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Abstract 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are h

influenced by genetic factors. Genome-wide association studies (GWAS) have mapped 

of CVD-associated variants within the non-coding genome, which can alter the funct

regulatory proteins, like transcription factors (TFs). However, due to the overwh

number of GWAS single nucleotide polymorphisms (SNPs) (>500,000), prioritizing varia

in vitro analysis remains challenging. In this work, we implemented a computational app

that considers support vector machine (SVM)-based TF binding site classification and c

expression quantitative trait loci (eQTL) analysis to identify and prioritize potentia

causing SNPs. We identified 1,535 CVD-associated SNPs that occur within human

footprints/enhancers and 9,309 variants in linkage disequilibrium (LD) with differentia

expression profiles in cardiac tissue. Using hiPSC-CM ChIP-seq data from NKX2-5 and

two cardiac TFs essential for proper heart development, we trained a large-scale gapped

SVM  

(LS-GKM-SVM) predictive model that can identify binding sites altered by CVD-asso

SNPs. The computational predictive model was tested by scoring human heart footprin

enhancers in vitro through electrophoretic mobility shift assay (EMSA). Three v

(rs59310144, rs6715570, and rs61872084) were prioritized for in vitro validation bas

their eQTL in cardiac tissue and LS-GKM-SVM prediction to alter NKX2-5 DNA binding. Al

variants altered NKX2-5 DNA binding. In summary, we present a bioinformatic approac

considers tissue-specific eQTL analysis and SVM-based TF binding site classificat

prioritize CVD-associated variants for in vitro experimental analysis. 

 

Keywords: transcription factors, non-coding variants, gene regulation, cardiovascular dis

support vector machine 
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Introduction  

Cardiovascular diseases (CVDs) are the leading cause of death worldwide and encompass 

multiple disorders (coronary artery disease, congenital heart disease, stroke, etc.), many of 

which are heritable. 
1–5

 Genome-wide associations studies (GWAS) have mapped over 90% of 

CVD-associated variants within non-coding regions of the genome (promoters, enhancers, 

introns, 5,/3, UTRs, etc.). 
6,7

 Non-coding single nucleotide polymorphisms (SNPs) can impact 

phenotype by altering gene regulatory mechanisms, such as transcription factor (TF)-DNA 

binding and gene expression. 
8–11

 NKX2-5 and TBX5 are cardiac TFs that regulate gene 

expression in the developing heart. 
12–17

 Previous research has identified CVD-associated SNPs 

that alter cardiac TF-DNA binding, but further research is required to establish causality. 
18–22

 

However, with the overwhelming number of GWAS SNPs (>500,000), prioritizing potential 

CVD-causing variants for experimental validation remains challenging.  

One approach to address this challenge is implementing predictive models to identify 

variants that create or disrupt TF binding sites (TFBS). 
23–25

 Large-scale gapped k-mer (LS-GKM) 

support vector machine (SVM) predictive models can be trained to identify TFBS by using in 

vitro or in vivo DNA-binding data, such as chromatin immunoprecipitation followed by 

sequencing (ChIP-seq). LS-GKM-SVM models outperform traditional approaches, such as 

position weight matrix (PWM)-based methods, by considering complex sequence features like 

dinucleotide interactions, longer/gapped k-mers, and intracellular patterns. 
26–29

 LS-GKM-SVM 

predictive models can be trained with ChIP-seq data from specific cell lines or tissue to 

integrate relevant epigenomic and regulatory context. 
23

 

In this work, we present an integrative approach to prioritize functional non-coding 

variants that can contribute to the biology of CVDs. Using publicly accessible data from the 

GWAS catalog 
30

, GTEx Portal 
31

, ENCODE 
32

, ChIP-Atlas 
33

, and Remap 
34

, we compiled a list of 

CVD-associated SNPs linked with a differentially expressed gene in cardiac tissue. We trained a 

LS-GKM-SVM predictive model with ChIP-seq data from NKX2-5 and TBX5 in human-induced 

PSC-derived cardiomyocytes (hiPSC-CM). Both models were used to score previously identified 

heart DNase I hypersensitivity genomic footprints (DGF) 
35

 that colocalize within putative 

cardiac enhancers 
36

 and tested them through in vitro binding by electrophoretic mobility shift 

assay (EMSA). Our predictive model was successful at identifying NKX2-5 and TBX5 binding 

sites and distinguishing between DNA sequences with different binding affinities.  

Having validated DGF scored by the predictive model, we scored all CVD-associated 

SNPs to alter NKX2-5 DNA binding. We chose three variants (rs59310144, rs6715570, and 

rs61872084) to prioritize for in vitro validation based on their expression quantitative trait loci 

(eQTL) in cardiac tissue and LS-GKM-SVM prediction to alter NKX2-5 DNA binding. All three 

variants were validated through EMSA and resulted in changes on NKX2-5 DNA binding. In 

short, we present a bioinformatic approach that considers tissue-specific eQTL analysis and 

SVM-based TF binding site classification to prioritize functional CVD-associated SNPs.  
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Methods  

 

Data 

ChIP-seq data sets for NKX2-5 and TBX5 from human induced pluripotent stem cell-derived 

cardiomyocytes (HiPSC-CM) were collected from the ChIP-Atlas 
33

 and Remap 
34 

databases. 

Dnase I hypersensitivity footprints for fetal heart tissue (left atrium, right ventricle), heart 

fibroblast, and differentiated cardiomyocytes were obtained from ENCODE (ENCSR764UYH). 
32

Heart enhancers were downloaded from the supplementary files from Dickel et al. 
36

 Disease 

or trait-associated SNPs were downloaded from the GWAS catalog (gwas_catalog_v1.0-

associations_e0_r2022-11-29.tsv). 

 

Model training 

Large-scale gapped k-mer (LS-GKM) was implemented to perform predictions on TF-DNA 

binding affinity for NKX2-5 and TBX5. 
37,38

 LS-GKM was downloaded through the 

Comprehensive R Archive Network (CRAN), for Linux, Mac OS, and Windows platforms. For 

each TF ChIP-seq bed file, peaks were sorted by intensity and the top 1,000 peaks were used 

as a positive set for training the predictive models.
  

The genNullSeqs() function from the 

gkmSVM package in R was used to generate negative training by selecting unbound sequences 

of the same length, chromosome, and GC content as the positive training file. The gkmtrain() 

function was used to train the SVM classifiers. The following parameters were used to train 

the model using a fivefold cross-validation: word length (l) = 11 and the number of informative 

positions (k) = 7 (gkmtrain -x 5  -L 11  -k 7 -d 3 -C 1 -t 2 -e 0.005). Model performance was 

assessed via receiver operator characteristic (ROC) and precision-recall curves (PCR) area 

under the curve (AUC) using the gkmSVM package in R.  

 

Sequence Scoring 

The models for each TF were used to predict TF-DNA binding through weighted scoring. The 

gkmpredict() function was used to score 18 bp sequences within 519,540 DGF from cardiac 

tissue that were found within previously identified human heart enhancers. These sequences 

were identified by intersecting genomic coordinates of ~1.6 million DHFs from cardiac tissue 

with >80,000 putative enhancers active in fetal and adult human hearts that were identified 

through ChIP-seq. All function parameters were set to their default values and gkmpredict() 

was used to generate an output file listing all sequences and their respective assigned scores 

by the classifier model for NKX2-5 and TBX5 binding predictions. Positive scores predicted TF-

DNA binding, while negative scores predicted no binding activity.  

 

Motif Extraction from LS-GKM Models 

We scored and sorted every possible 11-mers and selected the top 1,000 sequences for the 

generation of a Position Weight Matrix (PWM) using the Multiple Em for Motif Elicitation 

(MEME)
39

 web-based tool default parameters to generate a logo. 
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Cardiovascular disease-associated risk-variants Identification 

Variants from the GWAS catalog were downloaded and filtered to identify CVD or trait-

associated SNPs. Variants were filtered from the “DISEASE/TRAIT” column using the following 

function:  

 

grepl('heart|cardiac|aortic|atrial|ventric|cardio|vascular|artery|coronary|myocardial|valve|

cardio|cardium|stroke', `DISEASE/TRAIT`) 

 

CVD SNPs were intersected with human putative enhancers active in the human heart and 

DGF from the fetal heart. CVD-associated SNPs that occur within human heart enhancers and 

footprints were expanded to include variants in linkage disequilibrium (LD) using the LDLinkR 

package. 
40

 CVD-associated SNPs and variants in LD found in cardiac tissue (heart atrial 

appendage and left ventricle) with differentially expressed genes were identified through the 

Genome Tissue Expression (GTEx) Portal database. 

 

NKX2-5 and TBX5 expression and purification 

The NKX2-5 homeodomain (HD) gene (Asp16 to Leu96) was cloned in pET-51(+) expression 

vector containing an N-terminal Strep•Tag II® and a C-terminal 10× His•Tag® through Gibson 

Cloning and purified through Ni-NTA affinity chromatography, as previously described. 
18

 The 

human TBX5 gene (Clone ID HsCD00079979, DNASU Plasmid Repository, AZ) was cloned in 

pEU-E01-GST-TEV-MCS-N1 (Cambridge Isotope Laboratories, Inc. CFS-PEU-V1.0) vectors using 

Gibson Assembly (New England Biolabs, Inc). Clones were verified by Sanger Sequencing from 

the University of Wisconsin Biotechnology Center DNA Sequencing Facility. Protein expression 

was made using the Wheat Germ Cell-Free Protein Expression from the CellFree Sciences Co 

following the manufacturer’s protocol. Protein expression was confirmed through an SDS-

PAGE followed by Western Blot using Anti-GST HRP-conjugated (NB100-63173) antibody 

(Novus Biological). 

  

Electrophoretic mobility shift assay 

NKX2-5 and TBX5 binding to their respective scored sequences of human heart footprints and 

enhancers were evaluated using 20 bp sequences that contained an additional 20 bp constant 

sequence for IR-700 fluorescent marking (IDT). All sequences were ordered in IDT and are 

available in Supplementary Table 1.  The IR-700 fluorophore was added to all the sequences 

through a primer extension reaction and purified using the QIAquick® PCR Purification Kit 

(Qiagen 28106). Binding reactions were performed in binding buffer (50 mM NaCl, 10 mM Tris-

HCl (pH 8.0), and 10% glycerol) and 5 nM fluorescently labeled dsDNA. Five concentration 

points were employed for purified NKX2-5 HD ranging from 50 nM to 2000 nM. Cell-free TBX5-

DNA binding was evaluated using four TBX5 dilutions (1, 1/5, 1/10, and 1/25) of the cell-free 

extract.  Binding reactions were incubated for 30 min at 30°C followed by 30 min at room 

temperature before loading onto a 6% polyacrylamide gel in 0.5x TBE (89 mM Tris/89 mM 
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boric acid/2 mM EDTA, pH 8.4). The gel was pre-ran at 85 V for 15 min, loaded at 30 V, and 

resolved at 75 V for 1.5 h at 4°C. Gels were imaged with Azure® Sapphire Bio-molecular Imager 

with 658 nm excitation and 710 nm emission. 

 

Binding curves were generated by first quantifying the fluorescence signal in each DNA band 

using ImageJ. Background intensities obtained from blank regions of the gel were subtracted 

from the band intensities. The fraction of bound DNA was determined using Equation 1. The 

fraction of bound DNA was plotted versus the TF concentration. Binding curves were obtained 

by “one-site specific binding” non-linear regression using Prism software. 

 

Equation 1. Binding Affinity from the integrated density of bound and unbound bands. 
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Results and Discussion 

 
Figure 1: Identification of functional CVD-associated SNPs. A) Pipeline to identify potential 

CVD-causing SNPs. B) Number of CVD-associated SNPs per chromosome. C) Distribution of SNP 

frequency within autosomal chromosome, binned by 1Mb windows. D) SNP-Gene pairs with 

differential gene expression in cardiac tissue. Each dot represents a SNP-Gene pair that is 

differentially expressed in heart atrial appendage or left ventricle in one or more populations. 

rs6715570-BARD1, rs61872084-METTL10 and rs59310144-RNASEH2B are SNP-Gene pairs that 

were evaluated in vitro in Figure 3.  
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To identify potential CVD-causing SNPs, we downloaded the GWAS catalog and filtered the 

data to keep cardiovascular disease or trait-associated SNPs (e.g., congenital heart defects, 

cardiomyocyte differentiation, stroke, arrhythmia, etc.; full list of SNPs in Supplementary File 

1). We then intersected the CVD-associated SNPs with a catalog of putative fetal and adult 

heart enhancers and genomic footprints of fetal hearts, resulting in 1,535 genomic variants. 

The CVD-associated SNP set was expanded to include SNPs in linkage disequilibrium (LD r
2
>0.8) 

from diverse populations (EUR, AFR, SAS, EAS, and AMR) and resulted in 9,309 unique SNPs 

occurring in one or more populations. To evaluate the potential of these SNPs to be 

biologically relevant in cardiovascular biology, we analyzed gene expression patterns in cardiac 

tissue with the previously identified variants in the GTex portal. We found 636 differentially 

expressed genes associated with the previously identified SNPs in the heart atrial appendage 

or left ventricle. The workflow is illustrated in Figure 1A and the list of SNPs associated with 

differentially expressed genes in cardiac tissue is found in Supplementary File 1. The 

distribution of CVD-associated SNPs is not uniform throughout the genome. We identified 

chromosomes with a higher frequency of CVD-associated SNPs which contain >1,000 variants 

(chromosomes 1 and 6) and ~500 (chromosomes 2, 3, 7, 15, 17, and 22), including those in LD 

(Figure 1B). Chromosomes with a high SNP frequency may have variants evenly distributed 

among them, like chromosomes 1 and 2, while others contain multiple variants in the same (or 

near) loci, like chromosomes 6, 10, 15, and 22 (Figure 1C). This suggests that certain 

chromosomes, or specific loci, are enriched with CVD-associated SNPs and contribute to the 

cardiac phenotype. We also analyzed data from the GTEx database to find genes that are 

differentially expressed in cardiac tissue (heart atrial appendage and left ventricle) containing 

the identified CVD-associated SNPs or the variants in LD. We identified 25,479 SNP-Gene pairs 

(636 unique genes) that were significantly differentially expressed in cardiac tissue (Figure 1D). 

Through this approach, we aimed to narrow the extensive list of non-coding variants and 

identify functional SNPs that contribute to CVD.  
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Figure 2: Training and testing of LS-GKM SVM predictive model. A) Schematic of model 

training with NKX2-5 and TBX5 ChIP-seq data from HiPSC-CM. B) Scoring of ~520,000 DGF that 

occur in heart enhancers with the NKX2-5 (top) and TBX5 (bottom) predictive models. C) In 

vitro testing of predictive model for highest, middle, and lowest scored sequences for NKX2-5 

(top) and TBX5 (bottom). For NKX2-5, we tested chr22:25120040-25120058 (circle with blue 

line), chr3:8596782-8596800 (triangle with green line), and chr7:101950814-101950832 

(square with red line). For TBX5, we tested chr2:30359836-30359854 (circle with blue lines), 

chr1:57623182-57623200 (triangle with green line), and chr4:119047319-119047337 (square 

with red line). 
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We trained a LS-GKM SVM model to prioritize CVD-associated SNPs that alter DNA binding by 

TFs known to play important roles in heart development and biology. The models were trained 

using human induced pluripotent stem cell-derived cardiomyocytes (HiPSC-CM) ChIP-seq data 

for NKX2-5 and TBX5. The 1,000 top-scoring ChIP-seq peaks were used as a positive training 

set, while unbound sequences of the same length, GC content, and chromosome were used as 

negative training (Figure 2A)      The best-performing LS-GKM SVM classifier model trained with 

NKX2-5 ChIP-seq data (SRX9284027) 
41

 obtained an AUROC value of 0.955 and an AUPRC value 

of 0.954. The best TBX5 (SRX2023721) 
42 

model obtained an AUROC value of 0.921 and an 

AUPRC value of 0.912 (Supplementary Figure 1A-B). The models were used to score all 

possible 2,097,152 non-redundant 11 bp oligomers (11-mers). The 11-mer scores were sorted 

and the 1,000 top-scoring sequences were used to generate Position Weight Matrix (PWM) 

using MEME (Supplementary Figure 1C-D). The PWMs for both models resulted in DNA 

binding motifs in agreement with previously described models for NKX2-5 and TBX5. 
43–45

 We 

proceeded to score ~520,000 fetal heart DGF that occur heart enhancers to identify genomic 

loci potentially bound by NKX2-5 or TBX5 (Figure 2B). We then chose the DNA sequences with 

the highest, middle, and lowest scores to test for in vitro binding through EMSA (Figure 2C, 

Supplementary Figure 2). There was agreement between LS-GKM SVM scores and extent of in 

vitro binding activity for both, NKX2-5 and TBX5. Our results suggest that our LS-GKM SVM 

model will be able to successfully predict changes in binding affinity between reference and 

variant DNA sequences that alter cardiac TF-DNA binding.  
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Figure 3: CVD-associated SNPs alter NKX2-5 in vitro binding. A) DelstaSVM score distribution of 

the 9,309 CVD-associated SNPs. B) Representative EMSA gel for rs59310144 reference (Ref) 

and alternate (Alt) alleles. C) Binding curves for reference (Ref) and variant (Alt) alleles of 

rs59310144 (top), rs6715570 (middle), and rs61872084 (bottom). Experiments were 

performed in triplicates and binding curves show average bound fractio (X) and error bars are 

standard error. D) Cardiac tissue eQTL analysis of RNASEH2B (top), BARD1 (middle), and 

METTL10 (bottom) expressed in heart atrial appendage or left ventricle when rs59310144, 

rs6715570, and rs61872084 occur, respectively.  
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After successful training and validation of the LS-GKM SVM predictive model, we proceeded to 

score the 9,309 SNPs to prioritize functional variants. Both reference and alternate allele 

sequences were scored to predict fold change (deltaSVM score) of TF-DNA binding. We 

selected three SNPs (rs59310144, rs6715570, and rs61872084) that deltaSVM predicted 

significant change in NKX2-5 binding and are associated with a differentially expressed gene in 

cardiac tissue (Figure 3A, Supplementary Table 2). When evaluated through EMSA, we 

observed a differences in NKX2-5 DNA binding between reference and alternate for all three 

SNPs (Figure 3B-C, Supplementary Figure 3). Variants rs59310144 and rs61872084 resulted in 

a decrease in NKX2-5 DNA binding, while rs6715570 increased binding.  

 

We found that all three SNPs were in eQTLs described in cardiac tissue and identified three 

genes that are differentially expressed when these variants occur in the heart atrial appendage 

or left ventricle (Figure 3D). RNASEH2B and BARD1 have been previously identified to be 

differentially expressed in the heart atrial appendage when variants rs59310144 and 

rs6715570 (respectively) occur. RNASEH2B, which has been previously found to be 

differentially expressed in CVD risk events, is upregulated when the alternate allele of variant 

rs59310144 is present. 
46

 BARD1 has also been identified as upregulated when the alternate 

allele of variant rs6715570 occurs in the heart atrial appendage. Copy number alterations in 

the BARD1 locus have been associated with developmental delays, including coarctation of the 

aorta during early organogenesis and heart development. 
47

 Variant rs61872084 has been 

identified in the heart's left ventricle when METTL10 (Methyltransferase like protein 10) is 

downregulated when the alternate allele occurs. Accumulation of METTL10 methylated 

products, such as S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, and homocystein 

have been correlated with kidney dysfunction and CVD in patients with type 2 diabetes. 
48

 This 

suggests that NKX2-5 regulation of the RNASEH2B (inhibition), BARD1 (activation), and 

METTL10 (activation) genes are possible mechanisms that can be further explored to establish 

rs59310144, rs6715570, and rs61872084 as causal CVD risk-variants. 
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Conclusion 

As we continue to research the genetic basis for human disease, the number of identified 

functional/causal non-coding SNPs continues to grow. Understanding and prioritizing SNPs 

that contribute to the disease phenotypes is essential. However, we lack a consensus or 

bioinformatic protocol to prioritize non-coding SNPs that are biologically relevant in the 

development of human diseases. 
25

 To address this challenge, we applied a GKM-SVM-based 

model to identify and prioritize potential CVD-causing variants for experimental validation. We 

leveraged on public data from the GWAS catalog and extracted SNPs that were associated with 

cardiovascular disease or traits and included variants in LD from multiple populations (EUR, 

AFR, SAS, EAS, and AMR). These SNPs were analyzed with data from the GTEx database to 

identify genes that are differentially expressed when these variants are present in cardiac 

tissue. We tested three SNPs (rs59310144, rs6715570, and rs61872084) associated with a 

differentially expressed gene (RNASEH2B, BARD1, and METTL10 respectively) in cardiac tissue 

that resulted in changes in NKX2-5 DNA binding activity. Our findings open the possibility that 

NKX2-5 regulation of RNASEH2B, BARD1, and METTL10 is a possible mechanism that can be 

further researched to determine the causality of CVD-risk variants. Although the etiology of 

human diseases is complex and multifactorial, this approach can provide crucial information 

that can be implemented during in vivo experiments or clinical research to address genetic 

diseases caused by non-coding SNPs. In summary, we believe this bioinformatic approach, 

which considers tissue-specific eQTL analysis and SVM-based TF binding site classification, is a 

scalable method that can be applied to multiple types of human diseases.  
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Supplementary Material 

 

Table 1: Oligonucleotides used in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NKX2-5 enhancer 

chr22:25120040-25120058 
5'- ACTTCTTGAGTGCCTGCTCGTGCCAATGCCGCCGTAAG -3' 

NKX2-5 enhancer 

chr3:8596782-8596800 
5'- CCATGCTATCATCACTCACGTGCCAATGCCGCCGTAAG -3' 

NKX2-5 enhancer 

chr7:101950814-101950832 
5'- AGTGCTGGGATTACAGGCCGTGCCAATGCCGCCGTAAG -3' 

TBX5 enhancer 

chr2:30359836-30359854 
5'- TGGTGCTGACAGCTGGGACGTGCCAATGCCGCCGTAAG -3' 

TBX5 enhancer 

chr1:57623182-57623200 
5'- GCCGGCAGAGCTGACAGGCGTGCCAATGCCGCCGTAAG -3' 

TBX5 enhancer 

chr4:119047319-119047337 
5'- AAGTGCTGGGATTACAGGCGTGCCAATGCCGCCGTAAG -3' 

rs6715570-ref 5'- TAACACTCATGAAAATGTCTCGTGCCAATGCCGCCGTAAG -3' 

rs6715570-alt 5'- TAACACTCAAGAAAATGTCTCGTGCCAATGCCGCCGTAAG -3' 

rs61872084-ref 5'- AATTCAACACTTTCATTAAACGTGCCAATGCCGCCGTAAG -3' 

rs61872084-alt 5'- AATTCAACATTTTCATTAAACGTGCCAATGCCGCCGTAAG -3' 

rs59310144-ref 5'- AGAAGTCAAGTAATCTGTCACGTGCCAATGCCGCCGTAAG -3' 

rs59310144-alt 5'- AGAAGTCAAATAATCTGTCACGTGCCAATGCCGCCGTAAG -3' 

IR 700 Primer 5’- /5IRD700/CTTACGGCGGCATTGGCACG -3’ 

TBX5 Cloning pEU Forward 5'- CTGTATTTTCAGGGCATGGCCGACGCAGAC -3’ 

TBX5 Cloning pEU Reverse 5'- CGTAAATTCTATACAACTACAAGCTATTGTCGC -3’ 
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Supplementary Figure 1: Performance parameters and motif analysis. Perfor

parameters of A) NKX2-5 and B) TBX5 as determined by their receiver operating characte

(ROC) and precision-recall curves. Binding motif for C) NKX2-5 and D) TBX5 after scor

possible 11-mers and generating a PWM logo. 
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Supplementary Figure 2: EMSA analysis of heart footprint and enhancers for NKX2-5 (le

TBX5 (right). All EMSA were performed and triplicates and regions within dashed were u

generate binding curves.  
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Supplementary Figure 3: EMSA analysis of three CVD-associated SNPs. 
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Supplementary Table 2: CVD-associated SNPs with differential gene expression in cardiac 

tissue and predicted impact on NKX2-5 DNA binding.  

Query SNP LD SNP Chr Position 
Ref 

score 

Alt 

score 

deltaSVM 

Score 
Gene Tissue 

P 

value 

Association t

CVD 

rs17074987 rs59310144 13 50917644 
G 

(0.56) 

A 

(0.06) 
-0.5 RNASEH2B 

Heart - 

Atrial 

Appendage 

2.33E-

39 

Identified as

differentially

expressed in

CVD risk 

events 

rs6435862 rs6715570 2 214808716 

T  

(0.217) 

 

C  

(0.92) 

 

0.7 

 

BARD1 

 

Heart - 

Atrial 

Appendage 

 

2.39E-

25 

 

Associated 

with 

development

delay and 

coarctation o

aorta in early

organogenes

and heart 

developmen

 

rs11245347 rs61872084 10 124750493 
C 

(0.44) 

T 

(-0.2) 
-0.63 METTL10 

Heart - Left 

Ventricle 

6.81E-

27 

A high 

concentratio

of enzymatic

product (tHcy

is correlated

with kidney 

dysfunction

and CVD 
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