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A B S T R A C T   

Purpose: This study aimed to screen biomarkers to predict the efficacy of programmed cell death 1 (PD-1) 
blockade immunotherapy combined with chemotherapy as neoadjuvant therapy for esophageal squamous cell 
carcinoma (ESCC). 
Methods: In the first stage of the study, the baseline concentrations of 40 tumor-related chemokines in the serum 
samples of 50 patients were measured to screen for possible biomarkers. We investigated whether the baseline 
concentration of the selected chemokine was related to the therapeutic outcomes and tumor microenvironment 
states of patients treated with the therapy. In the second stage, the reliability of the selected biomarkers was 
retested in 34 patients. 
Results: The baseline concentration of macrophage migration inhibitory factor (MIF) was negatively correlated 
with disease-free survival (DFS) and overall survival (OS) in patients treated with the therapy. In addition, a low 
baseline expression level of MIF is related to a better tumor microenvironment for the treatment of ESCC. A 
secondary finding was that effective treatment decreased the serum concentration of MIF. 
Conclusion: Baseline MIF levels were negatively correlated with neoadjuvant therapy efficacy. Thus, MIF may 
serve as a predictive biomarker for this therapy. The accuracy of the prediction could be improved if the serum 
concentration of MIF is measured again after the patient received several weeks of treatment.   
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migration inhibitory factor; DFS, disease-free survival; OS, Overall survival; PD-L1, Programmed death ligand-1; MMR, Mismatch repair; MSI, Microsatellite 
instability; TMB, Tumor mutation burden; CR, Complete response; PR, Partial response; SD, Stable disease; PD, Progression of disease; R, Response; NR, Non- 
response; ORR, Overall Response Rate; DCR, Disease control rate; IHC, Immunohistochemistry; TNF-α, Tumor necrosis factor-α; CI, Confidence interval; HR, Hazard 
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The Cancer Genome Atlas; ICB, Immune checkpoint blockade; MDSC, Myeloid-derived suppressor cell; TME, tumor microenvironment. 
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Introduction 

Esophageal carcinoma, which ranks seventh in cancer incidence and 
sixth in overall cancer-related mortality, is a severe malignancy. Based 
on its histopathological features, esophageal carcinoma can be classified 
as squamous cell carcinoma or adenocarcinoma. Esophageal squamous 
cell carcinoma (ESCC) is the predominant cancer subtype in Asia [1,2]. 
The traditional treatments for ESCC include surgery, chemotherapy, and 
radiotherapy [3,4]. Although surgical resection is the most common 
treatment, the R0 resection rate is only approximately 50% in patients 
with locally advanced tumors, leading to a high recurrence rate [5]. To 
improve clinical outcomes, neoadjuvant therapies using preoperative 
chemotherapy or chemoradiotherapy have been developed and have 
significantly increased the R0 resection and survival rates of patients 
with ESCC [6]. However, a low response rate to chemotherapy has 
become a new problem [7]. In this case, a method using programmed 
cell death protein 1 (PD-1) blockade immunotherapy combined with 
chemotherapy as a neoadjuvant therapy was discovered. 

PD-1 can elicit the immune checkpoint response of T cells in the 
tumor microenvironment (TME), resulting in the escape of tumor cells 
from immune surveillance. PD-1 blockade immunotherapy provides a 
way to overcome immune escape and generate immune responses 
against tumor cells. The National Comprehensive Cancer Network 
guidelines recommend the use of PD-1 blockade immunotherapy for 
advanced esophageal cancer. The combination of PD-1 blockade 
immunotherapy and chemotherapy can generate stronger anti-tumor 
responses [8]. The use of such a combination therapy as a neo-
adjuvant therapy can lead to better clinical outcomes and a higher 
response rate than chemotherapy alone. When treating patients with 
resectable non-small cell lung cancer and esophageal cancer, PD-1 
blockade immunotherapy combined with chemotherapy as neo-
adjuvant therapy has successfully achieved tumor regression and 
improved the survival rate of patients [9,10]. Additionally, when cam-
relizumab is combined with carboplatin and nab-paclitaxel to treat 
ESCC, patients have an objective response rate of 90.5%, confirming the 
high response rate of combination therapy [9]. Recently, in patients 
with advanced ESCC, compared to those who were treated with 
chemotherapy alone, it improved progression-free survival (PFS) and 
overall survival (OS) and increased the objective response rate by 69.3% 
in patients treated with a combination of toripalimab and chemotherapy 
[7]. Despite the promising outcomes, not all patients showed complete 
responses, and disease progression was noted, suggesting that a clini-
cally applicable biomarker is needed to predict the patient response and 
treatment efficacy of this neoadjuvant therapy. 

Several predictive biomarkers for gastroesophageal carcinoma 
immunotherapy have been validated, including programmed death 
ligand-1 (PD-L1), mismatch repair, microsatellite instability (MMR/ 
MSI), and tumor mutation burden (TMB). However, these biomarkers 
have limited sensitivity or specificity in predicting treatment efficacy 
[11]. Chemokines control cell migration, localization, and interactions 
within tissues. They guide immune cells to the TME and mediate local 
anti-tumor immune responses [12]. The peripheral circulating chemo-
kines CXCL8, CXCL9, and CXCL10 can be used as predictive biomarkers 
for PD-1 blockade immunotherapy in the treatment of melanoma and 
lung cancer [13–15]. However, few studies have been conducted to 
identify predictive biomarkers for PD-1 blockade immunotherapy 
combined with chemotherapy as a neoadjuvant therapy for ESCC. 

Our purpose was to screen for a biomarker for predicting the efficacy 
of PD-1 blockade immunotherapy combined with chemotherapy as a 
neoadjuvant therapy for ESCC. The baseline levels of Macrophage 
Migration Inhibitory Factor (MIF) in patients’ peripheral blood and TME 
were negatively correlated with the clinical outcomes of neoadjuvant 
therapy. Thus, MIF may serve as a clinically applicable predictive 
biomarker for neoadjuvant therapy. 

Materials and methods 

Patients 

Fig. 1 shows an overview of this study. All samples were acquired 
from a single-arm, single-center, open-label phase II clinical trial. Fifty 
patients newly diagnosed with resectable ESCC were included in the first 
stage of this study, samples were provided by 50 patients with newly 
diagnosed resectable ESCC. Patient characteristics are summarized in 
Supplementary Table 1. In the second stage of the study, samples were 
obtained from 34 patients with newly diagnosed resectable ESCC, and 
their characteristics are summarized in Supplementary Table 2. The 
patients received PD-1 blockade immunotherapy (teriprizumab) com-
bined with chemotherapy as a neoadjuvant therapy before surgical 
resection. Baseline serum and tumor tissue samples were obtained 
before treatment initiation. Details of the neoadjuvant therapy are 
presented in the supplementary materials. All the patients enrolled in 
the trial underwent the entire therapeutic procedure and provided 
written informed consent. The study protocol followed the Declaration 
of Helsinki, GCP ethical guidelines, and the Chinese regulations for 
clinical trial research. The study was approved by the Ethics Committee 
of the PLA General Hospital. 

Clinical outcomes evaluation 

The efficacy of neoadjuvant therapy was evaluated according to the 
criteria from RECIST 1.1. The survival of patients after treatment was 
evaluated using disease-free survival (DFS; the time from the initiation 
of treatment to the onset of tumor recurrence or death caused by any 
cause) and OS. The therapeutic effects were evaluated as complete 
response (CR), partial response (PR), stable disease (SD), and disease 
progression (PD). Patients who achieved CR or PR were classified into 
the response (R) group, and those who achieved SD or underwent PD 
were classified into the non-response (NR) group. Treatment responses 
were evaluated in the absence of corticosteroids. Overall Response Rate 
(ORR) and Disease Control Rate (DCR) were used to evaluate patho-
logical responses after treatment. 

Quantitative analysis of chemokines 

The chemokine concentrations in baseline serum samples were 
tested using the Bio-Plex 200 System. The accuracy of the system was 
verified using the Bio-Plex Validation Kit and Bio-Plex Calibration Kit 
(Bio-Rad, USA). Patient sera were sampled before the initiation of 
neoadjuvant therapy. After being pretreated by centrifugation (13000 
rpm, 10 min at 4 ◦C), serum samples were tested by Bio-Plex ProTM 

Human Chemokine Panel (Bio-Rad, USA), which could detect 40 com-
mon tumor-related chemokines listed in supplementary materials. The 
concentrations of chemokines in the serum samples were obtained and 
calculated as concentration scores using Bio-plex Manager 5.0 Software 
in Luminex Analysis System. 

Immunohistochemistry and image assessment 

Tumor tissue samples were obtained from patients before the initi-
ation of therapy. Samples were immobilized by 10% formalin and 
embedded with paraffin before being sliced into thin sections of 3 μm. 
Sections were deparaffinized with xylene and rehydrated using a series 
of descending alcohol concentrations. After using citrate buffer to ach-
ieve Antigen retrieval, sections were stained by the primary antibody 
against human MIF (dilution, 1:50; Abcam, UK) and incubated overnight 
at 4 ◦C. The secondary antibody (Gene Tech, China) was added and the 
sections were incubated at 37◦C for 20 min.. After washing with PBS, 3, 
3-Diaminobezidine (Gene Tech, China) was used for color rendering. 
Immunohistochemistry (IHC) staining of six immunological markers, 
PD-L1 (dilution, 1:200; Cell Signaling Technology, USA), CD4 
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(dilution,1:400; Gene Tech, China), CD8 (dilution, 1:200; Abcam, UK), 
CD20 (dilution, 1:200; Abcam, UK), CD163 (dilution, 1:800; Gene Tech, 
China), and Foxp3 (dilution, 1:300; Abcam, UK), was performed using 
the same method. IHC images were visualized using cellSens Platform 
(Olympus, Japan). The images were examined using a semi-quantitative 
score. The parenchyma and stroma were evaluated as previously 
described [16]. The average percentage of positive cells among all cells 
was calculated by averaging the results from five randomly selected 
high-magnification ( × 200) fields. Images were analyzed using image 
analysis software (ImageJ, USA). 

ELISAs 

Serum MIF concentration was quantified using a Human MIF 
Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA). The pro-
cedures were conducted according to the manufacturer’s instructions. 
Serum samples were diluted five times with sample diluent buffer 
(Calibrator Diluent RD5-20). After adding 100 μl of Assay Diluent RD1- 
53 to the detection plate, 50 μl of samples and standards (0, 0.156, 
0.313, 0.625, 1.25, 2.5, 5, and 10 ng/ml) were added and incubated in 
the plate for 2 hours at room temperature. After incubation, the plate 
was washed four times with the Wash Buffer (400 μl/well). Next, the 
Human MIF Conjugate (200 μl/well) was added, and the plate was 
incubated again for 2 h at room temperature. After incubation, the plate 
was washed four times with the Wash Buffer (400 μl/well). The sub-
strate Solution (200 μl/well) was added, and the plate was incubated for 

30 min. in the dark. After incubation, the Stop Solution was added (50 
μl/well). The absorbance was read at 450 nm using a microplate reader 
(Multiskan Go, Thermo Fisher Scientific, USA). The MIF concentration 
in each test sample was quantified using a standard curve plotted ac-
cording to the standards. Serum samples were measured in duplicate. 
The coefficient of variation was less than 15%. 

Statistical methods 

GraphPad Prism (version 8.0, USA), IBM SPSS Statistics (IBM Corp., 
USA), and software R 3.6.3. The R package of ggplot2 was used for 
visualization [17]. The R package of Complex Heatmap was used to 
make a heatmap for chemokine visualization. The R package of pROC 
was used to make ROC curves. The R package of Survival was used for 
DFS and OS survival analysis, and Kaplan–Meier curves were statisti-
cally analyzed by log-rank test. The categorical variables of different 
groups were compared using the chi-square test and Fisher’s exact 
probability test. The continuous variables of different groups were 
compared using a t-test and Wilcoxon rank sum test. The Cox propor-
tional hazard regression model was used to identify independent prog-
nostic factors associated with DFS and OS. The RNAseq data of 
pan-cancer in TCGA database was collected in FPKM format, and the 
differences in chemokine and chemotaxis-relevant analyte expressions 
between tumor tissues and normal tissues were compared after log2 
transformation. The R package of GSVA was used to analyze the asso-
ciations between the expression levels of chemokines and 

Fig. 1. Flow chart.  
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chemotaxis-relevant analytes and their immune infiltrations [18,19]. 
GraphPad Prism 8 was used for calculating the immunohistochemical 
statistics of each immunological marker. Significant difference terms 
were indicated as follows: CI, confidence interval; ns, no significance; *p 
< 0.05, **p < 0.01, and ***p < 0.001. 

Results 

Selection of MIF to be a predictive biomarker for testing the efficacy of the 
neoadjuvant therapy for ESCC 

The concentrations of 40 common tumor-related chemokines in the 
baseline serum of the R and NR groups were measured and compared to 
screen for a biomarker for predicting the efficacy of PD-1 blockade 
immunotherapy combined with chemotherapy as a neoadjuvant therapy 
for ESCC. First, unsupervised hierarchical clustering was performed by 
comparing the concentrations of the chemokines tested in the baseline 
serum of each patient (Fig. 2A), with each column representing a patient 
and each row representing a chemokine tested. In the heat map, distinct 
colors in the clusters indicate that there were concentration differences 
between individuals, suggesting that detailed evaluations were worth-
while. Next, the median concentration of each chemokine in the R and 
NR groups was calculated using the scores (Supplementary Table 3) and 
compared (Supplementary Fig. 1). Only the concentrations of MIF and 
tumor necrosis factor-α (TNF-α) in the sera of the R and NR groups had 
statistically significant differences (Fig. 2B). The median concentration 
score of MIF in the sera of the NR group was 0.475 higher than that in 
those of the R group (95% CI: 0.176–0.812, p = 0.004), while the score 
difference of TNF-α between two groups was 0.266 (95% CI: 0.093-0.48, 
p = 0.014). The greater distinction between the baseline MIF levels of 
the two groups suggests that the potential of MIF as a predictive 
biomarker for testing the efficacy of neoadjuvant therapy is worth 
investigating. Therefore, whether the baseline level of MIF in both the 
serum and TME is associated with the efficacy of neoadjuvant therapy 
should be verified. 

Baseline serum MIF level was negatively correlated with the clinical 
outcomes of the neoadjuvant therapy 

We studied whether the baseline concentration of MIF in the serum 
was associated with the clinical outcomes of neoadjuvant therapy for 

ESCC. Based on baseline serum MIF levels and patient survival (n = 50), 
a receiver operating characteristic (ROC) curve was plotted to investi-
gate the ability of baseline serum MIF levels to predict the efficacy of 
neoadjuvant therapy (Fig. 3A). The area under the curve (AUC) is 0.853, 
indicating that the baseline serum MIF level had high specificity and 
sensitivity for predicting therapeutic outcomes. A ROC cut-off value of 
10.254 was used to classify patients into the low-MIF-level group (n =
43) and high-MIF-level group (n = 7). In the low-MIF-level group, 80% 
of the patients showed PR, which was much higher than that in the high- 
MIF-level group (44 %). None of the patients in the low-MIF-level group 
underwent PD (Fig. 3B). Patients in the low-MIF-level group had better 
DFS and OS than those in the high-MIF-level group (p = 0.003 and p =
0.001, respectively; Fig. 3C,D). Thus, baseline serum MIF levels nega-
tively correlated with the clinical outcomes of neoadjuvant therapy. 

Using DFS and OS as endpoints, we conducted univariate and 
multivariate COX regression analyses on patient age, sex, degree of tis-
sue differentiation, initial diagnosis stage, postoperative stage, smoking 
history, Eastern Cooperative Oncology Group (ECOG) score, and MIF 
expression. Univariate and multivariate analyses of DFS showed that 
elevated baseline serum levels of MIF significantly increased the risk of 
tumor recurrence in patients with ESCC (HR = 4.365, 95% 
CI:1.115–17.088, p = 0.034; Supplementary Table 4). Moreover, uni-
variate and multivariate analyses of OS demonstrated that elevated 
baseline serum MIF levels significantly increased the risk of death in 
patients with ESCC (HR = 7.78, 95% CI: 1.340–45.190, p = 0.022; 
Supplementary Table 5). In conclusion, the baseline MIF concentration 
in the peripheral blood was an independent risk factor for DFS and OS in 
patients with ESCC treated with neoadjuvant therapy. 

The baseline level of MIF in the TME was negatively correlated with the 
clinical outcomes of the neoadjuvant therapy 

RNAseq data obtained from TCGA database showed that elevated 
MIF expression in the TME was observed in many types of tumors 
(Supplementary Fig. 2). Analysis of unpaired samples from TCGA 
database indicated that the average expression level of MIF in ESCC 
tumor tissues was significantly higher than that in normal tissues (95% 
CI: 0.833%–2.057, p< 0.001; Fig. 4A). Similar results were obtained by 
analyzing paired ESCC samples from TCGA database (95% CI: 
0.609–1.891, p = 0.002; Fig. 4B). Hence, increased levels of MIF in the 
TME were related to tumor growth. 

Fig. 2. Comparisons between the baseline concentration of 40 chemokines in responders and non-responders. (A) Unsupervised hierarchical clustering of baseline 
concentrations of 40 chemokines in patients (n = 50). High concentration levels are shown in red, while low concentration levels are shown in blue. Each column 
represents a patient and each row represents a chemokine. (B) Baseline serum concentration score of MIF and TNF-α in R and NR groups. R, responder; NR, non- 
responder. *p < 0.05, **p < 0.01, ***p < 0.001. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 
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We further investigated whether the baseline expression levels of 
MIF in the TME were associated with the clinical outcomes of neo-
adjuvant therapy. Pre-treatment tumor tissue samples were obtained 
from 34 patients among the 50 patients involved in the first stage of the 
study. Patients were classified into low- (n = 16) and high- (n = 18) MIF- 
expression groups according to the staining intensity on IHC images. If 
the average percentage of positive cells was more than 50%, the patient 
was assigned to the high-MIF-expression group, and vice versa. Since 
MIFs are expressed in the cell membrane, cytoplasm, and tumor stroma, 
the standing intensity in IHC images was higher in the high-MIF- 
expression group (Fig. 4C). In the low-MIF-expression group, 81.2% of 
patients showed PR, whereas only 44% showed PR in the high-MIF- 
expression group. Moreover, none of the patients in the low-MIF- 
expression group underwent PD (Fig. 4D). Patients in the low-MIF- 
expression group had better DFS and OS than those in the high-MIF- 
expression group (p < 0.011 and p< 0.024, respectively; Fig. 4E,F). 
Therefore, baseline MIF levels in the TME were negatively correlated 
with the clinical outcomes of neoadjuvant therapy. 

Immune cell infiltrations were related to MIF expression levels in the TME 

We investigated whether the expression level of MIF in tumor tissues 
was related to the infiltration of immune cells into the TME. Based on the 
RNA-seq data obtained from TCGA database, 162 samples in the data-
base were separated by their median MIF expression levels in the TME 
into low- and high-expression groups. Next, the infiltration of different 
types of immune cells into the TME in the two groups was compared 
(Fig. 5A). More immune cells infiltrated the low-MIF-expression group, 
including T cells, B cells, eosinophils, mast cells, neutrophils, T helper 
cells, Th1 cells, Th17 cells, CD8 T cells, Tem cells, TFH cells, Treg cells, 
and pDC cells. 

Subsequently, IHC was conducted to detect the expression levels of 
six immunological markers: CD4, CD8, CD163, Foxp3, CD20, and PD-L1. 
We randomly selected ten MIF staining samples for immunological 
marker staining, of which five were in the high-expression group and 
five were in the low-expression group. The average densities of immu-
nological marker-stained cells and IHC images of the two groups were 
compared (Fig. 5B–G). The numbers of CD8+ cells and CD163+ M2 
macrophages in the low-MIF-expression group were significantly higher 
than those in the high-MIF-expression group (p = 0.0348 and p =
0.0415, respectively). Although no statistical differences were observed 
in other markers, the number of CD4+ T cells and CD20+ B cells tended 
to increase in the low-expression group. Meanwhile, the number of 
Foxp3+ Treg cells was higher in the high-expression group. Further-
more, tertiary lymphoid structures (TLSs) were found in the TME of the 
two responders in the low-MIF-expression group (Fig. 5H and Supple-
mentary Fig. 3). A group of CD20+ B cells was surrounded by CD4+ T 

cells, CD8+ T cells, and CD163+ M2 macrophages, whereas only a 
limited number of Foxp3+ Treg cells and PD-L1 expression were 
observed (Fig. 5H). Both TCGA database analysis and IHC results 
showed that the expression level of MIF was related to immune cell 
infiltration in the TME, which may explain why the expression level of 
MIF is related to the efficacy of neoadjuvant therapy. 

Decreased serum MIF level was related to effective treatment by the 
neoadjuvant therapy 

New samples (n = 34) were used to validate the feasibility of using 
serum MIF levels as predictive biomarkers for neoadjuvant therapy. The 
baseline concentration of MIF in serum samples was measured using 
ELISA. Patients were separated into low- (n = 26) and high- (n = 8) MIF- 
level groups based on their ROC cut-off value of 12.917. In the low-level 
group, 69.2% of the patients showed PR, and none of the patients un-
derwent PD. In comparison, only 25% of patients showed a PR, and 25% 
of patients underwent PD in the high-level group (Fig. 6A). The objective 
response rate (ORR) for neoadjuvant therapy in the low-level group was 
69.2%, whereas that in the high-level group was 25%. Additionally, the 
disease control rate (DCR) of neoadjuvant therapy was higher in the low- 
level group than in the high-level group (Fig. 6A). Overall, the serum 
MIF level was closely related to the efficacy of neoadjuvant therapy, 
suggesting that it might be a feasible predictor for clinical use. 

A secondary result was that effective neoadjuvant therapy resulted in 
a decrease in serum MIF concentration. Patients involved in the second 
stage of the study provided serum samples before the initiation of 
therapy and after receiving two cycles of treatment. Serum MIF con-
centrations in the R and NR groups before treatment are plotted in 
Fig. 6B, demonstrating that the MIF levels in the R group were signifi-
cantly lower than those in the NR group (p = 0.0487). The serum MIF 
concentrations in the R and NR groups after two cycles of treatment are 
plotted in Fig. 6C, and the significant difference between the two groups 
was maintained (p = 0.025). Despite the differences between the two 
groups, we observed some exceptions: 7 out of 20 responders had rela-
tively high serum MIF concentrations, and 6 out of 14 non-responders 
had low serum MIF concentrations, which are highlighted by dashed 
boxes. The concentration changes in these exceptions before and after 
the two treatment cycles are plotted in Fig. 6D and E. In the R group, 
although seven responders had high serum MIF levels before treatment, 
six out of seven showed significant decreases in MIF levels after treat-
ment (p = 0.0077). At the same time, four out of six non-responders with 
low serum MIF levels had increased MIF levels after treatment (p =
0.0634). Thus, effective treatment with neoadjuvant therapy could 
decrease serum MIF levels, even in patients with high serum MIF levels 
before treatment, demonstrating that there is a close relationship be-
tween the efficacy of neoadjuvant therapy and serum MIF concentration. 

Fig. 3. Comparisons of the clinical outcomes between patients in the low- and high-MIF-level groups. (A) ROC curve for evaluating the ability of serum MIF levels to 
predict the therapeutic outcomes of the neoadjuvant therapy. AUC, area under the curve; TPR, true positive rate; FPR, false positive rate. (B) Percentages of patients 
that had different clinical responses in the low-MIF-level group (n = 43) and the high-MIF-level group (n = 7). PR, partial response; SD, stable disease; PD, pro-
gression of the disease. Kaplan–Meier (C) DFS and (D) OS curves of patients in the low- and high-MIF-level groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Discussion 

The purpose of this study was to screen for a biomarker for predicting 
the efficacy of PD-1 blockade immunotherapy combined with chemo-
therapy as neoadjuvant therapy for ESCC. Here, MIF was found to be 
negatively correlated with the clinical outcomes of neoadjuvant therapy 
and could be used as a predictive biomarker. Our research starts with 
measuring the baseline serum concentrations of 40 common tumor- 
related chemokines, MIF and TNF-α show statistically significant dif-
ferences between responders and non-responders of the neoadjuvant 
therapy. Since the concentration difference of MIF is more obvious 
compared to TNF-α, MIF is selected for further investigations. MIF was 
first reported in 1966 and is associated with delayed-type hypersensi-
tivity [20]. It is expressed in various immune cells, including macro-
phages, monocytes, T cells, B cells, mast cells, and neutrophils [21]. MIF 

interacts with CD74 and initiates the downstream PI3K and/or MAPK 
pathways [22]. MIF also facilitates tumorigenesis by inhibiting the 
typical tumor suppressor gene p53 [23]. Moreover, it promotes the 
differentiation and proliferation of myeloid-derived suppressor cells 
(MDSCs) and drives them to become more suppressive. Thus, MIF has 
inhibitory effects on both innate and adaptive immunity against tumors. 
Our analyses of RNA-seq data from TCGA and GTEx databases match 
previous research showing that MIF overexpression exists in many 
tumor types, including ESCC. Serum MIF levels can be used as diagnostic 
or prognostic markers for hepatocellular carcinoma [24], gastric cancer 
[25], and resectable pancreatic ductal adenocarcinoma [26]. Therefore, 
the potential of MIF as a predictive biomarker for neoadjuvant therapy 
in ESCC is worth studying. 

Baseline levels of MIF in both the serum and TME were negatively 
correlated with the survival and clinical outcomes of patients with ESCC 

Fig. 4. Comparisons of the clinical outcomes between patients in the low- and high-MIF-expression groups. (A) Comparisons between the expression levels of MIF in 
unpaired ESCC tissues and normal tissues. Data were obtained from TCGA database. (B) Comparisons between the expression levels of MIF in paired ESCC tissues and 
normal tissues. Data were obtained from TCGA database. (C) IHC images of samples from the low- and high-MIF-expression groups. Original magnification: × 200. 
(D) Percentages of patients (n= 34 out of 50) that had different clinical responses in the low- (n =16) and high- (n = 18) expression groups. (E) Kaplan–Meier DFS 
and (F) OS curves of patients in the low- and high-MIF-expression groups. *p < 0.05, **p < 0.01, ***p < 0.001. 
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treated with neoadjuvant therapy. The relationship between the base-
line MIF level and treatment outcomes was first measured using a che-
mokine quantitative analysis kit and confirmed using ELISA to measure 
samples provided by another group of patients. Patients in the low 
serum MIF group had better DFS and OS, which is consistent with a 

previous finding that patients with stage I-III ESCC had lower serum MIF 
levels than those with stage IV ESCC [27]. Moreover, IHC imaging 
supports the finding that higher expression of MIF in the TME results in 
more non-responders to neoadjuvant therapy and worse treatment 
outcomes. These results are consistent with a review that mentioned that 

Fig. 5. IHC images of immunological markers in the low- and high-MIF-expression groups. (A) Baseline infiltration levels of different immune cells in the low- and 
high-MIF-expression groups from TCGA database. The image samples and expression levels of (B) CD4, (C) CD8, (D) CD163, (E) Foxp3, (F) CD20, and (G) PD-L1 in 
the low- and high-MIF-expression groups. (H) IHC images of TLS. Original magnification: × 200. TLS, Tertiary lymphoid structures. *p < 0.05, **p < 0.01, ***p <
0.001. ns, non-significant. 
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high MIF expression is associated with poor OS and DFS in patients with 
many cancer types, including ESCC [28]. Thus, the close relationship 
between the level of MIF and the efficacy of neoadjuvant therapy sup-
ports the feasibility of using MIF as a predictor. 

A possible explanation for why MIF could be a predictive biomarker 
for neoadjuvant therapy was investigated by IHC imaging of six 
immunological markers in the TME. The infiltration levels of immune 
cells are related to MIF expression levels in the TME. First, CD8+ T cells 
obviously infiltrate the baseline TME under conditions of low MIF 
expression. Although the infiltration of CD4+ T cells was not statistically 
significant between the low- and high-MIF-expression groups, probably 
because of the small sample size, a trend of increasing infiltration in the 
low-MIF-expression group still exists. Our results are consistent with 
previous ones showing that MIF inhibits the activity of intratumoral 
CD8+ T cells. Additionally, anti-MIF treatments successfully increased 
the infiltration of CD4+ and CD8+ T cells into the TME in animal ex-
periments [22,29]. Since valid immune checkpoint blockade (ICB) 
treatment is highly related to an elevated number of T cells in the TME, 
the close link between MIF levels and T-cell infiltration suggests that 
MIF is a useful biomarker for ICB immunotherapy. Second, an increased 
number of CD163+ M2 macrophages were observed in the high MIF 
expression group. MIF promotes the transformation of anti-tumor M1 
macrophages into M2 macrophages, which can promote the occurrence 
and metastasis of tumor cells [22]. This result is not shown in Fig. 5A, 
possibly because the macrophages measured in TCGA database were not 
divided into different subtypes. Furthermore, when the expression of 
MIF in the TME increases, Foxp3+ Tregs, which can inhibit anti-tumor 
immunity, also increase in number in the TME. This result is consis-
tent with previous findings that MIF promotes the differentiation and 
proliferation of Treg cells in a mouse model [30]. Finally, baseline PD-L1 
expression levels were similar in the low and high MIF expression 
groups. Since patients in the two groups showed a great difference in 
treatment outcomes, the baseline PD-L1 expression level was rechecked 
as a poor predictor of neoadjuvant therapy, as previously reported [11]. 
Surprisingly, TLSs with a large number of CD20+ B cells were observed 

in the two responders belonging to the low-MIF-expression group. TLSs 
are local immune cell aggregates formed by chronic inflammatory 
stimulation. They are composed of B cells, T cells, DC cells, and other 
immune cells. TLSs are related to strong anti-tumor immune responses 
and enhanced efficacy of ICB therapy in several types of cancers [31]. 
The increased number of CD20+ B cells in the TME, as shown by IHC 
imaging, may support the formation of TLSs. Although whether the low 
expression level of MIF in the TME is directly associated with the for-
mation of TLSs requires further investigation, it still indicates that a low 
baseline MIF level is associated with a more antitumor baseline TME for 
neoadjuvant therapy against ESCC. Overall, a low baseline level of MIF 
is related to the formation of antitumor state TME, which may explain 
why MIF is a feasible predictor of neoadjuvant therapy. 

A secondary finding was that effective neoadjuvant therapy resulted 
in a decrease in serum MIF concentration. This finding supports the 
hypothesis that lower MIF levels are related to better clinical outcomes; 
however, it raises the problem that using only baseline serum MIF levels 
cannot ensure that the patient is a responder. Patients with low baseline 
serum MIF levels may not always respond to neoadjuvant therapy and 
vice versa. Therefore, although baseline serum MIF can predict treat-
ment outcomes for most patients, exceptions still exist. The analysis of 
these exceptions showed that after two cycles of treatment, the levels of 
MIF decreased in responders and increased in non-responders. There-
fore, the prediction can be more accurate if the serum MIF level can be 
tested again after several weeks of treatment. This secondary finding 
provides a more accurate and reliable method for using MIF as a pre-
dictive biomarker for testing the efficacy of PD-1 blockade immuno-
therapy combined with chemotherapy as neoadjuvant therapy for ESCC. 

Conclusions 

The key finding of this study was that the level of MIF negatively 
correlated with the efficacy of PD-1 blockade immunotherapy combined 
with chemotherapy as a neoadjuvant therapy for ESCC. Hence, MIF 
could serve as a clinically applicable predictive biomarker for 

Fig. 6. Baseline serum concentration of MIF and clinical outcomes from another group of patients (n=34). (A) Percentages of patients who had different clinical 
responses in the low- (n = 26) and high- (n = 8) MIF-level groups. ORR, objective response rate; DCR, disease control rate. Serum MIF levels in R (n = 20) and NR (n 
= 14) groups (B) before the initiation of the treatment and (C) after two cycles of the treatment. The changes in the serum MIF level in exceptional cases in the (D) R 
group (n = 7) and (E) NR group (n = 6). *p < 0.05, **p < 0.01, ***p < 0.001. 
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neoadjuvant therapy. The prediction can be made more accurately by 
retesting serum MIF levels after several weeks of treatment. A limitation 
of this study lies in the limited number of participants; therefore, the 
exact concentration of MIF as a classification standard cannot be pro-
vided. Further studies should focus on identifying the best criteria for 
using the MIF level as a predictor. Furthermore, as TNF-α is also related 
to the efficacy of the neoadjuvant therapy, its potential to be a predictive 
biomarker can be studied in the future. 
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