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Validation of risk prediction models on genetic counseling data 

Abstract 

Purpose: There exists a barrier between developing and disseminating risk prediction models in clinical 

settings. We hypothesize this barrier may be lifted by demonstrating the utility of these models using 

incomplete data that are collected in real clinical sessions, as compared to the commonly used research 

cohorts that are meticulously collected.  

Patients and methods: Genetic counselors (GCs) collect family history when patients (i.e., probands) 

come to MD Anderson Cancer Center for risk assessment of Li-Fraumeni syndrome, a genetic disorder 

characterized by deleterious germline mutations in the TP53 gene. Our clinical counseling-based (CCB) 

cohort consists of 3,297 individuals across 124 families (522 cases of single primary cancer and 125 cases 

of multiple primary cancers). We applied our software suite LFSPRO to make risk predictions and 

assessed performance in discrimination using area under the curve (AUC), and in calibration using 

observed/expected (O/E) ratio.  

Results: For prediction of deleterious TP53 mutations, we achieved an AUC of 0.81 (95% CI, 0.70 – 

0.91) and an O/E ratio of 0.96 (95% CI, 0.70 – 1.21). Using the LFSPRO.MPC model to predict the onset 

of the second cancer, we obtained an AUC of 0.70 (95% CI, 0.58 – 0.82). Using the LFSPRO.CS model 

to predict the onset of different cancer types as the first primary, we achieved AUCs between 0.70 and 

0.83 for sarcoma, breast cancer, or other cancers combined.  

Conclusion: We describe a study that fills in the critical gap in knowledge for the utility of risk prediction 

models. Using a CCB cohort, our previously validated models have demonstrated good performance and 

outperformed the standard clinical criteria. Our study suggests better risk counseling may be achieved by 

GCs using these already-developed mathematical models.  
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Introduction 

Li-Fraumeni syndrome (LFS) is a hereditary cancer syndrome identified by deleterious germline 

mutations in the TP53 tumor suppressor gene1. Patients with LFS are at significantly increased risks of a 

spectrum of cancer types, most notably early-onset breast cancer, soft-tissue sarcoma, osteosarcoma, 

among many others1–3. The lifetime risks of cancer are 93% and 73% for women and men respectively4, 

with a 50% risk of second primary cancer for individuals that have been diagnosed with a first primary5. 

Conversations with these patients regarding important decisions such as genetic testing and cancer 

screening have been challenging, partly because genetic counselors (GCs) could only provide general, as 

compared to personalized, cancer risks associated with LFS6. Although risk prediction models have been 

developed for other hereditary cancer syndromes, such as BRCA1/2 and breast cancer7–9, LFS remained 

an untouched area until recently. To facilitate personalized risk predictions in clinics, we developed two 

models specifically for families with LFS: (i) a competing-risk model that predicts cancer-specific (CS) 

risks for the first primary cancer10, and (ii) a recurrent event model that extends the risk prediction to 

multiple primary cancer (MPC)11. These models were trained on an LFS cohort rich in family history, and 

successfully validated on independent cohorts12,13.  

The datasets used to train and validate these risk prediction models were research protocol-based 

(RPB). RPB refers to data that are collected via rigorous procedures to obtain complete and accurate 

patient cohorts for research purposes (Figure 1). The study investigators contact eligible patients for data 

collection via extensive use of questionnaires and phone interviews. Additional follow-ups are conducted 

on a regular basis to fill in the missing data and to acquire new incidences of cancer diagnoses of the 

participant or family members, the latest births or deaths within the family, and any additional germline 

testing information. This is a diligent data collection process that could take over 20 to 30 years14–16. For 

this reason, research datasets are ideal for training statistical models to estimate key epidemiological 

parameters of a study population. 
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RPB data, however, do not represent datasets that are typically observed and collected in clinical 

settings, where patients with cancer history that is indicative of LFS make appointments with medical 

professionals for in-depth risk assessment. Given this scenario, we use the term clinical counseling-based 

(CCB) to refer to the data that are routinely collected by GCs during counseling sessions (Figure 1). CCB 

differs significantly from RPB because patients may not have accurate and complete family histories and 

some families have younger members who have not developed cancer. This leads to a higher rate of 

missing information in CCB datasets such as previous genetic testing results, ages of death, and ages at 

cancer diagnoses. Based on this snapshot of family history (collected over ~20 minutes), GCs perform a 

comprehensive risk assessment, communicate these risks with the patients, and potentially recommend at-

risk individuals for further testing and screening.  

Due to the wide discrepancies in data quality between the CCB and RPB datasets, it is important 

to determine whether statistical models that are trained and validated on RPB cohorts can perform well 

enough on a CCB cohort to be useful in real clinical settings. Given the large number of risk prediction 

models for hereditary cancer syndromes7–9, it is surprising to see very few that made their way into the 

clinics17. One potential reason is these models were mostly validated using well established research 

databases or registry data18–23 rather than clinical data24. Thus, a successful validation using CCB cohorts 

may represent a key ingredient to break the barrier to clinical utility. In this paper, we perform a clinical 

validation study of our risk prediction models on a CCB cohort of 124 families who underwent genetic 

counseling at the Clinical Cancer Genetics (CCG) program at MD Anderson Cancer Center (MDACC) 

between 2000-2020. 

[Figure 1] 

Materials and methods 

Patient cohorts 
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Using   a   collection   of   189   families   that   were   recruited   through   probands   diagnosed   with   

pediatric sarcoma at MDACC from 1944 to 198214–16, we have estimated the model parameters for risk 

prediction10,11. We refer the readers to Data Supplement for detailed descriptions of this training dataset.  

The validation dataset were collected on TP53 mutation carriers from CCG program at MDACC. 

Personal and family history were collected during a genetic counseling session and immediately entered 

into the patient’s electronic medical record. Data were automatically pulled into a Progeny database used 

by the CCG program for tracking families. This database includes patients counseled starting from year 

2000 to 2020. For this study, only patients that were identified to have a pathogenic or likely pathogenic 

germline mutation in TP53 through single-gene testing or multi-gene panel were included. Patients that 

did not meet the Classic3 or Chompret25,26 LFS criteria were tested either because of clinical suspicion 

from a certified GC or they were identified on panel testing performed on suspicion for other hereditary 

cancer syndromes. Testing was performed in several CLIA/CAP certified laboratories. Family members 

of the confirmed TP53 mutation carrier were not required to undergo additional testing, however 

recommendations for family member testing were made during standard of care genetic counseling 

sessions. This cohort includes a total of 124 families and 3,297 family members. Summaries of both 

datasets are given in Table 1. 

[Table 1] 

Risk prediction models 

We previously developed and validated two models for LFS risk predictions10–13. The CS model10 

estimates the cancer-specific age-at-onset penetrance, defined as the probability of developing a particular 

cancer type prior to all others by a certain age given the patient’s covariates and cancer history. Let 𝐾 be 

the number of cancer types. We model the hazard function of each cancer type via frailty modeling27 as 

follows 
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𝜆!(𝑡|𝜉! , 𝑿) = 𝜉!𝜆",!(𝑡) exp(𝜷!$𝑿) , 𝑘 = 1,… , 𝐾 

where 𝜆",!(𝑡) is the baseline hazard, and the frailty term, 𝜉!, is modeled via	𝐺𝑎𝑚𝑚𝑎(𝜈! , 𝜈!). We allow 

the hazard function to depend on patient-specific covariates 𝑿 = {𝐺, 𝑆, 𝐺 × 𝑆}$, where 𝐺 denotes the TP53 

mutation status (1 for mutation and 0 for wildtype) and 𝑆 denotes the gender (1 for male and 2 for female). 

Under this modeling framework, we compute the family-wise likelihood using the peeling algorithm28, 

followed by ascertainment bias correction29, and finally estimate the regression coefficients 𝜷! via 

Markov chain Monte Carlo. The age-at-onset penetrance for the 𝑘-th cancer type is then given by 

𝑞!%&(𝑡|𝑿) = < < 𝜆!(𝑢|𝜉! , 𝑿)𝑆(𝑢|𝝃, 𝑿)𝑓(𝝃|𝝊)	𝑑𝝃	𝑑𝑢
𝝃∈[",*)!

,

"

,	

where 𝑓 is a Gamma density function, and 𝑆(𝑡|𝝃, 𝑿) = ∏ 𝑆!(𝑡|𝜉! , 𝑿)-
!./  with 𝑆!(𝑡|𝜉! , 𝑿) =

∫ exp D−∫ 𝜆!(𝑢|𝜉! , 𝑿)	𝑑𝑢
,
" F*

" 𝑓(𝜉!|𝜐!)	𝑑𝜉!. In our LFS application, we consider three competing cancer 

types: (1) sarcoma, including soft-tissue and osteosarcoma (𝑘 = 1), (2) breast cancer (𝑘 = 2), and (3) all 

other cancer types combined (𝑘 = 3). We also include death (𝑘 = 4) as another competing risk. 

We further developed the MPC model11 to estimate the MPC-specific age-at-onset penetrance, 

defined as the probability of developing the next primary cancer by a certain age given the patient’s 

covariates and cancer history. We model the occurrence process of cancer using a non-homogenous 

Poisson process to capture the age-dependency of cancer risks over a patient’s lifetime30,31. Let 𝐿 be the 

number of primary cancers. We model the intensity function via frailty modeling as before 

𝜆L𝑡M𝜉, 𝑿(𝑡)N = 𝜉𝜆"(𝑡)exp	(𝜷$𝑿(𝑡)) 

where 𝜆"(𝑡) is the baseline intensity, and 𝜉 is the frailty term that is modeled via 𝐺𝑎𝑚𝑚𝑎(𝜈, 𝜈). We use 

patient-specific covariates 𝑿(𝑡) = {𝐺, 𝑆, 𝐺 × 𝑆, 𝐷(𝑡), 𝐺 × 𝐷(𝑡)}$, where we introduce 𝐷(𝑡), an indicator 

variable that indicates whether a patient has developed a primary cancer before time 𝑡, to allow the risks 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

of subsequent primary cancers to depend on the first32–34. Let 𝑇0 be the time of the 𝑙-th cancer occurrence, 

𝑙 = 1,… , 𝐿. Given the estimated model parameters, the age-at-onset penetrance for the 𝑙-th primary cancer 

is then given by 

𝑞0
12%L𝑡0M𝑡03/, 𝑿(𝑡03/)N = 1 −< expR− < 𝜆L𝑢M𝜉, 𝑿(𝑢)N	𝑑𝑢

,"

,"#$

S𝑓(𝜉|𝜈)
*

"

𝑑𝜉 

where 𝑓 is a Gamma density function. We only model up to the second primary due to limited occurrences 

of the third primary and beyond.  

 Most patients do not undergo genetic testing due to the burdens of such procedure (i.e., 𝐺 is 

unknown). Both models utilize the BayesMendel method35 to infer the probability of carrying a deleterious 

TP53 variant for these patients based on their family history. Given a patient with unknown genotype 𝐺" 

and history 𝑯 = {𝐻/, … , 𝐻4} of the 𝑛 family members, our goal is to estimate P[𝐺"|𝑯]. Following our 

previous study36, we set the prevalence of pathogenic TP53 mutations in the general population, denoted 

by 𝑃[𝐺" = 1], to be 0.0006. Assuming the Hardy-Weinberg equilibrium, it follows that the prevalence of 

wildtype (𝐺" = 0), heterozygous mutation (𝐺" = 1) and homozygous mutation (𝐺" = 2) are 0.9988, 

0.0005996 and 3.6e-07, respectively. We provide the detailed computations of 𝑃[𝐺" = 𝑔|𝑯], 𝑔 ∈ {0,1,2},  

in Data Supplement. The cancer-specific risks of this patient are given by weighted sums of the 

corresponding penetrance estimates 

𝑟!%&(𝑡|𝑿"5) = 𝑞!%&(𝑡|𝑿"5 ∪ {𝐺" = 0})𝑃[𝐺" = 0|𝑯] + 𝑞!%&(𝑡|𝑿"5 ∪ {𝐺" = 1})(1 − 𝑃[𝐺" = 0|𝑯]) 

where 𝑿"5  denotes the covariates without genotype. The MPC risk, denoted by 𝑟0
12%(𝑡0|𝑡03/, 𝑿"5(𝑡03/)), 

can be computed from the MPC-specific penetrance estimates in a similar way. 

Validation Study Design 
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We excluded family members who had either (i) unknown ages at cancer diagnoses for the first or second 

primary cancer, or (ii) unknown ages at last contact if they had never had cancer, or both, from the set of 

validation subjects. Missing information among the excluded family members can still negatively impact 

performance on the validation subjects because the key assumption of our models lies in the Mendelian 

inheritance pattern that is implicitly demonstrated by cancer outcomes within the family36. The goal is to 

evaluate whether our models are sufficiently robust to incomplete datasets that arise in clinical settings. 

We first validated the utility of our models to predict an individual’s probability of carrying a 

deleterious TP53 mutation given the family history collected during a genetic counseling session. To do 

that, we used the models to make predictions for the validation subjects, including the probands, that had 

undergone genetic testing, then compared the predicted outcomes with the confirmed genotypes. In the 

calculations, we disregarded all testing results. This mimicked a real scenario, in which GCs use the 

models to assess the risks of the probands, and to identify at-risk individuals within their families for 

recommendation of screening and testing. We then conducted a similar validation, in which we made the 

predictions for non-proband family members given the confirmed genotypes of the probands, to evaluate 

the impacts of this additional information.      

Next, we ran the models to make cancer risk predictions for patients in the CCG dataset. We further 

excluded the probands due to ascertainment bias. For the MPC model, we divided the validation subjects 

into three groups: those without cancer (group 1), those with SPC (group 2), and those with MPC (group 

3). We then validated the model in two tasks: (i) to predict individuals with at least one primary cancer 

versus those without, and (ii) to predict individuals with MPC versus those with SPC. For the first task, 

we recorded the ages at last contact for individuals in group 1, and the ages at first cancer diagnosis for 

those in groups 2 and 3. For each individual, we computed the risk probability to develop a first primary 

cancer at the recorded age 𝑡/. By varying the cutoff on the risk estimates and comparing the predictions 

with the actual outcomes (at least one cancer versus no cancer), we constructed the receiver operating 
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characteristic curve (ROC) and calculated the area under the curve (AUC). For comparison, we also used 

the Kaplan-Meier (KM) method to achieve the same prediction objective. For the second task, we recorded 

the ages at last contact for individuals in group 2, and the ages at second primary cancer diagnosis for 

those in group 3. We computed the risk probability to develop a second primary cancer at the recorded 

age 𝑡6 given the covariates and cancer history up to age 𝑡/. We constructed the ROC curve in the same 

way as described above.  

For the CS model, we recorded the age at first event (i.e., the age at diagnosis of the first primary 

cancer if the individual had a cancer history, or the age at last contact if the individual had never had 

cancer). We used the model to compute the risk probability at the recorded age 𝑡/ for each of the four 

competing outcomes (i.e., sarcoma, breast cancer, all other cancer types, and mortality). We followed the 

same steps to construct ROC curves for predicting one cancer type versus all other outcomes. 

In addition to AUCs, which provide a comprehensive measure of the model’s ability to 

discriminate between binary outcomes, we also assessed model calibration via the observed/expected 

(O/E) ratios. The 95% confidence intervals for the performance metrics were computed via bootstrapping.   

Results 

Comparison of clinical and research data 

Our model training dataset, being RPB, was meticulously collected via rigorous research protocols to 

obtain information that is as accurate and complete as possible for research purposes. On the other hand, 

the CCG dataset, being CCB, represented snapshots of information taken by GCs during their counseling 

sessions. Table 2 highlights the main differences, most notably the level of missing data, between RPB 

and CCB based on the key summary statistics of these two datasets (all comparisons presented a Chi-

square test P < 0.001).  
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[Table 2] 

Validation of TP53 mutation prediction 

In Figure 2a, we compared the models’ performance in predicting the probability of TP53 mutations with 

the Classic3 and Chompret25,26 criteria, which are currently recommended in the National Comprehensive 

Cancer Network (NCCN) guidelines (version 3.2023) for LFS. Our CS and MPC models achieved AUCs 

of 0.76 (95% CI, 0.68 – 0.84) and 0.78 (95% CI, 0.71 – 0.85) respectively. In particular, with a decision 

threshold of 0.22, the MPC model achieved a true positive rate (TPR) of 0.75 and a false positive rate 

(FPR) of 0.29, while the Chompret criteria achieved a near-zero FPR at the cost of a low TPR. For 

calibration, the MPC model achieved a much better O/E ratio of 1.66 (95% CI, 1.53 – 1.80) compared to 

the CS model, which showed underestimation with an O/E ratio of 7.83 (95% CI, 7.20 – 8.47). The results 

showed that the MPC model performed better than the CS model in both criteria, thus providing further 

support for selecting the MPC model as default in our clinical risk prediction tool LFSPRO36. 

Given the confirmed genotypes of the probands, the MPC model achieved a slightly better AUC 

of 0.81 (95% CI, 0.70 – 0.91) (Figure 2b). The calibration performance of both models improved 

noticeably, with O/E ratios of 1.10 (95% CI, 0.80 – 1.39) and 0.96 (95% CI, 0.70 – 1.21) for the CS and 

MPC models, respectively. A previous validation study36 achieved AUCs near 0.85 when using the MPC 

model to predict TP53 mutations on different research cohorts. Thus the predictive performance on clinical 

data is indeed lower than research data, but still at a reasonable level. With a decision threshold of 0.28, 

we achieved a TPR of 0.97 and a FPR of 0.51. Since the Chompret criteria are based solely on the cancer 

history of a family, the additional knowledge of the probands’ genotypes did not contribute toward 

performance. On the contrary, in this follow-up analysis, we did not make risk predictions for the 

probands, who often displayed strong indication for LFS, thus leading to a lower TPR of 0.23 for the 
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Chompret criteria. These results highlight a strong advantage of our models over the standard criteria 

when utilizing the available information.    

[Figure 2] 

Validation of cancer risk prediction 

When discriminating between individuals with and without cancer, the MPC model achieved a slightly 

better performance compared to the KM method (AUC 0.74 vs 0.72, Figure 3a). When predicting SPC 

versus MPC, it achieved an AUC of 0.72 (95% CI, 0.61 – 0.83, Figure 3a). This validation included 

validation subjects with unknown genotypes. In practice, given the large difference in risks between the 

two genotype groups, it would be much more accurate to communicate the risk predictions after the 

patients have had confirmed testing results. Thus, we performed a similar validation, which, in addition 

to individuals with confirmed genotypes, included only those with TP53 mutation probabilities that were 

either greater than 0.1 (inferred mutation carriers) or smaller than 0.001 (inferred wildtypes). Figure 3b 

shows an improvement in performance across all models, with the MPC model still outperforming the 

KM method (AUC 0.81 vs 0.77). This performance was comparable to a previous validation study13, 

which showed an AUC of 0.73 when predicting cancer versus no cancer and an AUC of 0.77 when 

predicting SPC versus MPC on a research cohort.  

The CS model achieved AUCs of 0.72, 0.78 and 0.68 for separately predicting breast cancer, 

sarcoma and other cancer types versus all other outcomes (Figure 3c). These AUCs noticeably improved 

to 0.79, 0.83 and 0.70, respectively, when we included only inferred mutation carriers and wildtypes in 

addition to genetically confirmed individuals (Figure 3d). Compared to validation on research cohorts12, 

we obtained a higher AUC for sarcoma, but lower AUCs for breast cancer and all other cancer types 

combined. Sarcoma, however, was strongly underrepresented among the validation subjects as shown in 

Figure 3c and Figure 3d, hence a larger sample size would be needed to make a meaningful comparison.  
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The calibration performances of both models were reasonably close to 1 (see Table 3). We 

observed that the O/E ratios also moved slightly towards 1 when we excluded individuals with no genetic 

testing results and for whom the TP53 mutation probabilities were between 0.001 and 0.1, suggesting a 

potentially improved performance. 

[Figure 3]  

[Table 3] 

Discussion 

In this paper, we successfully conducted a unique validation of our LFS risk prediction models on a clinical 

counseling-based (CCB) patient cohort collected at MDACC. These models had previously been trained 

and validated on research protocol-based (RPB) datasets10–13. Our study was carefully designed to mimic 

scenarios that GCs encounter in real clinical settings, with 20-45% missing data, hence, to our knowledge, 

was the first validation study of its kind. We found that our CS and MPC models demonstrated excellent 

discrimination and good calibration performances when predicting deleterious germline TP53 mutations. 

As expected, the performance was slightly lower than the validation results obtained using RPB cohorts36, 

most likely due to the lack of important data such as ages at last contact and ages at cancer diagnoses. For 

predictions of cancer risks, both models displayed performance that was comparable to previous validation 

studies on RPB cohorts12,13 in most aspects.  

The strong performance of our models on the CCB cohort has important implications. It provides 

evidence that our research-based penetrance estimates can be accurately applied to clinical datasets that 

are routinely collected in counseling sessions. Our results further suggest that our models can serve as an 

alternative, or at least a complement, to the Chompret criteria, which are currently utilized by GCs for 

counseling. Finally, GCs can use our models to provide more tailored discussions based on the 

personalized cancer risks of their patients, rather than providing general cancer risk statistics of all LFS 
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patients. The good calibration performance indicates that the numerical output (between 0 and 1) has a 

probabilistic meaning attached to it. This is important if we want to disseminate the models into clinics, 

since a meaningful output can aid communications between healthcare providers and patients, which have 

always been a challenge for rare diseases like LFS6.  

Not only do our validation results advocate for the use of our models in clinical settings as 

discussed above, but they also have implications regarding clinical applications of risk prediction models 

in general. Given the discernible decrease in performance as we move from RPB to CCB, it is important 

for the research community to be aware of the differences between the two categories and, accordingly, 

dedicate new studies to true CCB datasets as compared to RPB datasets 18–23 to more accurately evaluate 

the real-world performance of risk prediction models. We believe that successful clinical validation 

studies represent a necessary step to break the barrier between model development and clinical utility. In 

order to bring LFSPRO closer to clinics, we aim to further perform a prospective evaluation to draw an 

even precise picture of how risk prediction can transform clinical practice. Lastly, the negative effects of 

missing data on the predictive performance highlight an important question in practice, that is whether the 

healthcare providers and the patients can work together to improve data collection efficiency under the 

time constraints in clinical sessions. 

Acknowledgements 

The authors thank Dr. Gang Peng, Dr. Seung Jun Shin and Jingxiao Chen for their contributions to 

LFSPRO and LFSPROShiny.  

Support 

Cancer Prevention and Research Institute of Texas [RP200383], National Institutes of Health 

[R01CA239342, P30 CA016672]. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

Data sharing statement 

The latest version of LFSPRO is publicly available on GitHub (https://github.com/wwylab/LFSPRO). The 

LFSPROShiny application is open-source on GitHub (https://github.com/wwylab/LFSPRO-ShinyApp), 

and is hosted live on Shinyapps.io (https://namhnguyen.shinyapps.io/lfspro-shinyapp-master/).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

References 

1. Malkin D, Li FP, Strong LC, et al. “Germ Line p53 Mutations in a Familial Syndrome of Breast 

Cancer, Sarcomas, and Other Neoplasms”. Science 250(4985):1233–1238, 1990. 

2. Li FP & Fraumeni JF. “Soft-tissue sarcomas, breast cancer, and other neoplasms”. Annals of 

Internal Medicine 71(4):747–752, 1969. 

3. Li FP, Fraumeni JF, Mulvihill JJ, et al. “A cancer family syndrome in twenty-four kindreds”. 

Cancer Research 48(18):5358-5362, 1988. 

4. Chompret A, Abel A, Stoppa-Lyonnet D, et al. “Sensitivity and predictive value of criteria for p53 

germline mutation screening”. Journal of Medical Genetics 38(1):43–47, 2001. 

5. Mai PL, Best AF, Peters JA, et al. “Risks of first and subsequent cancers among TP53 mutation 

carriers in the National Cancer Institute Li-Fraumeni syndrome cohort”. Cancer 122(23):3673–

3681, 2016. 

6. Ross J, Bojadzieva J, Peterson S, et al. “The psychosocial effects of the Li-Fraumeni Education and 

Early Detection (LEAD) program on individuals with Li-Fraumeni syndrome”. Genetics in 

Medicine 19(9):1064–1071, 2017. 

7. Parmigiani G, Berry D & Aguilar O. “Determining carrier probabilities for breast cancer-

susceptibility genes BRCA1 and BRCA2”. American Journal of Human Genetics 62(1):145-158, 

1998. 

8. Tyrer J, Duffy SW & Cuzick J. “A breast cancer prediction model incorporating familial and 

personal risk factors”. Statistics in Medicine 23(7):1111–1130, 2004. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

9. Antoniou AC, Cunningham AP, Peto J, et al. “The BOADICEA model of genetic susceptibility to 

breast and ovarian cancers: Updates and extensions”. British Journal of Cancer 98(8):1457–1466, 

2008. 

10. Shin SJ, Yuan Y, Strong LC, et al. “Bayesian semiparametric estimation of cancer-specific age-at-

onset penetrance with application to Li-Fraumeni syndrome”. Journal of the American Statistical 

Association 114(526):541–552, 2019. 

11. Shin SJ, Li J, Ning J, et al. “Bayesian estimation of a semiparametric recurrent event model with 

applications to the penetrance estimation of multiple primary cancers in Li-Fraumeni syndrome”. 

Biostatistics 21(3):467–482, 2020. 

12. Shin SJ, Dodd-Eaton EB, Peng G, et al. “Penetrance of different cancer types in families with Li-

Fraumeni syndrome: A validation study using multicenter cohorts”. Cancer Research 80(2):354–

360, 2020. 

13. Shin SJ, Dodd-Eaton EB, Gao F, et al. “Penetrance estimates over time to first and second primary 

cancer diagnosis in families with Li-Fraumeni syndrome: A single institution perspective”. Cancer 

Research 80(2):347–353, 2020. 

14. Lustbader ED, Williams WR, Bondy ML, et al. “Segregation analysis of cancer in families of 

childhood soft-tissue-sarcoma patients”. American Journal of Human Genetics 51(2):344-356, 

1992. 

15. Strong LC, Stine M & Norsted TL. “Cancer in survivors of childhood soft tissue sarcoma and their 

relatives”. Journal of the National Cancer Institute 79(6):1213–1220, 1987. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

16. Bondy ML, Lustbader ED, Strom SS, et al. “Segregation analysis of 159 soft tissue sarcoma 

kindreds: comparison of fixed and sequential sampling schemes”. Genetic Epidemiology 9(5):291–

304, 1992. 

17. Louro J, Posso M, Boon MH, et al. “A systematic review and quality assessment of individualised 

breast cancer risk prediction models”. British Journal of Cancer 121(1):76–85, 2019. 

18. Quante AS, Whittemore AS, Shriver T, et al. “Breast cancer risk assessment across the risk 

continuum: Genetic and nongenetic risk factors contributing to differential model performance”. 

Breast Cancer Research 14(6):R144, 2012. 

19. Amir E, Evans DG, Shenton A, et al. “Evaluation of breast cancer risk assessment packages in the 

family history evaluation and screening programme”. Journal of Medical Genetics 40(11):807–

814, 2003. 

20. Barcenas CH, Hosain GMM, Arun B, et al. “Assessing BRCA carrier probabilities in extended 

families”. Journal of Clinical Oncology 24(3):354–360, 2006. 

21. Kwong A, Wong CHN, Suen DTK, et al. “Accuracy of BRCA1/2 mutation prediction models for 

different ethnicities and genders: Experience in a southern Chinese cohort”. World Journal of 

Surgery 36(4):702–713, 2012. 

22. Panchal SM, Ennis M, Canon S, et al. “Selecting a BRCA risk assessment model for use in a 

familial cancer clinic”. BMC Medical Genetics 9:116, 2008. 

23. Schneegans SM, Rosenberger A, Engel U, et al. “Validation of three BRCA1/2 mutation-carrier 

probability models Myriad, BRCAPRO and BOADICEA in a population-based series of 183 

German families”. Familial Cancer 11(2):181–188, 2012. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

24. Antoniou AC, Hardy R, Walker L, et al. “Predicting the likelihood of carrying a BRCA1 or BRCA2 

mutation: Validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring 

system using data from UK genetics clinics”. Journal of Medical Genetics 45(7):425–431, 2008. 

25. Tinat J, Bougeard G, Baert-Desurmont S, et al. “2009 version of the chompret criteria for Li-

Fraumeni syndrome”. Journal of Clinical Oncology 27(26):e108-9, 2009. 

26. Bougeard G, Renaux-Petel M, Flaman J,  et al. “Revisiting Li-Fraumeni syndrome from TP53 

mutation carriers”. Journal of Clinical Oncology 33(21):2345–2352, 2015. 

27. Hougaard P. “Frailty models for survival data”. Lifetime Data Analysis 1(3):255–273, 1995. 

28. Elston RC & Stewart J. “A general model for the genetic analysis of pedigree data”. Human 

Heredity 21(6):523–542, 1971. 

29. Iversen ES & Chen S. “Population-calibrated gene characterization”. Journal of the American 

Statistical Association 100(470):399–409, 2005. 

30. White MC, Holman DM, Boehm JE, et al. “Age and cancer risk: A potentially modifiable 

relationship”. American Journal of Preventive Medicine 46(3 Suppl 1):S7-S15, 2014. 

31. Malhotra J, Malvezzi M, Negri E, et al. “Risk factors for lung cancer worldwide”. European 

Respiratory Journal 48(3):889–902, 2016. 

32. Sung H, Hyun N, Leach CR, et al. “Association of first primary cancer with risk of subsequent 

primary cancer among survivors of adult-onset cancers in the United States”. Journal of the 

American Medical Association 324(24):2521–2535, 2020. 

33. Nielsen SF, Nordestgaard BG & Bojesen SE. “Associations between first and second primary 

cancers: A population-based study”. Canadian Medical Association Journal 184(1):E57-69, 2012. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

34. Bradford PT, Freedman MD, Goldstein AM, et al. “Increased risk of second primary cancers after 

a diagnosis of melanoma”. Archives of Dermatology 146(3):265-272, 2010. 

35. Chen S, Wang W, Broman KW, et al. “BayesMendel: An R environment for Mendelian risk 

prediction”. Statistical Applications in Genetics and Molecular Biology 3:Article21, 2004.  

36. Peng G, Bojadzieva J, Ballinger ML, et al. “Estimating TP53 mutation carrier probability in 

families with Li-Fraumeni syndrome using LFSPRO”. Cancer Epidemiology Biomarkers and 

Prevention 26(6):837–844, 2017. 

  

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2023. ; https://doi.org/10.1101/2023.08.31.23294849doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.31.23294849
http://creativecommons.org/licenses/by-nc-nd/4.0/


Validation of risk prediction models on genetic counseling data 

Tables and figures 

 

Figure 1: Comparison of the data collection process for RPB and CCB cohorts. RPB data are collected and updated over an extended period 

of time to ensure completeness and accuracy for research purposes, whereas CCB data represent a snapshot of information taken by genetic 

counselors over ~20 minutes during 1-hour counseling sessions. 
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 Research cohort (training data) Clinical cohort (validation data) 

 WT Mut U Total WT Mut U Total 

Male         

  Healthy 295 9 1,276 1,580 17 13 1,376 1,406 

  SPC 105 25 139 269 3 15 210 228 

  MPC 3 14 8 25 1 10 20 31 

  Subtotal 403 48 1,423 1,874 21 38 1,606 1,665 

Female         

  Healthy 341 8 1,207 1,546 21 20 1,203 1,244 

  SPC 120 21 102 243 3 33 260 296 

  MPC 4 19 10 33 1 59 32 92 

  Subtotal 465 48 1,319 1,832 25 112 1,495 1,632 

Total 868 96 2,742 3,706 46 150 3,101 3,297 

Table 1: Categorization of all family members in the research cohort (189 families) used as training data and the clinical cohort (124 

families) used as validation data by gender, number of primary cancers and mutation status. SPC = single primary cancer, MPC = multiple 

primary cancer, WT = wildtype, Mut = TP53 mutation, U = unknown 
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 RPB training data CCB validation data 

Number of families   

      All family members   

Complete data  189 (100%) 10 (8%) 

Missing ages at last contact only  0 (0%) 46 (37%) 

Missing ages at cancer diagnosis only 0 (0%) 0 (0%) 

Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 68 (55%) 

Total 189 124 

Chi-square test P < 0.001 

      First-degree relatives and spouse only   

Complete data  189 (100%) 68 (55%) 

Missing ages at last contact only  0 (0%) 41 (33%) 

Missing ages at cancer diagnosis only 0 (0%) 10 (8%) 

Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 5 (4%) 

Total 189 124 

Chi-square test P < 0.001 

Number of individuals   

      All family members   

Complete data 3,706 (100%) 1,748 (53%) 

Missing ages at last contact only 0 (0%) 1,339 (41%) 

Missing ages at cancer diagnosis only 0 (0%) 138 (4%) 
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Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 72 (2%) 

Total 3,706 3,297 

Chi-square test P < 0.001 

      First-degree relatives and spouse only   

Complete data  1,126 (100%) 487 (79%) 

Missing ages at last contact only  0 (0%) 105 (17%) 

Missing ages at cancer diagnosis only 0 (0%) 19 (3%) 

Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 2 (0.3%) 

Total  1,126 613 

Chi-square test P < 0.001 

Number of individuals per family   

      Min 3.00 1.00 

      5% percentile 4.00 1.00 

      10% percentile 4.80 4.00 

      25% percentile 6.00 16.00 

      Median 7.00 26.50 

      Mean 19.69 26.59 

      75% percentile 10.00 36.00 

      90% percentile 14.80 48.00 

      95% percentile 72.20 53.85 

      Max 719.00 75.00 

Table 2: Comparison of a research cohort (Pediatric Sarcoma as training data) and a clinical cohort (CCG as validation data) on the extent 

of missing ages at last contact and missing ages at cancer diagnoses at both family and individual levels. Summary statistics for the number 
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of individuals per family are reported to contrast the depth of data collection procedures in research and clinical cohorts as they happen in 

the unit of families 

 

 

 

 

Figure 2: ROC curves, and the 95% bootstrapped confidence intervals of the AUCs, for TP53 mutation predictions in the CCG cohort using 

the CS and MPC models under two scenarios: (a) predict mutations for both the probands and their family members when no genotype 

information is available and (b) predict mutations for family members given the probands’ confirmed genotypes. The classic and Chompret 

criteria are shown for comparison. Sample sizes: (a) n(mutation carriers) = 137, n(wildtypes) = 42 and (b) n(mutation carriers) = 30, 

n(wildtypes) = 39. 
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Figure 3: ROC curves, and the 95% bootstrapped confidence intervals of the AUCs, for predictive performance of the CS and MPC models 

on the CCG cohort under two scenarios: (a), (c) all validation subjects are included, and (b), (d) only known and inferred mutation carriers 

and wildtypes are included. For comparison, the KM method is used to predict at least one cancer versus no cancer. Sample sizes in scenario 

(a), (c): n(unaffected) = 1264, n(SPC) = 259, n(MPC) = 31, n(BR) = 94, n(SA) = 18, n(OT) = 220, n(D) = 497, n(A) = 879. Sample sizes in 

scenario (b), (d): n(unaffected) = 907, n(SPC) = 180, n(MPC) = 27, n(BR) = 69, n(SA) = 16, n(OT) = 157, n(D) = 379, n(A) = 617. BR: 

breast cancer, SA: sarcoma, OT: all other cancer types combined, D: death, A: alive.  
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MPC model  

Prediction objective All validation subjects O/E ratio 95% CI 

At least one cancer vs no cancer No 1.42 1.24 – 1.59 

At least one cancer vs no cancer (KM) No 0.65 0.57 – 0.72 

SPC vs MPC No 1.23 0.80 – 1.66 

At least one cancer vs no cancer Yes 1.59 1.42 – 1.75 

At least one cancer vs no cancer (KM) Yes 0.67 0.60 – 0.74 

SPC vs MPC Yes 1.26 0.84 – 1.68 

CS model 

Prediction objective All validation subjects O/E ratio 95% CI 

Breast cancer vs all other outcomes No 1.51 1.16 – 1.85 

Sarcoma vs all other outcomes No 0.63 0.33 – 0.94 

Other cancers vs all other outcomes No 1.39 1.19 – 1.60 

Breast cancer vs all other outcomes Yes 1.75 1.40 – 2.09 

Sarcoma vs all other outcomes Yes 0.59 0.32 – 0.87 

Other cancers vs all other outcomes Yes 1.45 1.27 – 1.63 

Table 3: O/E ratios, along with the 95% confidence intervals, for various prediction objectives of the CS and MPC models under two 

scenarios: (1) all validation subjects are included (No), and (2) only known and inferred mutation carriers and wildtypes are included (Yes). 
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