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Chemotherapy induces breast cancer stem
cell enrichment through repression of
glutathione S-transferase Mu
Triple-negative breast cancer (TNBC) has aggressive char-
acteristics as exemplified by the high risk of recurrence,
metastasis, and patient mortality.1 Cytotoxic chemo-
therapy may reduce tumor burden initially, but leave
behind chemo-resistant breast cancer stem cells (BCSCs)
that lead to tumor recurrence and metastasis.2 Chemo-
therapy induces BCSC enrichment through the activation of
glutathione biosynthesis pathways, which increases intra-
cellular glutathione levels and specifies the BCSC pheno-
type through complicated downstream signaling pathways.3

Glutathione S-transferases (GSTs), a superfamily (which
contains seven cytosolic classes: Alpha, Kappa, Mu, Omega,
Pi, Theta, and Zeta, and one microsomal class MGSTs) of
phase II enzymes that catalyze the conjugation of gluta-
thione with electrophilic compounds, play a critical role in
detoxification and chemotherapy resistance of cancer cells.
However, the role of GSTs in the regulation of BCSCs is
largely elusive. In the present study, we first investigated
the expression of all GST family members in response to
chemotherapeutic drug carboplatin treatment at the dose
of IC50 in multiple TNBC cell lines, and found four members
of the GST Mu family (GSTM1, GSTM2, GSTM3, and GSTM4)
were markedly repressed in all four cell lines (Fig. 1A).
GSTM1/2/3/4 mRNA and protein were also repressed by
other FDA-approved chemotherapy drugs paclitaxel and
gemcitabine at the dose of IC50 in TNBC cell lines (Fig. 1B;
Fig. S1AeD). Carboplatin also repressed GSTM1/2/3/4
expression in vivo, as shown in SCID (severe combined im-
munodeficiency) mice transplanted with MDA-MB-231 cells
(Fig. 1C) and in MMTV-PyMT transgenic mice (a genetically
engineered autochthonous breast cancer model) (Fig. 1D)
that were treated by carboplatin.

To investigate the role of GSTM1/2/3/4 in response to
chemotherapy, we generated short hairpin RNA (shRNA)-
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mediated GSTM1/2/3/4 knockdown subclones in MDA-MB-
231 and SUM159 cells (Fig. S2A) and found that knockdown of
GSTM1/2/3/4 did not affect cell proliferation rate (Fig. S2B).
GSTM3 knockdown made MDA-MB-231 and SUM159 cells more
resistant to carboplatin treatment (Fig. 1E; Fig. S2C), which
was rescued by transfection with an shRNA-resistant GSTM3
expression vector (Fig. 1F left; Fig. S2D). Interestingly,
although knockdown of GSTM1, GSTM2, or GSTM4 did not
affect sensitivity to carboplatin (Fig. 1E; Fig. S2C), the
combination of double knockdown of these three made MDA-
MB-231 and SUM159 cells more resistant to carboplatin
treatment (Fig. 1F middle; Fig. S2E), suggesting a redundant
role of these three proteins. The effect of GSTM1/2 double
knockdown was rescued by overexpression of shRNA-resis-
tant GSTM4, as well as GSTM1 or GSTM2, but not GSTM3
(Fig. 1F right; Fig. S2F), which further confirmed the
redundancy of GSTM1/2/4, but not GSTM3. These results
were consistent with the correlation analysis of GSTMs based
on protein sequences (Fig. 1G).

Next, we investigated the role of GSTMs in the regulation
of the BCSC phenotype. GSTM1/2/3/4 mRNA and protein
levels were all significantly decreased in BCSC-enriched
nonadherent mammosphere cultures (Fig. 1H, I) and alde-
hyde dehydrogenase positive (ALDHþ) population (Fig. 1J;
Fig. S3A), suggesting a negative correlation of GSTM1/2/3/4
expression with the BCSC phenotype. Knockdown of GSTM3,
but not GSTM1/2/4, increased the percentage of ALDHþ cells
(Fig. 1K, L; Fig. S3B) and the number of mammosphere-
forming cells (Fig. 1M; Fig. S3C) in MDA-MB-231 and
SUM159 cells, which was rescued by overexpression of
shRNA-resistant GSTM3 (Fig. 1NeP; Fig. S3D, E). The com-
bination of GSTM1/2/4 double knockdown also increased the
percentage of ALDHþ cells (Fig. 1Q, R; Fig. S3F) and the
number of mammosphere-forming cells (Fig. 1S; Fig. S3G) in
MDA-MB-231 and SUM159 cells. Overexpression of shRNA-
resistant GSTM1, GSTM2, or GSTM4, but not GSTM3, abro-
gated the induction of BCSC population mediated by GSTM1/
behalf of KeAi Communications Co., Ltd. This is an open access
censes/by-nc-nd/4.0/).
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2 double knockdown (Fig. 1QeS; Fig. S3F, G), confirming the
redundant role of GSTM1/2/4 in the regulation of the BCSC
phenotype.

To investigate the role of GSTMs in regulating the BCSC
phenotype in vivo, we performed tumorigenicity assays by
injecting 500, 250, and 125 cells of the MDA-MB-231 NTC
(nontargeting control), GSTM3-, GSTM1/2-, GSTM1/4-, and
GSTM2/4-knockdown subclone into the mammary fat pad
(MFP) of SCID mice. Knockdown of GSTM3, or double
knockdown of GSTM1/2, GSTM1/4, or GSTM2/4 significantly
increased tumor-initiating capacity (Fig. 1T). To determine
the role of GSTMs in response to chemotherapy in vivo, we
injected 2 � 106 cells of the MDA-MB-231 NTC, GSTM3-,
GSTM1/2-, GSTM1/4-, and GSTM2/4-knockdown subclone
into the MFP of SCID mice. When tumors became palpable,
we started to treat the mice with 20 mg/kg carboplatin
every 5 days. Treatment was terminated when tumors were
no longer palpable, and the mice were monitored for tumor
recurrence. Knockdown of GSTM3, or double knockdown of
GSTM1/2, GSTM1/4, or GSTM2/4, did not affect time to
tumor formation (Fig. 1U, left), but significantly increased
time to tumor remission (Fig. 1U, middle), which is consis-
tent with the in vitro results that GSTMs knockdown did not
affect cell growth but made cells resistant to carboplatin
treatment. Most importantly, the knockdown of GSTM3, or
double knockdown of GSTM1/2, GSTM1/4, or GSTM2/4,
significantly decreased the time to tumor recurrence
(Fig. 1U, right), demonstrating that GSTMs inhibit the BCSC
phenotype after carboplatin treatment in vivo.
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revealed a negative correlation of GSTM1/2/3/4 expression
with mRNA expression-based stemness index (mRNAsi), a
machine learning-based parameter that evaluates cancer
cell stemness in primary patients’ samples (Fig. 1Y).5 We
also analyzed expression data and clinical information from
4929 breast cancer patients and stratified patients accord-
ing to GSTM1/2/3/4 expression. KaplaneMeier plots
revealed that GSTM1/2/3/4 mRNA levels greater than the
median were associated with increased relapse-free survival
(Fig. 1Z). These data indicate that GSTM1/2/3/4 expression
is associated with the inhibition of BCSC phenotype and
better clinical outcomes in breast cancer patients.

In summary, we demonstrate that chemotherapy-
repressed GSTM expression plays a critical role in the
regulation of the BCSC phenotype. Among GSTM family
members, GSTM1, GSTM2, and GSTM4 are closely correlated
in function and have a redundant role in the regulation of
chemotherapy responses and the BCSC phenotype,
although the different regulatory role of GSTM3 and
GSTM1/2/4 is not fully delineated. The molecular mecha-
nisms through which GSTMs regulate chemotherapy-
induced BCSC enrichment, especially whether the gluta-
thione s-transferase enzymatic activity of GSTMs is required
in this process, need to be further elucidated. Mechanisti-
cally, GSTM expression is repressed by chemotherapy
treatment in a HIF-1-dependent manner. This study brings
new insights into the molecular mechanism of chemo-
therapy-induced BCSC enrichment, and provides a different
role of HIF-1 in the regulation of the BCSC phenotype,
through transcriptional repression of downstream genes.
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