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Abstract

Recent advances in genome sequencing have led to the identification of new ion and metabolite 

transporters, many of which have not been characterized. Due to the variety of subcellular 

localizations, cargo and transport mechanisms, such characterization is a daunting task, and 

predictive approaches focused on the functional context of transporters are very much needed. 

Here we present a case for identifying a transporter localization using evolutionary rate 

covariation (ERC), a computational approach based on pairwise correlations of amino acid 

sequence evolutionary rates across the mammalian phylogeny. As a case study, we find 

that poorly characterized transporter SLC30A9 (ZnT9) coevolves with several components 

of the mitochondrial oxidative phosphorylation chain, suggesting mitochondrial localization. 

We confirmed this computational finding experimentally using recombinant human SLC30A9. 

SLC30A9 loss caused zinc mishandling in the mitochondria, suggesting that under normal 
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conditions it acts as a zinc exporter. We therefore propose that ERC can be used to predict the 

functional context of novel transporters and other poorly characterized proteins.

Introduction

Localization in a specific organelle or subset of organelles defines the functional context 

for many molecules, especially ion and metabolite transporters. For example, there are 

ion channels and transporters that localize to the plasma membrane or endo/sarcoplasmic 

reticulum, and even though they might conduct the same ions, they clearly have a different 

impact on cellular function [1–3]. Similarly, a large cohort of zinc transporters, responsible 

for pumping ionic zinc into distinct organelles or in or out of cells, subserve distinct 

functions, including synaptic modulation [4] and co-secretion with milk, in the latter case 

providing an essential dietary supplement and shaping mammary gland development [5]. 

The recent advances in genomic sequencing have resulted in identification of many putative 

transporters. While some aspects of their function can be inferred based on sequence 

homology or structural similarity to previously characterized molecules, important details, 

such as subcellular localization, are usually beyond the reach of these approaches. The 

main objective of the present studies is to evaluate whether a computational approach based 

on molecular evolution can accurately predict cellular localization of poorly characterized 

cellular proteins. Here, this idea was tested using zinc transporters as a model.

Zinc is an essential component of cellular function, as a key cofactor in enzymatic 

reactions, transcription and synaptic transmission [6]. Moreover, it has been estimated 

that ~10% of human proteome binds zinc [7]. Zinc deficit is a factor in growth delays, 

hair and skin pathologies and behavioral defects [8]. On the other hand, excess zinc 

promotes the production of reactive oxygen species and many forms of cell damage [9–12]. 

Because of zinc’s duality, cellular zinc concentrations are tightly regulated by a system 

of transporters and metal-binding proteins. In particular, zinc entry into the cytoplasm is 

managed by the SLC39A (Zip) family of transporters, while its expulsion or sequestration 

into organelles is driven by the SLC30A family. Metallothioneins, in addition to other 

zinc-binding proteins, provide an important intracellular buffer for the metal, leading to 

extremely low (sub nanomolar), or perhaps non-existent, levels of free zinc within the 

cytoplasm [13]. The zinc transporter families contain two dozen of structurally related 

members, which were discovered as a result of advances in sequencing technology and 

gene annotation [6]. However, many of these molecules remain under-characterized at the 

level of subcellular localization or transport mechanisms. The full extent of annotations 

supported by several lines of experimental evidence indicates that, for example, SLC30A1 

and SLC39A1 function in the plasma membrane [14,15], SLC30A3 functions in synaptic 

vesicles [16] and SLC30A2 and SLC30A4 function in lysosomes and related organelles 

[17,18]. For many of the remaining SLC30A and SLC39A transporters, however, functional 

annotations, including cellular localizations, are fragmentary. Importantly, some organelles 

appear to contain several zinc transporters with overlapping functions, and the reason for this 

is unclear [6,19].
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At the same time, some key aspects of organellar zinc transport remain poorly understood 

and/or lack an assigned transporter. This is especially the case for mitochondrial zinc, which, 

as a cofactor of several mitochondrial enzymes, is a critical component of mitochondrial 

physiology [20,21]. In parallel to full-cell consequences of zinc dysregulation, mitochondrial 

zinc overload is toxic and has been linked to traumatic brain injury and stroke [12]. The 

mechanisms of mitochondrial zinc regulation are poorly understood and neither SLC30A 

nor SLC39A members have been directly shown to localize in the mitochondria. Moreover, 

while the mitochondrial calcium uniporter MCU was proposed to be responsible for zinc 

uptake into the mitochondria from the cytoplasm [21,22], the pathway that dissipates the 

mitochondrial zinc has not been described.

These considerations illustrate a need for a predictive approach to match zinc transporters 

to specific organelles and focus experimental hypotheses to a reasonable set of targeted 

studies. We propose Evolutionary Rate Covariation (ERC) as the link between functional 

genomic information about zinc transporters and their associated organelles. ERC is 

based on the central hypothesis that proteins with shared functional context will share 

evolutionary pressure and thus evolve at similar rates, even as their rates change over 

time and between species [23,24]. This evolutionary rate covariation occurs in physically 

interacting proteins that coevolve as well as functionally related proteins such as gene 

regulatory elements, membrane traffic adaptors, and transporters. It is also important to 

note that many, but not all, recognized functional relationships between genes are reflected 

by high ERC correlations. Because of its predictive capability in some pathways, ERC 

has been used to identify the functions of uncharacterized genes, including novel DNA 

damage-induced apoptosis suppressor, sex peptide network components, regulators of cell 

adhesion, mitochondrial components and ion and aminoacid transporters [23,25–30]. ERC 

is calculated as correlation between evolutionary rates throughout a phylogeny. In fact, the 

work presented here will focus on values calculated across 33 mammal species. Genes are 

inferred to be functionally related if they have a high degree of correlation in evolutionary 

rates, or, in other words, if the genes in question have similar evolutionary rates across 

species.

We present ERC as a powerful tool for de novo prediction of molecular function 

with characterization of the zinc transporter SLC30A family, specifically SLC30A9, its 

most poorly characterized member. Although there are previously reported links to zinc 

transport [31,32], this transporter had previously not been linked to an organellar function 

in mammalian cells. We show here that ERC analysis suggests a strong and specific 

signal for SLC30A9 coevolution with several components of the mitochondrial oxidative 

phosphorylation chain including complex I, and the mitochondrial H+ driven ATP synthase 

(complex V [33,34]). The ERC signal between SLC30A9 and mitochondrial complexes was 

significantly higher than the signal between SLC30A9 and the vacuolar/vesicular/lysosomal 

H+ pump. We also find that recombinant SLC30A9 co-localizes with the mitochondrial 

protein marker TOM20, strongly suggesting mitochondrial localization. This is consistent 

with prior evidence contained in MitoCarta, which integrates multiple lines of evidence 

for mitochondrial localization and function of proteins, including APEX_matrix, targetP 

signal, yeast mitochondrial homolog, mitochondrial protein domain, induction, and MS/MS 

[35,36]. Furthermore, SLC30A9 knockdown in HeLa cells using siRNA suppresses the 

Kowalczyk et al. Page 3

Biochem J. Author manuscript; available in PMC 2023 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dissipation of mitochondrial zinc after zinc overload. We therefore propose that SLC30A9 

is a mitochondrial zinc exporter and thus possesses a unique functional profile unique for 

members of the SLC30A family. Of interest, further inquiry of SLC30A sequence revealed 

that SLC30A9 has followed a unique evolutionary trajectory — it is deeply and highly 

conserved from mammals through archaea and proteobacteria, while other SLC30As are 

likely a result of more recent gene duplication events. These findings both illuminate the 

function of SLC30A9 and distinguish it as a unique molecule among SLC30A family 

members.

Materials and methods

Discovery and categorization of SLC30 sequences

Mammalian and other multi-cellular eukaryotic amino acid sequences of SLC30 family 

members were obtained using Pubmed search and aligned using CLUSTALW [37]. The 

ExxHxxxD…(IVL)(IVL)xED and DxxHxxxD… HxxxD tempates were used as wildcard 

searches of single-celled eukaryotic and prokaryotic sequences by means of BLASTp. The 

resulting sequences were verified for the presence of six full or partial transmembrane 

domains using TMHMM server.

Phylogenetic analysis

SLC30 family proteins and related homologs collected in the previous step were analyzed 

in terms of their divergence and phylogeny. Amino acid sequences were aligned using 

CLUSTALW [38]. The resulting alignment was used in PhyML 3.0 to infer their 

phylogenetic relationships and perform branch support analysis using 100 bootstrap 

replicates [39]. The ‘LG’ amino acid substitution model was used and rate heterogeneity 

was modeled using a class of invariable sites with freely estimated size and a Gamma rate 

shape parameter discretized as four rate categories. The tree figure in Figure 2 was made 

using Interactive Tree of Life (iTOL) [40,41].

Evolutionary rate covariation

The calculation of ERC values was performed as in previous publications [23,24]. In 

this case, orthologous gene sequences from 33 mammalian species were obtained from 

the 100-way alignment at the University of California Santa Cruz Genome Browser [42]. 

The species chosen were: Homo sapiens (human), Pongo pygmaeus abelii (orang-utan), 

Macaca mulatta (rhesus macaque), Callithrix jacchus (marmoset), Tarsius syrichta (tarsier), 

Microcebus murinus (mouse lemur), Otolemur garnettii (bushbaby), Tupaia belangeri (tree 

shrew), Cavia porcellus (guinea pig), Dipodomys ordii (kangaroo rat), Mus musculus 
(mouse), Rattus norvegicus (rat), Spermophilus tridecemlineatus (squirrel), Oryctolagus 
cuniculus (rab- bit), Ochotona princeps (pika), Vicugna pacos (alpaca), Sorex araneus 
(shrew), Bos taurus (cow), Tursiops truncatus (dolphin), Pteropus vampyrus (megabat), 

Myotis lucifugus (micro- bat), Erinaceus europaeus (hedgehog), Equus caballus (horse), 

Canis lupus familiaris (dog), Felis catus (cat), Choloepus hoffmanni (sloth), Echinops 
telfairi (tenrec), Loxodonta africana (elephant), Procavia capensis (rock hyrax), Dasypus 
novemcinctus (armadillo), Monodelphis domestica (opossum), Macropus eugenii (wallaby), 

and Ornithorhynchus anatinus (platypus). Those 17 486 coding sequence alignments were 
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used to calculate gene-specific branch lengths over the mammalian species tree topology 

using codeml of the PAML package [43]. For each orthologous gene group/tree, the branch 

lengths were normalized into relative evolutionary rates through a projection operator [44]. 

Those relative rates were then used to calculate the Pearson correlation coefficient, the ERC 

value, between each pair of genes.

Enrichment analysis of organellar proteomes

Pairwise ERC values between SLC30 genes and all other genes were extracted from the 

ERC website: https://csb.pitt.edu/erc_analysis/. Values for gene subsets of interest were 

used to generate visualizations and calculate enrichment statistics. Shown in Figure 3A are 

ERC values using proteomes included in Supplementary File S1 represent key elements 

of mitochondrial and lysosomal proteomes that would interact with zinc transporters. 

Enrichment statistics were calculated using two sets of annotations to map genes to 

functions. First, search terms were used (shown in Figure 3B) to search gene descriptors 

for each gene taken from the UCSC Genome Browser gene track. If a descriptor contained 

the term, the gene was mapped to that search term annotation. Also included were MitoCarta 

annotations [35,36] describing mitochondrial genes. After extracting terms, enrichment was 

calculated in two ways. First, a one-tailed Fisher’s exact test was performed to detect an 

increased proportion of annotated genes with ERC values above 0.3. This test indicates 

that a gene being included in a particular annotation and the gene having a high ERC 

value are related. Second, a Wilcoxon rank-sum test was performed to look for shifts 

in distributions of ERC values for genes in a particular annotation compared with genes 

not in that annotation. AUC values, which range from 0 to 1, were calculated directly 

from the Wilcoxon rank-sum W statistic as W/(number of annotated genes × number of 

unannotated genes). Small AUC values indicate that annotated genes have lower ERC values 

than unannotated genes and large AUC values indicate that annotated genes have higher 
ERC values than unannotated genes.

Clustering

Clusters depicted in Figure 4A were constructed using igraph [45]. Genes included were 

selected from genes listed in Supplementary File S2 that represent mitochondrial complexes 

and ATP transporters. Lines were drawn to connect genes with ERC values greater than or 

equal to 0.3 and singleton genes that did not connect to other genes were removed. The 

optimal clustering algorithm implemented in igraph was used to define clusters.

Protein expression and widefield microscopy

YFP-tagged C- and N-terminal in-frame fusions of human SLC30A9 sequence 

(NP_006336.3) were synthesized by Vectorbuilder (Chicago, IL, U.S.A.) and transfected 

in HeLa cells using Lipofectamine 3000 (ThermoFisher, Waltham, MA, U.S.A.). Before 

transfection, the cells were grown in plastic culture dishes in DMEM supplemented with 

10% FBS, at 37°C, 5% CO2, in a humidified incubator and plated on glass coverslips at 

~70% confluency. The cells were fixed in 4% formaldehyde (in phosphate-based solution, 

5 min incubation) 16–24 h post-transfection, permeabilized with 0.1% Triton X100 in 

phosphate-based solution, 5 min incubation, transferred to blocking buffer (1% bovine 

serum albumin and 1% goat serum in phosphate-based solution, 1–24 h) and then treated 
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with primary and secondary (fluorescent) antibodies. T0M20 antibodies (polyclonal, cat 

number PA5–52843) and Alexa 568-tagged secondary antibodies were from ThermoFisher. 

The imaging was performed using Nikon SP-1 microscope and analyzed using FIJI [46].

Zinc imaging and qPCR

HeLa cells cultured as above and grown in 12-well culture plates or 35 mm Mattek dishes 

(MatTek Corp) were transfected with SLC30A9 esiRNA (Sigma, St Louis, MO, U.S.A.) and 

used 16–48 h post-transfection. qPCR analysis was performed as before [47], and the data 

were analyzed using the DDCt method. ACTB was used as a housekeeping gene; primers 

were optimized as described before [47]. For zinc-loading experiments, the cells were 

exposed to 100–300 μM ZnCl2 in DMEM/FBS for 16 h. Next, the cells were washed, loaded 

with 5 mM Rhod-2,am (ThermoFisher) in a zinc-containing HEPES-based salt solution 

(HBSS, in mM: 140 NaCl, 5 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES (pH 7.4) and 1 g/l glucose, 

supplemented with 100–300 μM ZnCl2) and washed again. The dishes were inserted into a 

closed, thermo-controlled (37°C) stage top incubator (Tokai Hit Co.) above the motorized 

stage of an inverted Nikon TiE fluorescent microscope equipped with a 60× optic (Nikon, 

CFI Plan Fluor, NA 1.4), a diode-pumped light engine (SPECTRA X, Lumencor). Emissions 

were detected using an ORCA-Flash 4.0 sCMOS camera (Hamamatsu) and excitation and 

emission filters were from Chroma. Zinc removal was performed by manual aspiration 

and gravity-fed application of nominally zinc-free HBSS. The recorded image stacks were 

analyzed using FIJI. Specifically, discrete regions of interest containing clearly identifiable 

mitochondria were outlined by hand and the dynamics of average fluorescence intensity in 

these images was analyzed and compared. Data are presented as the mean ± standard error 

of the mean.

Results

SLC30A9 phylogeny

We sought to investigate SLC30A9 function by analyzing its evolution throughout the tree of 

life. Although SLC30A9 variants have been previously identified in some species, including 

rat, mouse, zebrafish, and fruit fly (Pubmed search), we performed a more rigorous, targeted 

search. Due to heterogeneity of the SLC30A/SLC39A superfamily, we began by establishing 

defining features of SLC30A9 and other SLC30As. Zinc permeation by SLC30A is 

coordinated by aspartate and histidine residues contributed by the HxxxD motif (flanked 

by D at position 39 of human SLC30A1, forming DxxHxxxD signature) and by the HxxxD 

motif located downstream of the first motif (at position 250 of human SLC30A1) (Figure 

1A; full alignment in Supplementary Figure S1). Previously published crystal structures and 

homology modeling show that these motifs are located in the transmembrane domains 2 

and 5 of human SLC30As [48–50]. Amino acid alignment of human and other organisms’ 

SLC30A9 with other SLC30As, coupled with homology modeling, reveals a distinct and 

conserved arrangement (Figure 1A and Supplementary Figure S1). In human SLC30A9, the 

HxxxD sequence is flanked by a glutamate residue (ExxHxxxD at position 268 of human 

SLC30A9) and the downstream sequence is ILLED.
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These substitutions provide a unique signature that identifies SLC30A9 and distinguishes 

it from other SLC30A family members. The signatures are surprisingly well conserved: 

homologous sequences containing these substitutions and transmembrane domain 

arrangements reminiscent of human SLC30A9, are found throughout the tree of life (Figure 

1A and Supplementary Figure S1). Critically, a detailed phylogenetic analysis of SLC30A9 

candidates and other members of the SLC30A family identifies SLC30A9 as a distinct 

phylogenetic entity, components of which are more related to each other across the tree of 

life, than to other SLC30A members.

The substitutions specific to SLC30A9 appear to be exceptionally well-conserved as we can 

detect SLC30A9 homologous sequences containing the invariant ExxHxxxD…(I/V/L)(I/V/

L)xED in every clade except for the yeast and other fungi (Table 1, Figures 1C, 2, see 

additional trees in Supplementary Figures S2, S3). This includes archaea, proteobacteria, 

cyanobacteria, firmicutes, and actinobacteria, as well as every animal species tested. 

Organisms on which SLC30A9 is present typically contain a single SLC30A9 homolog, 

with the exception of Nostoc punctiforme (2 copies), Actinobacteria bacterium (2 copies), 

and Micrarchaeota archaeon (3 copies). The SLC30A superfamily increases in complexity 

in eukaryotes, with ten members (including SLC30A9) in mammals, six members in Ciona 
intestinalis and Drosophila melanogaster, and 4 members in Hydra vulgaris. However, of 

important note, the numerous duplications of SLC30As are not paralleled by increasing 

numbers of SLC30A9 homologs (Figures 1C, 2). This distinction points toward a unique 

evolutionary trajectory for SLC30A9 compared with other SLC30s, potentially because of a 

unique molecular function for this transporter.

As further evidence of SLC30A9’s unique evolution, the human SLC30A9 is more closely 

related to bacterial SLC30A9 than to other human SLC30As based both on sequence 

identity and on clustering through sequencebased phylogenetic tree construction (Figures 

1D, 2). The SLC30A9 sequences appear to be an ancient clade and have remained a 

single-copy orthologous group during eukaryotic and bacterial evolution. This monophyletic 

relationship of the ancient SLC30A9 subtree is supported by strong branch support (100% 

bootstrap support). The phylogenetic tree also shows a clade of SLC30A9 sequences 

from archaea that may not be monophyletic with the rest of the SLC30A9 clade, making 

their membership in this family uncertain. Together these findings show that SLC30A9 

is an ancient, deeply conserved protein that likely arose via ancient duplication followed 

by neofunctionalization, meaning that it should be considered functionally distinct from 

the rest of the eukaryotic SLC30A family. As such, it appears that the ancestor of the 

SLC30A family was present early in prokaryote evolution. Indeed, SLC30A9 has remained 

relatively static, not undergoing further duplications. In contrast, the remaining SLC30A 

family members have gone through multiple gene duplications and deletions, leading to the 

SLC30A1–8 and 10 paralogs in eukaryotes.

Yeast and other fungi do not appear to have SLC30A9. MMT1/2 yeast transporters, which 

have been suggested to be the yeast analog of SLC30A9, do not have the ExxHxxxD…

(I/V/L)(I/V/L)ED substitution, and thus likely have a different function. Nonetheless, there 

appears to be mutual exclusivity between SLC30A9 and MMT1/2 expression, as organisms 

containing SLC30A9 do not seem to have MMT1/2 (Table 1, Figure 2), suggesting that 
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MMT1/2 may replace SLC30A9 in those species, although our sequence identity and 

phylogeny construction analyses suggest that MMT1/2 would not have originated from 

substitutions in SLC30A9. Although we did not further pursue this avenue of inquiry, 

mechanisms by which yeast species compensated for the loss of such a deeply conserved 

protein is of great interest. MMT1/2 are found in the yeast mitochondria. This, together 

with the correlation between the presence of SLC30A9 and MCU in many species (Table 1) 

strongly suggested that SLC30A9 would be present in the mitochondria.

SLC30A9 coevolution with the mitochondrial components

Since we found that SLC30A9 is an evolutionarily distinct and ancient protein, we next 

applied another evolutionary method to generate a hypothesis about its function and 

localization. To gain an insight into the cellular localization of SLC30A9 we performed 

an ERC analysis between SLC30A9 and a battery of other organellar transporters. Because 

some SLC30A transporters have been shown or proposed to use a proton gradient as a 

driving force for zinc transport [49–51], our rationale for this evolutionary approach was 

as follows: if SLC30A9 uses an ionic gradient to pump zinc, then its evolution could be 

influenced by the same evolutionary pressures acting on the transporter that establishes the 

ionic gradient. Hence, the two transporters will have correlated evolutionary rates, which 

will be uncovered by ERC. We can, therefore, use well established ion transporters, whose 

localization is known, as baits to search for SLC30As that have coevolved with them, and, as 

such, probably located within the same organelle.

The analysis was performed using a publicly available ERC portal (https://csb.pitt.edu/

erc_analysis/) [52]. This approach utilizes gene-specific evolutionary rates from 33 

mammalian species and their ancestral branches calculated for more than 19 000 protein-

coding genes. A gene pair’s ERC value is calculated as the correlation coefficient between 

their rates in those species. Analysis of SLC30A9 focused on several organellar transporters 

including the vacuolar/vesicular/lysosomal H+ pump (multimolecular complex comprising 

structurally unrelated proteins that are coded by the ATP6 family of genes [53,54]), the 

endolysosomal ClC transporters [55,56], and the components of the mitochondrial oxidative 

phosphorylation chain [57], which either establish or utilize the mitochondrial H+ gradient 

(see Materials and Methods and Supplementary Figure S2 for the list). We calculated ERC 

values between SLC30A9 and each of the genes annotated to those batteries of transporters. 

MCU coevolution with MICU1 [58,59] was used as a positive control for coevolution of 

functionally linked proteins (R value 0.584, P = 0.002).

SLC30A3 and SLC30A4, known to localize in the acidic organelles containing high levels 

of ATP6, namely synaptic vesicles [16,60] and lysosomes [18], respectively, were used as 

controls for specificity of the observed effects. Both of these transporters were shown, or 

proposed, to utilize H+ gradient established by ATP6 pumps in order to move zinc. As 

predicted in this control analysis, SLC30A3 and SLC30A4 show several significant ERC 

values with the ATP6 components (Figure 3A, top, red points; see original plots of ERC 

values in Supplementary Figure S4), which is consistent with their cellular localization 

and H+ requirements for transport. In contrast, their ERC scores with the mitochondrial 

components (blue points) were lower, and, in both cases, ERC was skewed towards the 
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vacuolar/vesicular/lysosomal H+ pump relative to the mitochondrial signal (Figure 3A, 

bottom).

In contrast, we found that SLC30A9 shows a strong coevolutionary signal with several 

components of the mitochondrial oxidative phosphorylation chain, which is a very 

unique pattern when compared with other members of the SLC30A family (Figure 3A, 

top). Specifically, it has significantly correlated rates with three individual mitochondrial 

components, belonging to mitochondrial ATP synthase and complex I. In addition, the full 

distribution of SLC30A9’s scores with the mitochondrial complex encoding genes was much 

higher than its scores with lysosomal components (Figure 3A, bottom).

We next examined the full set of scores for each SLC30A in mammalian genomes to learn 

with which functions high-scoring genes were associated with it. This study also shows that 

SLC30A9 is uniquely enriched for high ERC values with genes encoding proteins that are 

associated with the mitochondria (Figure 3B). First, we searched the human RefSeq gene 

descriptions of the high-scoring genes (ERC value >0.3) for specific search terms related 

to calcium, zinc, lysosomes, and mitochondria [61]. SLC30A9’s high-scoring genes were 

strongly associated with the ‘mito’ search term and with genes annotated as mitochondrial 

by MitoCarta 2.0 (Figure 3B, upper) [35,36]. Similarly, we studied the entire distribution 

of genes as ranked by ERC values with SLC30As. That distribution for SLC30A9 was 

significantly enriched at high ERC scores for genes with mitochondrial annotations (RefSeq 

gene description and MitoCarta status) (Figure 3B, lower). In fact, out of all SLC30As, only 

SLC30A9’s ERC scores showed such associations with mitochondrial annotations.

We also examined the networks of connections drawn based on ERC scores between 

SLC30As and components of mitochondrial oxidative phosphorylation complexes (Figure 

4A, upper) and organellar ion transporters, including the vesicular ClC chloride/proton 

transporters (Figure 4A, lower). See also Supplementary Figure S5 for more detail. It is clear 

that SLC30A9 uniquely co-evolves with many mitochondrial components, involving several 

connections to them, when compared with other SLC30As, as well as other organellar 

markers. The models in Figure 4B summarize the findings. Based on the totality of these 

evolutionary studies, we propose that SLC30A9 localizes to the mitochondria. We set out 

next to test this hypothesis.

SLC30A9 localization and effect on mitochondrial zinc

Although MitoCarta predicts the mitochondrial localization of SLC30A9, it has not been 

directly demonstrated. We did not find commercially available antibodies that produce 

a convincing organellar stain. Therefore, we transfected HeLa cells with recombinant 

cDNA constructs coding for human SLC30A9 with in-frame C- or N-terminal YFP 

fusions. Figure 5A,B shows that both constructs produced a reticular stain overlapping 

with the mitochondrial marker TOM20 [62]. The stretch of positively charged amino 

acids in the extreme N-terminus of human SLC30A9 is indicative of mitochondrial 

localization signal, which is supported by Mitoprot II prediction [63]. Deleting this sequence 

(MLPGLAAAAAHRCSWSSLCRLRLRCR, aminoacids 1–26) resulted in SLC30A9 

mislocalization and significant cell toxicity following transfection, indicating that the 

mitochondrial localization of SLC30A9 is essential (Figure 5C). Based on this evidence, 
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we conclude that SLC30A9 localizes in the mitochondria. This is the first direct evidence of 

SLC30A9 localization to this or any other organelle.

siRNA-driven SLC30A9 deletion in HeLa cells produced significant changes in 

mitochondrial zinc handling. Mitochondrial zinc content was analyzed using fluorescent 

divalent-cation sensitive dye Rhod-2,am, which was loaded into the cells for 15 min, 

followed by a washout. Fluorescence intensity was analyzed using time-lapse fluorescent 

imaging; the intensity was measured in the regions of interest which were drawn 

manually. In zinc-loaded cells, the pattern of the fluorescent signals seemed to conform 

to the mitochondrial shape. When exposed to 300 ¼M zinc overnight, SLC30A9 siRNA-

transfected cells (knockdown confirmed by qPCR, Figure 6A) accumulated significantly 

more zinc, which is evident from statistically higher fluorescence in these cells, compared 

with control-transfected cells (Figure 6B). Next, we measured the dynamics of the 

mitochondrial zinc dissipation by returning zinc-exposed cells to a nominally zinc-free 

medium. Under such conditions, SLC30A9 siRNA-transfected cells lost mitochondria 

fluorescence signal at a significantly slower rate, indicating slower dissipation of zinc 

(Figure 6C). These data suggest that SLC30A9 is a functional mitochondrial zinc 

transporter, which, under normal conditions, is responsible for zinc extrusion from the 

mitochondria.

Discussion

In the course of the present studies, we used ERC, a bioinformatics assay, to predict the 

localization of a poorly understood ion transporter. While ERC has been described and 

tested before [23,25–30], our approach utilized a novel idea that tracking evolutionary 

histories of functionally linked proteins may inform their functional context, such as 

localization. Therefore, using this approach we were able to predict protein localization 

in the absence of obvious clearly defined functional domains. We suggest that this approach 

can have broad applications in diverse biological fields.

Little is known about the SLC30A9 function, although it has recently been linked to 

Covid-19 because of strong co-purification of SLC30A9 with SARS-CoV-2 proteins 

(Supplementary Data in [64]). Furthermore, SLC30A9 has recently been identified as a 

master regulator of Parkinson’s pathogenesis [65]. Given the central role of mitochondria in 

Parkinson’s pathology [66] and the emerging role of zinc in this process [67], the evidence 

of SLC30A9 in the mitochondria suggests a novel contributing factor to Parkinson’s disease.

While SLC30A9 is considered to be a member of the zinc family of transporters, the 

evidence of its involvement in zinc handling is scarce. Interestingly, polymorphisms in 

SLC30A9 in African populations have been linked to environmental zinc availability [32], 

and dysregulation of zinc handling has been detected in fibroblasts from human patients a 

novel autosomal recessive cerebro-renal syndrome, which has been linked to mutations in 

SLC30A9 [31]. Our data suggest that under normal conditions, SLC30A9 is a mitochondrial 

zinc exporter. While this seems to be counteractive to the known function of other members 

of the SLC30A family, namely, moving zinc into organelles, it is important to note that 

the mitochondrial proton gradient operates in the opposite direction in mitochondria, when 
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compared with other membranous organelles such as lysosomes and the Golgi apparatus. 

Given that some zinc transporters have been shown or proposed to be proton-driven, the 

‘reversed’ mitochondrial proton gradient may explain the outward direction of SLC30A9-

driven cation transport detected in our system and attributed to SLC30A9 activity.

Mitochondrial zinc transport mechanisms are poorly understood. Several components of 

the mitochondrial respiratory chain require zinc [20,21]. Furthermore, proteostasis, protein 

insertion, enzymatic activities and other functions of the mitochondria are regulated by zinc 

[68–71]. With this in mind, the SLC30A9 coevolution with the mitochondrial oxidative 

phosphorylation chain components is informative. However, excess zinc has adverse impacts 

on the mitochondrial respiratory chain and has been implicated in several pathologies 

including Alzheimer’s disease and stroke [11,72–76]. Importantly, a mechanism of zinc 

efflux from the mitochondria had, heretofore, not been identified. Ascribing this role to 

SLC30A9 is likely to have far-reaching implications in a more complete understanding of 

zinc management by the mitochondria.

At the moment, the mechanistic reasons for coevolution between SLC30A9 and 

mitochondrial oxidative phosphorylation chain components are not completely clear. ERC 

suggests functional, but not necessarily physical interaction between these proteins. The 

coevolution may reflect the shared function of zinc flux and utilization in the mitochondria, 

as discussed above. Furthermore, SLC30A9 appears to specifically coevolve with the 

components of the peripheral stalk of the mitochondrial ATP synthase (Figure 4B) 

suggesting a shared role in proton transport, as the membrane components of the peripheral 

stalk were suggested to contribute to the formation of the proton channel [77]. Further 

investigation would help uncover the mechanism behind the coevolution between SLC30A9 

and mitochondrial respiratory chain components and further validate ERC as a cutting-edge 

tool of molecular discovery and characterization.
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Figure 1. Defining features of SLC30A9.
(A) Cartoon indicating defining features of SLC30A9 and other SLC30As. (B) Partial 

amino acid alignment of select human SLC30A (top) and SLC30A9 from humans and 

other organisms (bottom), specifically focused on the conserved differences in the putative 

permeation center depicted in part A. (C) Bacterial SLC30A9s show higher percent identity 

with human SLC30A9 than do other animal SLC30As. This suggests potential divergence of 

SLC30A9 before animal duplication events give rise to other SLC30As. (D) Hierarchical 

clustering based on percent sequence identity demonstrates that bacterial and animal 

SLC30A9s cluster together separately from other animal SLC30As, yeast transporters, 

cation transporters, and other ion transporters, further supporting ancient divergence of 

SLC30A9 prior to duplication of other SLC30As.
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Figure 2. SLC30A dendrogram suggests ancient divergence of SLC30A9 and other zinc 
transporters.
The branch leading to all SLC30A9s, both mammalian and bacterial, as well as some other 

transporters, is supported with high bootstrap confidence. Other SLC30As in animals and 

some other transporters branch separately.
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Figure 3. ERC analysis of SLC30 proteins reveals that SLC30A9 (ZnT9) shows unique patterns 
of correlated evolutionary rates with mitochondrial proteins.
(A) ERC between SLC30A9 and mitochondrial proteins shows higher correlation and lower 

P-value compared with ERC between SLC30A9 and lysosomal proteins. This contrast 

is stronger for SLC30A9 than for any other SLC30. Dots represent genes with positive 

ERC values and P-values less than 0.05. Size of dots are continuously scaled with 

the P-value. Bars heights show difference in median ERC value between mitochondrial 

and lysosomal proteins for all genes and bar colors show difference in median P-value 

between mitochondrial and lysosomal proteins for all genes. (B) SLC30A9 genes with 

high ERC values are uniquely enriched for mitochondrial function. Search terms represent 

words identified in gene descriptions to assign them to that term. Also included are 

Mitocarta annotations. One-tailed Fisher’s Exact Tests were performed to test for significant 

enrichment of search terms and annotations with ERC values above 0.05, and notably only 

SLC30A9 shows a significant P-value for mitochondria (bar beyond the red dashed line). 

A Wilcoxon rank-sum test also showed a uniquely significant positive shift of ERC values 

for mitochondrial terms and SLC30A9 (asterisks show significance). Centered AUC values 

demonstrate whether the term was enriched (positive values) or depleted (negative values).
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Figure 4. SLC30 evolutionary network clusters and diagrams of SLC30A9 interaction with 
mitochondrial components.
(A) Clustering of SLC30A transporters with mitochondrial proteins. Clusters highlighted 

with arbitrary colors indicate communities identified during clustering. Top: SLC30A9 

shows robust clustering with numerous mitochondria-related proteins, including NDUF and 

ATP proteins. Note the cluster including SLC30A9 (in red) with many NADH proteins 

(purple dots) and ATP synthase proteins (blue dots). Bottom: Clustering using an expanded 

geneset shows distinctive clustering of SLC30A9 (red cluster) with numerous mitochondria 

complex I–V proteins (blue circles). (B) Wire diagram comparing ERC-positive interactions 

(at R > 0.3) between SLC30A9 and the mitochondrial OxPhos components. SLC30A4 is 

shown as a control.
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Figure 5. SLC30A9 localization.
(A) Widefield fluorescence image of N-terminal (top) and C-terminal (bottom) YFP fusion 

of human SLC30A9 (green) expressed in HeLa cells and co-stained with antibodies against 

TOM20 (red). In addition, zoom-in images are shown for clarity. Pink arrows point to 

examples of overlapping stains. Scale bars are 10 μm. (B) An example of colocalization 

analysis of SLC30A9 and TOM20 obtained using the Colocalization threshold Plugin of 

FIJI. Histogram below shows linear regression of intensities of the overlapping pixels in 

the red and green channels. (C) Evidence of cell death in cells overexpressing N-terminal 

deletion of SLC30A9. A representative widefiled image of HeLa cells transfected with 

GFP-tagged N-terminal deletion construct of human SLC30A9 stained as above. Note the 

swelling and detachment of the transfected cell as well as swelling and compacting at the 

nucleus of the mitochondria, indicating cell death.
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Figure 6. Mitochondrial zinc handling deficits in SLC30A9-knockdown HeLa cells.
(A) qPCR analysis of HeLa cells transfected with SLC30A9 esiRNA and harvested 24 h 

post-transfection. (B) Mitochondrial zinc content in control and SLC30A9-transfected HeLa 

cells was evaluated using Rhod-2,am. The cells were exposed to zinc for 24 h. Average 

fluorescence in each region of interest containing clearly identifiable mitochondria was 

recorded and normalized to the values in the cells that were transfected with scrambled 

shRNA. (C) The delayed loss of mitochondrial zinc in SLC30A9-deficient cells exposed to 

nominally zinc-tree medium after 24 h long zinc load. The cells were treated as above; at t 
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= 0 the zinc-containing medium was replaced with nominally zinc free medium and images 

were taken every 60 s. The fluorescence intensity was normalized to the values recorded at 

t = 0, which was taken as 100%. In Panels A and B, data represent three independent trials 

involving 7–10 cells. Data are shown ± SEM. Asterisks represent statistical significance at P 
< 0.05, for Student’s test in Panel A. In Panel B, the curves were fitted using a third order 

polynomial curve (smooth gray lines) and an extra sum-of-squares test was performed to 

answer whether one curve can adequately fit both datasets. That hypothesis was rejected at 

P < 0.0001 level. Here and below, statistical analysis and data plotting were performed using 

Prism 9.
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Table 1

Expression of SLC30A9, MCU, MICU, MMT and their homologs in various organisms (x shows expression)

Clade Species ZNT9 MCU MICU MMT

Animals Homo sapiens x x x

Mus musculus x x x

Rattus norvegicus x x x

Danio rerio x x x

Ciona intestinalis x x x

Hydra vulgaris x x x

Drosophila melanogaster x x x

Fungi Yarrowia lipolytica x

Saccharomyces cerivisiae x

Debaryomyces hansenii x

Pachysolen tannophilus x

Williopsis saturnus
Ustilago maydis 521

x x

Cryptococcus neoformans x x

Laccaria bicolor S238N-H82 x

Magnaporthe oryzae 70–15 x x

Penicillium chrysogenum 54–1255 x x

Uncinocarpus reesii 1704 x

Green Algae Ostreococcus lucimarinus CCE9901 x x x

Chlamydomonas reinhardtii x x x

Volvox carteri f. nagareinsis x x x

Protists Trichomonas vaginalis G3
Leishmania infantum JPCM5

x x

Trypanosoma brucei TREU927 x x

Tetrahymena thermophila SB210 x x

Paramecium tetraurelia strain d4–2 x

Phaeodactylum tricornutum CCAP 1055/1
Plasmodium chabaudi chabaudi

x

Archaea Candidatus Pacearchaeota archaeon x

Candidatus Woesearchaeota archaeon x

Candidatus Aenigmarchaeota archaeon ex4484_52
Candidatus Diapherotrites archaeon
Methanohalophilus mahii
Methanolobus tindarius
Methanosarcina mazei

x

Bacteria Sneathiella chungangensis x

Massilia sp. LC238 x

Geopsychrobacter electrodiphilus x

Escherichia coli x

Chondrocystis sp. NIES-4102 x

Nosdoc punctiforme x

Leptolyngbya foveolarum x
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Clade Species ZNT9 MCU MICU MMT

Nostoc cycadae x

Biochem J. Author manuscript; available in PMC 2023 September 08.


	Abstract
	Introduction
	Materials and methods
	Discovery and categorization of SLC30 sequences
	Phylogenetic analysis
	Evolutionary rate covariation
	Enrichment analysis of organellar proteomes
	Clustering
	Protein expression and widefield microscopy
	Zinc imaging and qPCR

	Results
	SLC30A9 phylogeny
	SLC30A9 coevolution with the mitochondrial components
	SLC30A9 localization and effect on mitochondrial zinc

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1

