coordinate to the marker coordinate pm =

(𝑥𝑚, 𝑦𝑚, 𝑧𝑚), the following equations are used:

R = 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒𝑠(r) (8)

pm = R𝑇 (pc − t) (9)

where, Rodrigues formula was used to build a
transformation matrix R from the axis-angle rep-
resentation rotation vector r. t is the marker
coordinate center represented in the camera coor-
dinates.

5 Material Classification

There are two common approaches to detect the
surface material of an object, including image
classification based on center pixels and seman-
tic segmentation on the entire image (Bell et al.,
2015; Zhang et al., 2017; Zhao et al., 2017). The
most widely used material classification datasets
are the Flicker Material Dataset (FMD), MINC,
and open surface datasets. There are only limited
pixel-wise annotated images provided, and most
of these annotated images are furniture from the
interior of a house, which is very different from
this application. Due to the limited availability
of annotated data, a pixel-wise supervised clas-
sification method such as UNet (Siddique et al.,
2021; Zhao et al., 2017) cannot be used. For this
application, the center pixel classification method
was used to classify the material of a given object
image, and the conditional random field (CRF)
(Krähenbühl and Koltun, 2011) method was used
for segmentation. Material segmentation is used
to visualize the classification result.

Since this application focuses on grasping daily
used objects as shown in Fig. 3, the number of
classes in MINC-2500 was reduced from 23 to 5,

which include ceramic, metal, glass, plastic, and
wood.

5.1 Material Classification

Challenges

Initially, the deep learning material classifica-
tion method was trained and tested on MINC-
2500 and achieved good accuracy. The origi-
nal MINC dataset material patch classification
was trained on VGG-16, AlexNet, and Incep-
tionV1 in 2014. The VGG-16 architecture was
used as a performance baseline to test the
new networks, which achieved high classifica-
tion accuracy in the ImageNet challenge: Incep-
tionResNetV2 and ResNet152V2. Moreover, net-
works that achieve similar classification accuracy
were tested, but have faster inference speeds:
InceptionV3, ResNet50V2, and MobileNetV2. In
addition to different network architectures, the
NetVLAD pooling method was tested, which is a
clustering-based pooling method commonly used
in speaker verification, face detection, and place
recognition (Arandjelovic et al., 2016).

The weight of the model is transferred from
ImageNet, and the training is terminated if the
validation loss does not decrease for ten consec-
utive epochs. The training result was tested on
a small data set similar to the use case of this
application, which contains images from the FMD
dataset and images collected online. Some sample
images from the data can be visualized in Fig. 7.
The dataset contains 169 images for each of the
five categories.

The training results and model performance
comparison are shown in Tab. 1. According to
training results, ResNet50V2, MobileNetV2, and
InceptionV3 are the top 3 networks that achieve
a good time and performance balance in the
MINC-2500 validation set. However, the MINC-
2500 does not have a perfect generalization to
material classification. The context in the MINC
dataset is very different from that of this appli-
cation, which prevents the network from finding
a correct label during testing on the collected
dataset. NetVALD clustering pooling layer also
does not improve accuracy. To solve the general-
ization issue, transfer learning was performed to
retrain the model in the collected dataset. Trans-
fers from ImageNet and MINC-2500 weight were
experimented. The results are shown in Tab. 2.
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The results show that the transfer from MINC-
2500 using ResNet50V2 has the best accuracy
when testing on the collected dataset.

Table 1 Results of training on MINC-2500 and testing on
the collected dataset

Network MINC-
2500 Acc

Collected
dataset
Acc

Speed
(ms)*

VGG-16 71% 22% 279

InceptionV3 83% 21% 215

VGG-16-N* 68% 21% 292

InceptionV3-N* 77% 22% 225

MobileNetV2 75% 20% 173

ResNet50V2 78% 23% 228

ResNet152V2 84% 22% 487

InceptionResNetV2 81% 21% 472

a Speed*: the inference time is measured by inference
of one image on a E5-1260 CPU.

b -N*: NetVALD layer with 32 clusters is added after
the last convolution layer

Table 2 Performance comparison between transfer
ImageNet and MINC-2500 weight to the collected dataset

Network Transfer MINC-
2500 Accuracy

Transfer Ima-
geNet Accuracy

ResNet50V2 79% 76%

MobileNetV2 72% 71%

InceptionV3 75% 72%

5.2 Proposed Approach: Transfer

Leaning using ResNet50V2

Based on the experimental results from the pre-
vious section, ResNet50V2 was used to transfer
the weight from ImageNet to the MINC-2500
dataset. The number of material classes in MINC-
2500 is reduced to metal, ceramic, plastic, glass,
and wood. The input layer is modified to match
the MINC-2500 size, the convolution blocks from
ResNet50V2 have not been modified, and the
weight is trained using the initial value from
ImageNet. The output of the convolution layer

consists of 2048 feature maps M[12x12x2048] . The
pooling layer uses global average pooling to group
the feature maps M[12x12x2048] to M[1x1x2048] and
classified into five classes multiplied by weight
W[5x2048] . Due to the low generalization accuracy
of the MINC-2500 data set, the MINC-2500 weight
was transferred to the collected dataset using
the same architecture. The training and inference
procedure is shown in Fig. 5.

When inferring on a sample image, the
ResNet50V2 network was modified to output a
class probability map cP[1x5] and a feature-map-
sized class probability map fP[12x12x5] using Grad-
CAM (Selvaraju et al., 2017). The Grad-CAM is
generated using the following equation:

fP =

2048
∑︁

𝑛=1

nWnM (10)

Where, nM is the 𝑛𝑡ℎ feature map and nW is the
weight of the 𝑛𝑡ℎ feature map. The probability
map fP[12x12x5] will be resized to pixel level prob-
ability map pP[362x362x5] using cubic spline inter-
polation. The probability map pP[362x362x5] and
colored image I[362x362x3] are input into a Condi-
tional Random Field (CRF) algorithm to perform
pixel level unsupervised segmentation by minimiz-
ing the following energy function (Krähenbühl and
Koltun, 2011):

𝑐𝐸 (x) =
∑︁

𝑖

𝑈 (𝑖) +
∑︁

(𝑖, 𝑗 )

𝑃𝑎𝑟 (𝑖, 𝑗) (11)

where, 𝑐𝐸 (𝑥) is the energy function for class 𝑐.
x is the set of all pixels in image I. 𝑖 and 𝑗 are
pixel indexes in set x. 𝑖 and 𝑗 control a nested
loop to pair each pixel with all other pixels with-
out repetition. 𝑈 (𝑖) is the unary energy that is
the negative log probability of a pixel belonging
to class 𝑐. 𝑃𝑎𝑟 (𝑖, 𝑗) is the pairwise energy that
measures the pixels’ spacial and color similarity.
The unary and pairwise energy is defined in the
following equations:

𝑈 (𝑖) = −𝑙𝑜𝑔(ipPc) (12)

𝑃𝑎𝑟 (𝑖, 𝑗) = 𝑒𝑥𝑝(−
|𝑖 𝑝 − 𝑗 𝑝 |2

2𝑠2𝑝
−

|iI − jI|2

2𝑠2𝑐
) (13)

where, i
pPc is the pixel level probability of

𝑖𝑡ℎ pixel in the image belonging to class 𝑐. 𝑖 𝑝
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Fig. 5 Training and inference procedure for vision-based material classification and segmentation.

and 𝑗 𝑝 are the position of 𝑖𝑡ℎ and 𝑗 𝑡ℎ pixels. iI

and jI are the RGB values of 𝑖𝑡ℎ and 𝑗 𝑡ℎ pixels.
Long-range connections were used in the energy
calculation. Thus, the pairwise energy contains
only the appearance kernel. 𝑠𝑝 and 𝑠𝑐 are the
position similarity and color similarity parame-
ters, respectively. Parameter values 𝑠𝑝 and 𝑠𝑐
were chosen to be 60 and 10 respectively based
on Krähenbühl and Koltun. The results of the
CRF algorithms will be an updated pixel level
probability map crfP[362x362x5] .

The classification results can be found by find-
ing the maximum value of the cP class probability
map. The results can be directly used to esti-
mate the grasp force. The segmentation results
can be used to perform pixel-wised classifica-
tion when the target object contains different
materials. The sample segmentation results and
classification accuracy are available in Sec. 8.4.

6 Weight Estimation

The estimated size and material of the target
object can be obtained based on the methods
described in the previous sections. However, the
information is insufficient to estimate the weight,
and some assumptions need to be made in order
to calculate the volume of the target object.

The target object in this application can
be classified into four different categories:
fork/spoon, bottle/cup/wine glass, sports ball,
and apple/cell phone. The weight of an apple and
a cell phone is not affected much based on size;
thus, the average weight of an apple and a cell
phone can be used as the weight of the target
object. Sports balls are usually very light, so it
was assumed that a sports ball weighs 20 grams if
it has a diameter less than 5cm, weighs 100 grams
if it has a diameter between 5-10cm, and weighs
250 grams if the diameter is larger than 10cm.

The shape of a spoon or fork can be simplified
to a plate with a thickness of 0.1 cm. Thus, the
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weight of a spoon or fork can be estimated using
the following:

𝑣𝑠 𝑓 = 0.1𝑤ℎ (14)

𝑠𝑠 𝑓 = 𝑣𝑠 𝑓 𝜌 (15)

where, 𝑤 and ℎ are the estimated width and height
of the target object, respectively. 𝜌 is the density
of the material of the target object. 𝑣𝑠 𝑓 is the vol-
ume of the object. 𝑠𝑠 𝑓 is the weight of the target
spoon or fork.

The shape of a bottle, cup, and wine glass
can be simplified to a hollow truncated cone. It
is assumed that the truncated cone has 2

3
of the

volume of a cylinder of the same height. The thick-
ness can be assumed to be 0.2cm. Thus, the weight
of a bottle when filled with water can be estimated
using the following.

𝑣𝑏 =

2

3
(𝑣𝑜 − 𝑣𝑖)

=

2

3
(𝜋(

𝑤

2
)2ℎ − 𝜋(

𝑤

2
− 0.2)2 (ℎ − 0.4))

(16)

𝑠𝑏 = 𝑣𝑏𝜌 + 𝑣𝑖𝜌𝑤 (17)

where, 𝑣𝑏 is the volume of the material to form
the bottle. 𝑣𝑜 is the outer volume, 𝑣𝑖 is the inner
volume. 𝑠𝑏 is the weight of the bottle. 𝜌 is the
density of the material of the bottle. 𝜌𝑤 is the
density of water.

The weight of a cup can be estimated similar
to that of a bottle. The only difference is that a
cup might have a handle and will make the volume
calculation inaccurate. The size of the handle was
assumed to be 30% of the weight of the cup 𝑤.
Thus, the weight of a cup when full of water can
be estimated using the following.

if ℎ ≥ 𝑤 :

𝑣𝑐 =

2

3
(𝑣𝑜 − 𝑣𝑖)

=

2

3
(𝜋(

𝑤

2
)2ℎ − 𝜋(

𝑤

2
− 0.2)2 (ℎ − 0.2))

(18)

if 𝑤 ≥ ℎ :

𝑣𝑐 =

2

3
(𝑣𝑜 − 𝑣𝑖)

=

2

3
(𝜋(

0.7𝑤

2
)2ℎ − 𝜋(

0.7𝑤

2
− 0.2)2 (ℎ − 0.2))

(19)

𝑠𝑐 = 𝑣𝑐𝜌 + 𝑣𝑖𝜌𝑤 (20)

where, 𝑣𝑐 is the volume of material to form the
cup. 𝑣𝑜 is the outer volume, and 𝑣𝑖 is the inner
volume. 𝑠𝑐 is the weight of the bottle. 𝜌 is the
density of the material of the cup. 𝜌𝑤 is the density
of water. Wine glass is a special cup with a long
leg, so it was assumed that the capacity of the
glass is 50% of a normal cup. Thus, the weight of
a wine glass when full of water can be estimated
using the expression:

𝑠𝑤𝑔 = 𝑣𝑐𝜌 + 0.5𝑣𝑖𝜌𝑤 (21)

7 Initial Grasp Force
Calculation

The initial grasp force is calculated based on the
predicted weight and the shape of the standard
object. Fig. 6 illustrates the coordinate systems
for grasping force initialization. The origin of
the world coordinates is placed at the center of
the object. The exoskeleton glove coordinates are
located at the center of the Inertia Measurement
Unit (IMU). The IMU is calibrated to align with
the world coordinates at the beginning. Assum-
ing that there is no torque applied on the object
and the contact forces are normal to the last link
of each of the exoskeleton fingers, for an arbi-
trary object, the force equilibrium equation can
be expressed as:

∑︁

𝑖

𝜇𝑤R𝑒
𝑒R𝑖

𝑒F𝑖 + 𝑀g = 0 (22)

where, 𝑖 ∈ {𝑡ℎ𝑢𝑚𝑏, 𝑖𝑛𝑑𝑒𝑥, 𝑚𝑖𝑑𝑑𝑙𝑒, 𝑟𝑖𝑛𝑔, 𝑙𝑖𝑡𝑡𝑙𝑒}, 𝑤R𝑒

is the rotation matrix from the exoskeleton glove
coordinates to the world coordinates, which is cal-
culated based on readings from the IMU. 𝑒R𝑖 is
the rotation matrix from the fingertip 𝑖 to the
exoskeleton glove coordinates, which is calculated
based on the forward kinematics of the glove (Xu

11



Fig. 6 The coordinate systems for initial force estimation.
WCS: world coordinate system. ECS: exoskeleton glove
coordinate system. ICS: 𝑖-th fingertip coordinate system.

et al., 2020). 𝑒F𝑖 is the vector of the contact
force applied on fingertip 𝑖, which is measured
based on a calibrated Linear Series Elastic Actu-
ator (LSEA) (Guo et al., 2021). 𝑀 is the mass
of the object, and g is the vector of gravitational
acceleration.

For the cylinder grasp and the tip grasp, the
direction of the friction force on each fingertip is
always opposite to gravity. Therefore, the above
equation can be simplified to

∑

𝑖

𝜇𝐹𝑖 = 𝑀𝑔.

8 Experimental Results

The experiment section encompassed three pri-
mary components. Initially, the datasets utilized
for object detection validation and material clas-
sification were introduced. Subsequently, the per-
formance of object detection, size estimation, and
material classification within these datasets was
assessed. Lastly, a vision-based HMI was inte-
grated as an extension of the slip-grasp force plan-
ning method for the exoskeleton glove. The exper-
iments were structured to contrast the combined
approach of vision and the slip-grasp method
against the exclusive use of the slip-grasp force
planning method.

8.1 Datasets

Two small datasets were built to verify this appli-
cation (object detection dataset); one for vision-
based grasp force planning method validation and
one for transfer learning material classification
(material classification dataset).

The dataset for vision-based grasp force plan-
ning method validation has 30 images taken from

Fig. 7 Sample images used in the material classification
training.

1080P SVWSUNVideo Glass worn by an exoskele-
ton glove user. Each grasp object is labeled using
a bounding box. Sample images are shown in Fig.
3.

The dataset for transfer learning consists of
five labels: ceramic, plastic, metal, wood, and
glass. Each class has a training set of 119 images,
a testing set of 30 images, and a validation set of
20 images. Each image is labeled on the basis of
the object’s center material. This dataset contains
images from an online image search, the FMD
dataset, and images taken for the grasp objects
used in this research. Sample images are shown in
Fig. 7. Images in this dataset have more details
and fewer contexts than images in MINC-2500.

8.2 Object Detection and ARUCO

Marker Detection

The labeled object detection validation dataset
was used to test the performance of different net-
works trained on the COCO dataset. A mean
Average Precision (mAP) at 50% Intersection over
Union (IOU) was used to quantify object detec-
tion performance. The speed was measured based
on the average inference time of 10 images using
the E5-1260 CPU. The results are shown in Fig. 8.
Multiple networks were tested and YOLOV4 with
a 0.75 threshold was selected based on mAP and
speed.

The successful detection rate 𝑅𝑠 of object
detection and ARUCO marker detection can be
calculated using the following equation:
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Fig. 8 Object detection results. (A) mean Average Pre-
cision (mAP) at 50% Intersection over Union (IoU) of
7 different state-of-the-art neural networks. (B) mAP vs.
average inference time of each neural network.

𝑅𝑠 =
𝑇𝑃 − 𝐹𝑃

𝑛
(23)

where, 𝑇𝑃 is true positive, which means that the
ARUCO API detection successfully detects the
marker, and the object detection successfully iden-
tifies the center object. 𝐹𝑃 is false positive, which
means that the marker detection recognized the
wrong marker or the object detection detects the
wrong center object. 𝑛 is the total number of
test images. The experiments’ successful detection
rate was 90% in the collected object detection
validation dataset.

8.3 Object Size Estimation

The experiment involved evaluating the object
detection validation dataset by comparing the
detected target object’s size with the ground
truth sizes. For this purpose, images successfully

Fig. 9 Examples of size measurements.

detected by both the YoloV4 object detector and
the ARUCO marker detector were utilized. This
dataset comprised 27 images featuring 15 different
objects observed from various angles. To obtain
the predicted size for each object, the average
of the estimated sizes from different angles was
taken. The ground truth sizes were determined
based on the width and height of the orthographic
projection, as illustrated in Fig. 9.

The obtained results are presented in Tab. 3.
To quantify the difference between the predicted
and actual object sizes, the percentage difference
between the products of width (𝑤) and height (ℎ)
was calculated. This evaluation metric is termed
the Mean Absolute Percentage Error (MAPE).
The MAPE difference between the predicted and
actual object sizes was found to be 26.9%. The
main source of this error was identified as the
estimation process, particularly when utilizing the
bounding box to estimate the object’s dimensions.
This error tends to occur when the object is placed
at an angle during detection.

8.4 Object Material Detection

The training and testing results in the proposed
material classification dataset are shown in Tab.
2. According to the accuracy and speed of classifi-
cation, the material classification network used is
ResNet50V2. The weight is transferred from the
MINC-2500 dataset.

Material classification validation was also per-
formed on the object detection dataset. The mate-
rial classification accuracy for all detected objects
was 96%. In addition to material classification,
material segmentation is performed using the CRF
method to visualize the result of material classi-
fication. Sampe images of material segmentation
are shown in Fig. 10.

8.5 Object Weight Estimation

The experiments on the object detection valida-
tion dataset involved comparing the weight of the
target object with the weight of the corresponding
ground truth. The dataset comprised 27 detected
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Table 3 Size Estimation Experimental Results

Object Actual*
(cm)

Predicted*
(cm)

Diff

Plastic Bottle A 6.5x11 8x13 45.4%

Plastic Bottle B 7x20 8x21 20%

Plastic Spoon 13x4 14x3.5 5.8%

Plastic Fork 14x4 14x3.5 12.5%

Plastic Cup 12x10 14x11 28.3%

Plastic Ball 7x7 6.8x6.8 5.6%

Metal Spoon 18x3.5 14.1x6.7 49.9%

Metal Fork 18x2.5 12x6 60%

Metal Cup 14x9 13.4x10.6 12.7%

Wood Spoon 16.5x4 11x7.8 30%

Glass Cup 12x14 12.9x15.1 15.9%

Wine Glass 20x5.5 19.4x7.3 28.7%

Ceramic Cup 19x11.5 18.8x15.2 30.8%

Ceramic Bowl 17.5x17.5 17x10 44.5%

Cell Phone 15x7.5 12x8.2 12.5%

MAPE - - 26.9%

a Actual*: The actual size is defined by the width times
height in centimeters.

b Predicted*: The predicted size is defined by the width
times height in centimeters.

images used in the size estimation process, which
relied on the estimated sizes obtained in the pre-
vious section. The materials used in the objects
had different densities: plastic (0.92𝑔/𝑐𝑚3), metal
(7.85𝑔/𝑐𝑚3), glass (2.7𝑔/𝑐𝑚3), ceramic (6𝑔/𝑐𝑚3),
and wood (0.9𝑔/𝑐𝑚3).

The results of these experiments are presented
in Tab. 4. However, it is worth noting that the
weight of the containers varied due to differences
in the fluid level. For consistency, it was assumed
that all containers were full. To assess the accu-
racy of the weight estimation, Mean Absolute
Percentage Error (MAPE) was employed as the
evaluation metric. The MAPE between the pre-
dicted and actual object weights was found to
be 59.8%. The relatively large weight estimation
error can be attributed to the following factors.
First, weight estimation is heavily influenced by
size estimation, which in turn can be affected by
the angle at which the object appears in the cam-
era. Second, the assumption of standard shapes
for all objects, such as cylinders or boxes, may not
hold true for most cases, where cups might have

Fig. 10 Sample material segmentation results.

handles, and wine glasses may have long legs, lead-
ing to deviations from the standard shapes used
in the estimation process. Furthermore, despite
some instances of substantial percentage errors,
the overall weight difference remains acceptable.
For instance, the metal fork experienced a weight
estimation error of 35g, representing a 159.1%
overestimation compared to its actual size. The
average weight difference across all objects is only
173g, which still provides meaningful information
for initial grasp force planning.

8.6 Grasp Experiments

The experimental procedure involving human sub-
jects in this study received approval from the
Carilion Clinic Institutional Review Board (IRB-
19-330). Due to the nature of the exoskeleton
glove used in this research, which is a rigid link-
age exoskeleton, the user cannot apply any force
to the fingertips of the exoskeleton linkages when
wearing it.

The grasp procedure is as follows: The user
initiates the system using a personalized voice
command system (Guo et al., 2020) to capture a
1280x760 pixel image. By employing the methods
proposed in previous sections, the size and weight
of the grasped object can be calculated. The 9-
DOF MPU-9250 IMU detects the pitch, yaw, and
roll of the exoskeleton glove using an AHRS fil-
ter. Using the weight of the object and the IMU
data, the initial grasp force is computed, and the
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Table 4 Weight estimation experimental results

Object Actual(g) Predicted(g) Diff

Plastic Bottle A 12-512 698 36.3%*

Plastic Bottle B 207 432 108.7%

Plastic Spoon 3 5 66.7%

Plastic Fork 3 5 66.7%

Plastic Cup 11-502 881 75.5%*

Plastic Ball 69 100 45%

Metal Spoon 48 74 54.2%

Metal Fork 22 57 159.1%

Metal Cup 172-576 619 7.5%*

Wood Spoon 7 8 14.3%

Glass Cup 358-779 1459 89.5%*

Wine Glass 188-369 399 8.1%

Ceramic Cup 480-1059 1756 65.8%*

Ceramic Bowl 315 596 89.2%

Cell Phone 222 200 10%

MAPE - - 59.8%

*: Containers have various weight due to the content.
During weight estimation, we assume all containers
are full of water.

exoskeleton glove applies this force to each finger-
tip (Guo et al., 2021). The slip-grasp system is
then utilized to stabilize the grasp.

During the experiment, each of the 15 objects
present in the object detection dataset was sub-
jected to 2-6 grasping attempts from various
angles and water levels (for containers), resulting
in a total of 64 grasp trials. Among these trials,
6 experienced failure of object detection, while
5 encountered errors in material detection. The
grasp success rate is defined as the success in pick-
ing up the target object. The overall grasp success
rate using vision-based HMI combined with the
slip-grasp method was 87.5%.

8.7 Comparison Between

Vision-based Force Estimation

and Slip Grasp Force Planning

To demonstrate the effectiveness of the vision-
based force estimation method. We performed 64
experiments using only the slip-grasp force plan-
ning method and achieved a grasp success rate
of 71.9%, while the vision-based method achieved

Fig. 11 Experimental result of grasping daily used objects
using vision-based initial grasp force prediction method
and slip-grasp method. Blue: number of successful grasps
performed using the vision-based initial force estimation
with slip-grasp method. Red: number of successful grasps
performed using only the slip-grasp method. Yellow: the
total number of grasps for each individual method.

87.5%. The success rate for each grasp category is
shown in Fig. 11.

The comparison experiment reveals that utiliz-
ing a combination of vision-based force estimation
with the slip-grasp system leads to a higher suc-
cess rate compared to using only the slip-grasp
system. To demonstrate the benefits of utilizing
the vision-based initial force estimation technique,
we carried out an additional set of 20 grasp
trials involving four distinct items: a plastic bot-
tle, a wine glass, a plastic spoon, and a metal
spoon. These particular objects were chosen based
on their notable performance in previous grasp
experiments.

For the vision-based method, the initial grasp
force was determined using the vision-based force
estimation system, and the slip-grasp method was
not utilized in this experiment. For the slip-grasp
method, a predefined initial grasp force of 2N and
200Nmm is used. This method adjusted the grasp
force based on slippage to achieve a stable grasp
(details can be found in paper by Xu et al. (2022)).

The grasping process was facilitated by 6 Series
Elastic Actuators (SEAs) as depicted in Fig. 12.
The force and torque output of the index finger
and thumb rotatory SEAs, which are the most
critical actuators during grasping, were measured
and reported in Tab. 5.

The results from the additional 20 grasp exper-
iments are presented in Tab. 5 and Fig. 13,
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Table 5 Comparison between vision-based force estimation and slip grasp force planning

Object Slip-Grasp (succ/-
total trials)

Vision (succ/total
trials)

Slip (index
force/thumb
torque)

vision (index
force/thumb
torque)

Plastic Bottle 3/6 5/6 3.67N / 367Nmm 2.73N / 459Nmm

Wine Glass 6/6 6/6 2.67N / 267Nmm 1.59N / 267Nmm

Plastic Spoon 2/4 4/4 2N / 200Nmm 0.75N / 31.6Nmm

Metal Spoon 3/4 4/4 2N / 200Nmm 1.2N / 50.8Nmm

Fig. 12 Series Elastic Actuators (SEA) are used to apply
force on the exoskeleton glove in the grasp experiment.

demonstrate that the vision-based force estima-
tion system can produce adequate initial grasp
forces for various objects. This offers three main
advantages during grasping. First, the initial grasp
force estimate helps prevent the application of
insufficient thumb torque, which can result in slip-
page. For example, in Fig. 13 (B), the plastic
water bottle could not be lifted by the slip-grasp
method due to the insufficient predefined thumb
torque. Second, the initial grasp force can pre-
vent the application of excessive force and torque.
For example, in Fig. 13 (F), the plastic spoon
could not be lifted by the slip-grasp method due
to excessive fingertip force and thumb torque.
Third, even for objects that can be successfully
lifted by the slip-grasp method, incorporating a
vision-based force estimation system allows for a
reduction in the applied force (as shown in Tab.
5), thereby optimizing the grasping process.

8.8 Vision-based HMI System

Latency

The image processing is running on a desktop
server with an E5-1260 CPU, and there is no GPU
involved. The estimated size, weight, and surface
friction coefficient are sent to the exoskeleton’s
onboard microcontroller, which generates the ini-
tial grasp force using IMU data and operates the

exoskeleton. The computation time for processing
a single image is around 700 ms. The process-
ing time meets this application’s requirements as
only one image needs to go through the complete
processing per grasp. The time consumption for
processing one image is shown in Tab. 6.

Table 6 Inference speed of one 1280x760 pixel
image using the vision-based HMI

Section Speed*(ms)

ARUCO marker Detection 7

Object Detection 470

Material Classification 228

Size and Weight Estimation 3

Total 708

Speed*: the inference time is measured by
averaging the inference time of ten images
on a E5-1260 CPU.

9 Conclusion

This paper presented a novel vision-based Human-
Machine Interface (HMI) aimed at estimating
the initial grasp force required to manipulate
a target object using an assistive exoskeleton
glove designed for patients with Brachial Plexus
Injuries.

The proposed approach employed object detec-
tion and material classification techniques to pre-
dict the initial grasp force, using information
about the weight, size, and material of the object.
In the validation dataset, the object size estima-
tion produced a mean absolute percentage error
(MAPE) of 26.9%, while the object weight esti-
mation showed a MAPE of 59.8%. Although the
MAPE of weight and size estimation was relatively
high, vision-based initial grasp force estimation

16



Fig. 13 Demonstration of grasping daily used objects using vision-based initial grasp force prediction method and slip-
grasp method. (A) Successfully grasp a 512g water bottle with vision system. (B) Failed to grasp a 512g water bottle using
the slip-grasp method due to inadequate thumb torque. (C) and (D) Successfully grasp an 188g wine glass with both the
vision system and the slip-grasp method. (E) Successfully grasp a 3g plastic spoon with vision system. (F) Failed to grasp a
3g plastic spoon using the slip-grasp method due to excessive force and torque. (G) and (H) Successfully grasp a 48g metal
spoon with both the vision system and the slip-grasp method.

still managed to produce a meaningful result to
assist grasping.

The vision-based HMI successfully distin-
guished between different materials and accu-
rately predicted the initial grasp force for objects
of varying weights. When integrated with the
pure slip-grasp method, the combined approach
attained an impressive 87.5% success rate, out-
performing the standalone slip-grasp method
(71.9%). These results highlighted the importance
of estimating the initial grasp force to prevent
slippage caused by inadequate or excessive appli-
cation of force and torque.

In conclusion, the proposed vision-based HMI
demonstrated the potential to enhance the grasp-
ing capabilities of the exoskeleton glove, contribut-
ing to improved functionality and usability for
patients with Brachial Plexus Injuries. The find-
ings of this experiment pave the way for future
advancements in assistive technologies, facilitating
more effective and reliable interactions between
users and robotic systems.
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