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Abstract

Locus coeruleus (LC) neurons regulate breathing by sensing CO2/pH. Neurons within the 

vertebrate LC are the main source of norepinephrine within the brain. However, they also use 

glutamate and GABA for fast neurotransmission. Although the amphibian LC is recognized 

as a site involved in central chemoreception for the control of breathing, the neurotransmitter 

phenotype of these neurons is unknown. To address this question, we combined electrophysiology 

and single-cell quantitative PCR to detect mRNA transcripts that define norepinephrinergic, 

glutamatergic, and GABAergic phenotypes in LC neurons activated by hypercapnic acidosis 

(HA) in American bullfrogs. Most LC neurons activated by HA had overlapping expression 

of noradrenergic and glutamatergic markers but did not show strong support for GABAergic 

transmission. Genes that encode the pH-sensitive K+ channel, TASK2, and acid-sensing cation 

channel, ASIC2, were most abundant, while Kir5.1 was present in 1/3 of LC neurons. The 

abundance of transcripts related to norepinephrine biosynthesis linearly correlated with those 

involved in pH sensing. These results suggest that noradrenergic neurons in the amphibian LC also 

use glutamate as a neurotransmitter and that CO2/pH sensitivity may be transcriptionally coupled 

to the noradrenergic cell identity.
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INTRODUCTION

Fast regulation of acid-base balance occurs through adjustments of arterial CO2 by 

ventilation. As part of this process, central chemoreceptors play a dominant role in detecting 

the deviation in CO2/pH and then signal for corrective changes in ventilation to bring 

arterial CO2 back to the set point (Santin, 2018). In recent years the definition of a central 

chemoreceptor has become increasingly complex. Broadly speaking, central chemoreceptors 

are neurons or glial cells containing molecules that transduce local changes in acid-base 

status into neuronal firing or gliotransmitter release to stimulate breathing (Gourine and 

Dale, 2022; Guyenet and Bayliss, 2015). Several different brain regions contain putative 

central chemoreceptors, including the retrotrapezoid nucleus (Mulkey et al., 2004), raphé 

nucleus (Hodges et al., 2008), locus coeruleus (Biancardi et al., 2008), lateral hypothalamus 

(Dias et al., 2009), the nucleus of the tractus solitarii (Huda et al., 2012), among others. 

Within these structures, distinct chemosensory molecules have been identified in neurons 

and glia, such as pH-sensitive ion channels, G-protein coupled receptors (Gestreau et al., 

2010; Huda et al., 2012; Kumar et al., 2015; Putnam et al., 2004), CO2-sensitive connexin 

hemichannels (Van de Wiel et al., 2020), and HCO3
− sensitive enzymes and intracellular 

signaling pathways (Gonçalves and Mulkey, 2018; Imber et al., 2014). Although most of this 

work has been performed in mammals, the general organization of the central chemosensory 

system appears to be conserved across vertebrates (Milsom et al., 2022).

A similar view of central chemosensitivity has begun to emerge for amphibians. Indeed, 

multiple brain regions contribute to the ventilatory response to hypercapnia (Fonseca et 

al., 2014; Fonseca et al., 2021; Noronha-de-Souza et al., 2006), and neurons appear to 

act as chemoreceptors (Santin and Hartzler, 2013a). Most of our understanding of central 

chemoreceptors in amphibians has come from the locus coeruleus (LC), the main source 
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of norepinephrine (NE) within the brain (Berridge and Waterhouse, 2003; Wang et al., 

2022). The LC is required for the increase in “tidal volume” during hypercapnia in anuran 

amphibians, and focal acidification increases minute ventilation in awake, freely-behaving 

animals (Noronha-de-Souza et al., 2006). Approximately 85% of the neurons within the 

LC of frogs enhance their firing rates in response to small increases in CO2 and may 

express molecules that give rise to intrinsic CO2/pH chemosensitivity. Indeed, LC neurons 

increase membrane resistance during hypercapnia (Santin and Hartzler, 2013a), suggesting 

the closure of K+ channels as a potential mechanism of chemosensitivity as occurs in 

mammals (Li and Putnam, 2013; Pineda and Aghajanian, 1997). In addition, temperature 

modulates LC neuron firing rates and chemosensitivity (Santin and Hartzler, 2015; Santin et 

al., 2013), which may control respiratory motor output during temperature changes through 

noradrenergic signaling (Vallejo et al., 2018). Therefore, neurons within the LC play a major 

role in ventilatory control of acid-base status in amphibians.

Although the LC is the primary source of NE within the vertebrate CNS, LC neurons also 

use glutamate and GABA for synaptic transmission. For example, LC neurons co-release 

NE and glutamate to regulate feeding behavior in mice (Yang et al., 2021). In addition, the 

mouse LC contains a GABAergic neuronal population that is not noradrenergic to control 

arousal (Breton-Provencher and Sur, 2019). Moreover, LC neurons of zebrafish are NEergic 

but co-express either GABAergic or glutamatergic markers (Filippi et al., 2014). Given 

the heterogeneity of neurotransmitter types within the vertebrate LC, the neurotransmitter 

profile of chemosensitive neurons in amphibians remains an open question. This has 

important implications for how activation of LC neurons leads to changes in ventilation (i.e., 

through relatively slow modulation via adrenergic receptors vs. fast excitatory or inhibitory 

transmission onto postsynaptic targets). To address this question here, we determined the 

neurotransmitter phenotype of LC neurons activated by hypercapnic acidosis (HA) in 

American bullfrogs. For that, we first performed whole-cell patch clamp recordings to 

identify LC neurons as putative respiratory chemoreceptors, then harvested these neurons 

through the patch pipette, and finally performed single-cell quantitative PCR to measure 

mRNA transcript abundance for markers of NAergic (dopamine beta-hydroxylase; DBH), 

glutamatergic (vesicular glutamate transporter 2; vGluT2), and GABAergic transmission 

(glutamate decarboxylase 1; GAD1). In addition, we assessed the overlapping expression of 

these neurotransmitter genes with mRNA for three candidate pH sensors, the K+ channels, 

TASK2 and Kir5.1, and one non-selective cation channel, ASIC2. Those channels are 

recognized to participate in the central chemosensitivity in mammals; Kir5.1 and ASIC2 are 

expressed in the LC, and TASK2 sense pH in the retrotrapezoid nucleus (D’Adamo et al., 

2011; Gestreau et al., 2010; Mir and Jha, 2021). Thus, they provided a reasonable starting 

point for us to address molecules potentially involved in the CO2-induced firing response 

amphibians. This approach allowed us to infer the relationship between neurotransmitter 

type and potential pH sensors within neurons of LC that respond to CO2 in adult bullfrogs.
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MATERIAL AND METHODS

Animals

The experimental procedure was approved by the Institutional Animal Care and Use 

Committee at The University of North Carolina at Greensboro (protocol #19–006). The 

experiments detailed in this study were designed to comply with ARRIVE guidelines and 

were carried out in accordance with the National Research Council’s Guide for the Care 

and Use of Laboratory Animals. Female Adult American bullfrogs (Lithobates catesbieanus) 

were acquired from Frog Farm (Twin Falls, ID, USA). In the animal facility, the frogs 

were housed in plastic tanks with access to dechlorinated aerated water and a dry area. The 

animals were acclimated to lab conditions at 23±2°C in a 12/12 light/dark cycle for at least 

a week before the experiments. Eight frogs were used in these experiments. The experiments 

proceed at room temperature 22±1°C.

Dissection and Tissue preparation

Deep anesthesia was achieved by exposing the frogs to 1 ml of isoflurane in a sealed 

container. After the loss of the toe-pinch reflex, the frog was decapitated, and the head was 

immersed in 4°C artificial cerebral spinal fluid (aCSF, composition in mM:104 NaCl, 4 KCl, 

1.4 MgCl2, 7.5 D-glucose, 1 NaH2PO4, 40 NaHCO3, 2.5 CaCl2, all purchased from Fischer 

Scientific, Waltham, MA, USA). Oxygenation and pH close to values for frogs (~7.85 at 

~20°C; (Howell et al., 1970; Reeves, 1972)) were maintained by bubbling the aCSF with 

1.5% CO2 and 98.5% O2 throughout the brainstem dissection.

Following decapitation, the forebrain was rapidly crushed with forceps, and the skull was 

quickly removed, exposing the brainstem. The dura was excised, and the brainstem was 

ventrally glued to a block of agar that was then attached to the vibratome plate using super 

glue. The midbrain was sliced at 400 µM in cross sections to expose LC neurons (Fournier 

and Kinkead, 2008; Noronha-de-Souza et al., 2006; Santin and Hartzler, 2013a).

Electrophysiology and single-cell collection

Patch clamp equipment and all the instruments used for patch clamp and cell collection 

were previously cleaned with a bleach solution, ethanol, and sodium hydroxide solution 

(RNAse away, Fischer Scientific, Waltham, MA, USA) to record and collect cells in an 

RNAse-free environment. Midbrain slices were transferred to the recording chamber and 

stabilized using a nylon grid while constantly perfused with aCSF. Neurons were identified 

in the area anatomically identified as the LC (González et al., 1994) using 40x magnification 

(Hamamatsu ORCA Flash 4.0LT sCMOS, Hamamatsu Photonics, Hamamatsu, SZ, Japan). 

To perform whole cell patch clamp electrophysiology, glass pipettes (2–4 MΩ resistance) 

were filled with 2.5 µl of a solution containing (in mM) 110-K-gluconate, 2 MgCl2, 10 

HEPES, 1 Na2-ATP, 0.1 Na2-GTP, and 2.5 EGTA (Fischer Scientific, Waltham, MA, USA). 

They were then attached to a head stage (CV203BU) and positioned close to neurons using 

an MP-285 micromanipulator and an MPC-200 controller (all Sutter Instruments, Novato, 

CA, USA). While approaching the neuron, positive pressure was applied and quickly 

removed to form a >1GΩ seal. This was then broken for whole cell access using gentle 

negative pressure applied by mouth.
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The chemosensitive response to CO2 was determined after acquiring stable access in the 

cell. For that, current clamp was used to monitor tonic firing frequency for 10 minutes to 

have a stable baseline in aCSF bubbled with standard CO2 (1.5% CO2 and 98.5% O2). 

The LC neurons had an initial membrane potential of −58.1±5.1mV, and we injected small 

amounts of positive current prior to stabilization in cells that were not firing tonically. 

Neurons with membrane potential more positive than −40mV were excluded from the 

experiment. After achieving stable firing, neurons were exposed to hypercapnia (5% CO2 

and 95% O2) to elicit an increase in firing frequency (Santin et al., 2013; Santin and 

Hartzler, 2016). Neurons that presented a clear increase in firing frequency were then 

collected for molecular analysis, as we previously described (Pellizari et al., 2023). One cell 

decreased firing in response to CO2 and was excluded from molecular analysis. After the 

electrophysiological recordings, we changed the amplifier into voltage clamp configuration, 

and membrane potential was stepped from – 5 mV to +20 mV at 5 ms intervals to aid 

in holding RNA in the pipette throughout the cell aspiration (Fuzik et al., 2016). Gentle 

negative pressure was applied in the glass pipette using a 60 ml syringe while monitoring the 

seal for 4 minutes. Then negative pressure was progressively increased in the next 3 minutes. 

Throughout this time, the cell was also visualized through the microscope to ensure that the 

entire cell was collected and that no other tissue entered the pipette. If we observed debris 

enter the tip of the pipette, the cell was discarded. The tip of the glass pipette containing 

the sample was broken in a tube containing 100µl of lysis buffer (Zymo Research, Irvine, 

CA, USA), and positive pressure was applied to ensure the cell release in the tube. The 

sample was saved in a −80°C freezer until further analysis. A second group was used as time 

controls to observe if there would be any spontaneous increase in firing frequency overtime. 

For this group, we also waited 10 minutes to have a stable baseline as described above 

(initial membrane potential of −57.1±7.6mV) and maintained the neurons in aCSF bubbled 

with 1.5% CO2 and 98.5% O2 for additional 10 minutes.

Neuronal firing frequency was analyzed as an average of all events within the last thirty 

seconds in each condition; e.g., control (1.5% CO2/pH~7.85) and hypercapnia (5% CO2/pH 

~7.35), as well as time control (1.5% CO2/pH~7.85) at 9.5 min and 19.5 min after entering 

the whole cell configuration. Analysis was made using the cyclic measurements function on 

LabChart (ADInstruments, Dunedin, Otago, New Zealand).

Single-cell Real-time quantitative PCR:

Primers and probe design: PCR primers were designed to study a possible 

noradrenergic (dopamine beta-hydroxylase; DBH), glutamatergic (vesicular glutamate 

transporter 2, vGluT2), and GABAergic (glutamate decarboxylase 1; GAD1) identity of 

the neuron. DBH catalyzes the conversion of dopamine to norepinephrine (Weinshenker, 

2007). vGluT2 is the most abundant transporter of glutamate into synaptic vesicles in the 

brainstem (Moechars et al., 2006), and GAD1 catalyzes the decarboxylation of glutamate 

to GABA (Lee et al., 2019). In addition, we measured the expression of genes with a 

potential role in pH/CO2 sensitivity; KCNK5 that encodes TASK2, an alkaline-activated 

K+ channel; ASIC2 that encodes an acid-sensing cation channel subunit; and KCNJ16 that 

encodes Kir 5.1, a K+ channel inhibited by acidosis. To identify these sequences, we used 

the annotated amino acid sequences from Rana temporaria as a query in the Lithobates 
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catesbeianus amino acid database, which produced hits for “hypothetical proteins” that had a 

high amino acid sequence conservation. We confirmed the identity of the hypothetical target 

protein by performing a reciprocal BLAST against the nonredundant protein database. In all 

cases, the reciprocal BLAST of the hypothetical bullfrog protein led to a list of sequences 

that were consistent with the identity of that protein (e.g., a protein we identified as TASK2 
based on homology with Rana temporaria always led to a list of TASK2 from many fish, 

amphibian, and reptile species when we “reBLASTed.” We could not identify Kir 5.1 
sequences in the bullfrog CDS, likely due to low coverage of the Lithobates catesbieansus 
genome (Hammond et al., 2017). Therefore, we used the coding sequence of Kir 5.1 found 

in Rana temporaria (closely related to L. catesbeianus). Our rationale was that the close 

identity of nucleotide sequence between these species would allow us to design primers for 

use in Lithobates catesbeianus.

Once we had the accession numbers, we found the open reading frame in the coding DNA 

sequence (CDS) to design probe-based qPCR assays using Biosearch Technologies Real 

Time Design qPCR Design Software. DBH and vGluT2 were grouped into one assay; 

TASK2 and ASIC2 were used in a separate assay, and GAD1 was run alone. Each assay had 

forward primers, reverse primers, and a fluorescent nucleotide reporter probe that specific 

binds to the amplicon of the target PCR product of interest. Thus, probe-based qPCR assays 

provide specificity at two levels: the primers and probes. All assays were first validated 

in-house by running a series of four 4-fold dilutions of brainstem cDNA. The only gene that 

fell below the detection limits of our assay was DBH, which was likely diluted out in whole 

brain homogenates due to highly localized expression within noradrenergic regions. Using 

the same methodology, we validated the DBH assay on the adrenal gland tissue, which is 

known to have high DBH expression (Kobayashi et al., 1994). The primer sets and probes 

used here are shown in Table 1.

Gene expression measurements: After all cells were collected (n=29) following 

electrophysiological experiments, the samples were thawed at once, batched processed in 

parallel, and the steps until gene expression measurement proceeded as we previously 

described (Pellizzari et al., 2023). Briefly, RNA was extracted and isolated in each single-

cell sample using Quick-RNA Microprep kit (Zymo Research, Irvine, CA, USA) according 

to the manufacturer’s instructions. In sequence, we synthesized cDNA using SuperScript IV 

VILO (Thermo Fisher Scientific, Waltham, MA, USA). We tested the quality of the sample 

by performing RT qPCR for 18S ribosomal RNA using an SYBR green reaction, following 

instructions of the 2X SYBR Green Mastermix (ThermoFisher Scientific, Waltham, MA). 

18S rRNA was selected as the control gene because ribosomal RNAs represent >80% of the 

total RNA within a sample and, therefore, provide an estimate of RNA extraction and cDNA 

synthesis efficiency. Of these 29 neurons, we chose 19 samples that had a threshold cycle 

(Ct) of ~21 cycles, indicating similar amounts of total RNA in the sample. These 19 neurons 

then underwent preamplification (PerfeCTa PreAmp SuperMix, Quanta Bio, Beverly, MA, 

USA) of our target genes by 14 cycles of PCR to enrich these targets within the sample as 

previously described (Pellizzari et al., 2023).

The samples were then diluted 7.5x In nuclease-free water, and we ran single-cell 

quantitative PCR on all cells for each of the target genes. For that, qPCR was performed 
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using 10 μL reactions containing 2.5 μM forward and reverse primers, 312.5 nM reporter 

probes, and followed the instructions of the 5× PerfeCTa qPCR Toughmix mastermix 

(Quanta Bio, Beverly, MA, USA). Assays were run on 96-well plates on an Applied 

Biosystems QuantStudio 6 (Applied Biosystems, Thermo Fisher Scientific, Waltham, MA, 

USA) using the cycling conditions recommended by the Toughmix mastermix: 50°C–- 

2min, 95 °C–- 10 min, 95 °C–- 15 s, 62.5 °C −1 m for 40 cycles of PCR. Conversion 

of Ct value to an estimation of absolute copy number for each neuron was estimated by 

interpolating Ct values for each gene into a standard curve of known copy number that was 

run on the same plate and accounting for the 14 cycles of preamplification (Pellizzari et 

al., 2023; Santin and Schulz, 2019). Standard curves were generated using gBlock Gene 

Fragments (IDT Technologies, Coralville, IA, USA) for each amplicon of our target genes 

and diluting it from 15×106 to 150 copies. mRNA copy number for each neuron was then 

normalized by an “normalization factor” based on 18S Ct values of the population to scale 

copy number in a way that accounts for potential differences in the efficiency of the cDNA 

synthesis reaction and starting concentrations within each sample (Schulz et al., 2007).

Data analysis

Statistical analysis—Data are raw values from individual experiments. The effect of 

hypercapnia or time in control conditions on the firing rate was analyzed using paired 

t-test. The difference in mRNA abundance among genes involved in neurotransmission 

or pH sensing was calculated using one-way ANOVA on ranks followed by Dunn’s 

multiple comparison post hoc test. To infer the relationship between neurotransmitter 

type and potential pH sensors, we performed Pearson correlation. Statistical significance 

was accepted when p≤0.05. Nineteen cells from 5 frogs were used in the hypercapnia 

experiment, followed by qPCR analysis, and 8 cells from 3 frogs were used for time control.

RESULTS:

Amphibian LC neurons increase their firing rates in response to hypercapnic acidosis (Santin 

and Hartzler, 2013a). However, the neurotransmitter identity of neurons in the LC that 

are activated by CO2 is not known. To address this question, we first identified CO2/pH-

sensitivity of neuronal firing in brain slices from adult frogs using whole-cell patch clamp 

electrophysiology (Fig 1A). All neurons used in this study increased firing rate following 

exposure to hypercapnia (p>0.001, paired t-test), with an average increase of 2.5±1.8 Hz 

(Fig. 1B-E). To ensure that these responses occurred due to the elevated CO2 and not a 

technical issue during the experimental protocol, we performed a separate series of time 

control experiments. The LC neurons maintained in baseline conditions decreased ~19% 

of the initial firing rate over 20 min (Fig. S1, change of −0.15±0.16Hz, p=0.0300), while 

the neurons exposed to hypercapnia and used for the molecular analysis increased firing 

frequency around 288%. These results indicate that the increase in firing frequency in 

response to hypercapnia was accurate, if not slightly underestimated, in those cells.

Following the whole-cell recording of neurons exposed to hypercapnia each neuron was 

aspirated into the patch pipette, saved in lysis buffer, and stored at −80°C for qPCR 

analysis. We then performed absolute quantitative real-time PCR in single LC neurons to 
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estimate mRNA transcript abundance for markers of neurotransmitter phenotype, as well 

as candidate pH-sensitive ion channels (Fig 2A). Our data pointed to a strong expression 

(mRNA abundance) of noradrenergic (DBH) and glutamatergic (vGluT2) markers, while 

the GABAergic (GAD1) transmission marker was absent from most neurons (Fig 2B). 

The abundance of neurotransmitter markers differed significantly (p<0.0001; Kruskal-Wallis 

test). Quantitatively, DBH and vGluT2 had similar mRNA copy numbers (p=0.0857; Dunn’s 

multiple comparisons test), while both DHB and vGluT2 were significantly greater than 

GAD1 (respectively; p=0.007 and p<0.0001; Dunn’s multiple comparisons test). Although 

these trends reflect the mean data, we note there was variability in the expression of each 

marker across cells. For example, most neurons expressed DHB, but two neurons in the 

data set had very low levels of DBH expression, just on the threshold of detection in our 

assay. On the other hand, most neurons lacked GAD1, but one exhibited a clear signal, 

suggesting the possibility of GABAergic neurons within the LC as has been shown to 

occur in mammals (Breton-Provencher and Sur, 2019). Overall, LC neurons activated by 

HA appear to be noradrenergic and glutamatergic, but distinct cell types may exist in lower 

frequencies (i.e., only glutamatergic or GABAergic neurons).

pH-sensitive ion channels are thought to be a type of molecule that underlies CO2/pH 

chemosensitivity in neurons (Putnam et al., 2004). Therefore, we also measured the 

expression of three candidate pH-sensitive ion channels, two of which are expressed in 

the LC of mammals (Kir5.1 and ASIC2), and one with a well-known role in pH sensing 

of the retrotrapezoid nucleus (TASK2) (D’Adamo et al., 2011; Gestreau et al., 2010; 

Mir and Jha, 2021). All LC neurons expressed ASIC2 and TASK2, while most neurons 

tended to have lower Kir5.1 expression (Fig 2C). The copy number varied across channel 

mRNAs (p<0.0011; Kruskal-Wallis test). TASK2 had similar levels of expression compared 

to ASIC2 and Kir5.1 (p=0.3820 and 0.970; Dunn’s multiple comparisons test), but ASIC2 
was significantly greater than Kir5.1 (p=0.0007; Dunn’s multiple comparisons test). Like the 

neurotransmitter markers, the general trends in the expression of pH sensors had exceptions. 

For example, although many neurons had Kir5.1 expression near or below the detection 

threshold of our assay, 7 neurons showed expression levels in the range of TASK2 and 

ASIC2. Therefore, LC neurons responding to HA express the mRNA that codes for several 

distinct pH-sensitive ion channels, with consistently greater expression of TASK2 and 

ASIC2.

Neuronal properties (sensory processes, output patterns, synaptic function) are thought 

to be constrained by genetic mechanisms (Kodama et al., 2020). As a result, multiple 

physiological processes that define the function of a given cell type are often under the 

same transcriptional regulatory pathways. This form of control often manifests as mRNA 

abundances for each process that are regulated at roughly fixed ratios, which manifest as 

correlations across populations of cells or animals (Goaillard and Marder, 2021; Hu and 

Santin, 2022; Santin and Schulz, 2019). Thus, genes under shared regulatory pathways often 

track each other at the mRNA level to give rise to characteristic functions of a given cell 

type. This led us to test the potential for coupling between the neurotransmitter phenotype 

and pH sensing in LC neurons.
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We found significant correlations between DBH vs.TASK2 (r=0.5488, p=0.0150) and DBH 
vs. ASIC2 (r=0.6727, p=0.0063) but not DHB vs. Kir5.1 (Fig 3 A-C). In addition, there was 

a significant correlation between TASK2 and ASIC2 (r=0.5526, p=0.0142; Fig 3D). These 

results indicate that DBH, TASK, and ASIC2 all roughly track each other’s expression 

levels across neurons. Interestingly, we did not observe correlations between vGluT2 and 

any of the pH-sensitive ion channels (Fig 4A-C), nor did DBH correlate with vGluT2 (Fig 

4D). These results indicate that correlated patterns of mRNA expression are specific to 

norepinephrine biosynthesis and pH sensing channels, at least for this subset of genes. In 

sum, these data show that LC neurons activated by HA are predominately noradrenergic and 

glutamatergic, and express pH-sensitive ion channels that covary with DBH abundance.

DISCUSSION:

Chemosensitive LC neurons and noradrenergic signaling play a critical role in acid-base 

regulation through the control of breathing in amphibians (Noronha-de-Souza et al., 2006; 

Santin and Hartzler, 2013a, b; Vallejo et al., 2018). Although LC neurons are the main 

source of norepinephrine within the CNS, different vertebrate species contain LC neurons 

with various neurotransmitter types. Here, we extend previous work by incorporating 

modern single-cell molecular profiling techniques to define the neurotransmitter profile 

of CO2/pH-sensitive LC neurons in bullfrogs. First, we show that most neurons in the 

LC of amphibians that increase firing rates in response to CO2 are noradrenergic and 

glutamatergic. Second, we show that these cells express mRNA that codes for pH-sensitive 

ion channels. Finally, we observed a linear correlation between mRNA abundance for 

candidate pH-sensing genes with a noradrenergic identity, which points to a genetic or 

transcriptional coupling between these processes.

Caveats and limitations

We want to mention important caveats of these data. Most LC neurons of bullfrogs respond 

to HA and likely play a role in ventilatory response to respiratory acidosis (Santin and 

Hartzler, 2013a, b; Santin and Hartzler, 2016). However, roughly half of those neurons lose 

their responsiveness to CO2/pH when isolated from local networks via synaptic blockade, 

indicating some neurons may respond to HA through synaptic transmission rather than 

intrinsic CO2/pH sensing (Santin and Hartzler, 2013a). This is important, as the hypercapnic 

response by the LC neurons in this study was characterized with synapses and surrounding 

glia intact. Therefore, even though all neurons included here increased firing rates in 

response to CO2, we expect that some may not have been intrinsically chemosensitive, 

responding via input from synapse (Santin and Hartzler, 2013a) or gliotransmission from 

astrocytes or microglia. This seems consistent with our data, as we observed a continuum 

of mRNA abundance for markers of neurotransmitter identity and pH sensing ion channels. 

We expect that variation mRNA abundances across neurons may correspond with whether 

neurons are intrinsically chemosensitive.

We also acknowledge the complicated relationship between mRNA and mature protein 

function. On the one hand, a close matching exists between the expression of genes 

involved in neurotransmitter biosynthesis and the presence of those enzymes in single 
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neurons (Marder, 1976; Martinez et al., 2019). Thus, the expression of mRNA transcripts 

for genes such as DBH, vGluT, and GAD are commonly used to define neurotransmitter 

phenotypes with molecular profiling techniques (Fremeau Jr et al., 2001; Hartman et 

al., 1972; Moriyama and Yamamoto, 2004; Pinal and Tobin, 1998). On the other hand, 

the relationship between ion channel mRNA and the function of those ion channels is 

not always straightforward. In some cases, mRNA abundance for voltage-gated channels 

closely tracks the functional measurement of current density across a population of neurons 

(Schulz et al., 2006). In contrast, the abundance of mRNA for certain ion channels may 

inversely vary with their functional currents (e.g., when the channel current is large, mRNA 

abundance is low) (Pellizari et al., 2023; Ransdell et al., 2012). Thus, while we expect 

pH-sensitive ion channels coded for by these mRNAs to be present in chemosensitive 

LC neurons, we urge against quantitative arguments about how mRNA relates to the 

function of these channels and CO2-induced firing at this time. We view these caveats 

as important directions for future experiments to understand the molecular organization of 

central chemoreceptors.

Molecular Profiling of LC Neurons

A major finding of this study is that most LC neurons activated by HA in adult American 

bullfrogs are both noradrenergic and glutamatergic. In anuran amphibians, noradrenergic 

fibers project to various parts of the central nervous system, including but not limited to 

the pallium, cerebellum, olfactory bulb, hypothalamus, as well as those involved in the 

control of breathing (González et al., 1994; González and Smeets, 1993; Noronha-de-Souza 

et al., 2006; Smeets and Reiner, 1994). Along with the actions of NEergic signaling 

on postsynaptic targets, these results suggest that LC neurons likely use glutamate as a 

neurotransmitter to communicate with these regions. Thus, glutamatergic outflow from the 

LC may act via a range of receptors, including AMPA receptors, NMDA receptors, and 

the metabotropic glutamate receptor family. Although the specific mechanistic implications 

of glutamatergic LC signaling remain to be explored, these results open the possibility 

for co-transmission of glutamate and NE, as was recently described in mammals (Yang et 

al., 2021). Although we show clear evidence toward a general trend of glutamatergic and 

NEergic LC that respond to CO2, it is important to acknowledge that other cell types did 

occur in lower frequencies (e.g., a single GABAergic neuron). These data introduce the 

possibility that LC neurons may also signal through inhibition to regulate breathing. The 

postsynaptic targets of glutamatergic and GABAergic LC neurons remain to be explored and 

present an interesting area for future work to understand how chemosensory information 

within the LC is translated into a ventilatory response.

We also detected mRNA for candidate pH-sensing ion channels in LC neurons. Two of these 

genes, Kir5.1 and ASIC2, are expressed in the LC of mammals (D’Adamo et al., 2011; 

Gestreau et al., 2010; Mir and Jha, 2021). Although about one third of neurons expressed 

Kir1.5, the majority did not. However, we identified the expression of ASIC2 in every 

neuron. We acknowledge that this channel’s half-maximal activation occurs at pH ~4.5 (at 

least in mammals), which lies far outside the physiological range. However, when combined 

with other ASIC subtypes, the pH sensitivity of ASIC2 shifts closer to the physiological 

range, with half-activation values near a pH of 6 and a base of the activation curve near 
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a pH of 7.5 (Hesselager et al., 2004). In addition, incorporating ASIC2 into the ASIC 
protein trimer reduces desensitization, preventing channel closure in response to sustained 

acidosis (Hesselager et al., 2004). Given that LC neurons have high membrane resistance 

values (0.5–1 GΩ), even slight activation of ASIC channels at the base of the activation 

curve during hypercapnic acidosis to a degree that as we performed here may produce 

currents of just a few pA to stimulate neurons and increase ventilatory drive (Santin and 

Hartzler, 2013a). Along with ASIC2, each LC neuron analyzed also expressed TASK2, one 

of the critical ion channels for chemosensitivity of the mammalian retrotrapezoid nucleus 

(RTN) (Gestreau et al., 2010; Kumar et al., 2015). TASK2 is a K+ leak channel with a pH 

sensitivity within the physiological range, being closed by slight acidification and opened 

by alkalinization (Li et al., 2020). TASK2 mRNA is strongly expressed in the mammalian 

RTN and, to our knowledge, has never been detected in the LC. Thus, our data raise the 

possibility that TASK2 may play a role in pH sensing in the amphibian LC but was lost 

in mammals. Expression of multiple pH sensors that operate over different pH ranges is 

consistent with the broad range of pH values this animal may encounter resulting from 

temperature changes. For example, K+ leak channels, including TASK2 and other TASK 

channels we did not study, may operate as the dominant pH sensors near ~22°C, while 

ASICs may be recruited by respiratory acidosis at higher temperatures when arterial pH is 

already more acidic (Stinner and Hartzler, 2000); Howell et al., 1970). Future work must 

address the full profile of pH sensing channels and receptors to understand how animals that 

regulate variable pH set points to achieve this goal.

Potential coregulation of noradrenergic and pH sensing cell phenotype

Features of neuronal identity are controlled through genetic mechanisms. For example, 

a matching between firing and neurotransmission is constrained by co-expressing ion 

channels (Kodama et al., 2020). In addition, genes involved in dopamine metabolism are 

transcriptionally coupled to the expression of various voltage-gated ion channels in neurons 

of the substantia nigra (Tapia et al., 2018). Thus, genetic or transcriptional programs 

integrate multiple cellular properties that define a neuronal type. As these processes are 

reflected as correlations in mRNA abundance (Goaillard and Marder, 2021), we analyzed 

our data for correlations between mRNA that codes for neurotransmitter phenotype and 

pH-sensitive ion channels. We found that the abundance of mRNAs associated with 

norepinephrine biosynthesis (DBH) correlated with both pH sensing channels that were 

expressed in most neurons (TASK2 and ASIC2). Although vGluT2 was expressed in these 

same cells, it did not linearly correlate with any of the pH sensors or DBH. Thus, these 

data suggest that a genetic or transcriptional program links the noradrenergic identity with 

chemosensitivity, while glutamatergic function may be under separate control mechanisms. 

We do not yet know the specific mechanisms that maintain mRNAs in the correlated state. 

Some work indicates that co-expressed genes may be under the control of transcription 

factors that bind to the same promoter (Veerla and Höglund, 2006). Others have shown that 

feedback through ongoing activity or neuromodulation maintains mRNA correlations across 

neurons (Santin and Schulz, 2019; Temporal et al., 2012; Temporal et al., 2014). Regardless 

of the specific mechanisms, our results introduce the possibility that LC neuron responses 

to HA are coupled to the noradrenergic phenotype. Thus, a key area for future work will 

be to address this relationship more comprehensively by determining which gene families 
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correlate with the noradrenergic phenotype (e.g., additional pH sensing ion channels) and 

which, if any, correlate with the glutamatergic phenotype (e.g., voltage-gated ion channels 

or neurotransmission). Overall, these results provide new insights and raise new questions 

about the molecular organization of central chemoreceptors.

CONCLUSION

In sum, we combined single-cell molecular methods and electrophysiology recording to 

determine the neurotransmitter phenotype of LC neurons that respond to CO2 in amphibians. 

These neurons are both noradrenergic and glutamatergic and express mRNA for at least two 

pH-sensitive ion channels. Additionally, only the noradrenergic phenotype was correlated 

to the pH-sensing channels indicating a possible coupling of LC chemoreception to the 

noradrenergic cell identity in bullfrogs. By integrating single-cell RNA methods and 

physiology, the present study expands our understanding of the molecular organization of 

central chemoreceptors in vertebrates.
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Abbreviations

LC Locus coeruleus

GABA Gamma-Aminobutyric Acid

PCR Polymerase Chain Reaction

mRNA Messenger ribonucleic acid

TASK2 pH-sensitive K+ channel

ASIC2 Acid-sensing cation channel

Kir5.1 Inwardly rectifying K+ channel 5.1

DBH Dopamine beta-hydroxylase

vGluT2 Vesicular glutamate transporter 2
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GAD1 Glutamate decarboxylase 1

NE Norepinephrine

qPCR Quantitative Polymerase Chain Reaction

RT qPCR Real-time Quantitative Polymerase Chain Reaction

aCSF Artificial cerebrospinal fluid

RNAse Ribonuclease

BLAST Basic Local Alignment Search Tool

CDS Coding DNA Sequence

cDNA Complementary DNA

rRNA Ribosomal RNA

RTN retrotrapezoid nucleus
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Highlights

• Locus coeruleus (LC) neurons regulate breathing by sensing CO2/pH in 

vertebrates.

• In adult frogs, we analyzed the neurotransmitter phenotype of LC neurons and 

candidate ion channels involved in chemosensitivity using single-cell absolute 

quantitative PCR.

• Chemosensors expressed markers for noradrenergic and glutamatergic 

synaptic transmission but not GABAergic synaptic transmission.

• The abundance of mRNA for associated with noradrenaline biosynthesis was 

linearly correlated with those involved in pH-sensing.
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Figure 1 –. Locus coeruleus neurons of adult bullfrogs increased firing frequency in response to 
hypercapnia (5% CO2).
Neurons in the region comprising the locus coeruleus (A) had firing frequency recorded in 

control conditions (B, C) and after being exposed to 5% CO2 (C, D). Hypercapnia increased 

firing frequency of all neurons used in this study (E, n=19). Results were compared using 

paired t-test.
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Figure 2 –. mRNA abundance of neurotransmitter markers and candidate pH sensing ion 
channels.
A) Individual neurons harvested after electrophysiological recordings had gene expression 

analyzed using RT qPCR (n=19). B) mRNA transcript abundance for markers of 

noradrenergic (dopamine beta-hydroxylase; DBH), glutamatergic (vesicular glutamate 

transporter 2; vGluT2), and GABAergic (glutamate decarboxylase 1; GAD1) transmission. 

C) mRNA transcript abundance for markers of pH sensors, TASK2 (K+ channel), ASIC2 
(cation channel), and Kir5.1 (K+ channel). Bars represent means ± SD. Results were 

compared using one-way ANOVA on rank (Kruskal-Wallis test) followed by Dunn’s posthoc 

tests.
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Figure 3. Correlations between the noradrenergic marker (dopamine beta-hydroxylase; DBH) 
and pH sensors
(n=19). Expression of DBH was positively correlated to expression of the pH-sensing 

markers TASK2 (A) and ASIC2 (B) but not to Kir5.1 (C). A positive correlation was also 

observed between the abundance of TASK2 and ASIC2 (D).
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Figure 4. No correlation between the glutamatergic marker (vesicular glutamate transporter 2; 
VGluT2) and pH sensors
(n=19). The expression of vGluT2 was not related to the expression of the pH-sensing 

markers TASK2 (A), ASIC2 (B), or Kir5.1 (C). The expression of glutamatergic (VGluT2) 
and noradrenergic (dopamine beta hydroxylase; DBH) markers were also not related (D).
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Table 1.

Primer sequence for qPCR Assays

Target Forward Primer Reverse Primer Efficiency

DBH CCGATGATGTCCTGACAATGGA TCCGTGATGTAGCACCAGTAAG 104%

vGluT2 GATCGTCGGAGCCATGACTAAG CGGAGGCAAATAAGCCGTAGAAG 102%

GAD1 CAGACCAGGCTCGTTTCCTA CCGCCCTGGAGATAGTCTTTC 100%

TASK2 CAGGACAAGGAAGCCACGATA GGTCTCCCAGGGTTCAGATTC 100%

ASIC2 GTGCAGAACCAGCGCTAAG CAGGGCATTGTACACATGCA 100%

Kir5.1 ACGGCAAACTGTGCCTCATG CGCACGTTTCCTTCAACAACA 99%

Target Probe Sequence Probe-Quencher
NCBI accession # Lithobates 

catesbeianus

DBH TCTTGCTCCAGATGTTGTCATTCCAGA FAM-BHQ1a PIO33490.1

vGluT2 CACGTGAGGAATGGCAATATGTCTTCC HEX-BHQ1a PIO31042.1

GAD1 CCACTCTTGCCAGACTAGCCTCCTT FAM-BHQ1a PIO41232.1

TASK2 TCATCAACCAATTAGACCGGATCAGTGA HEX-BHQ1a PIO29936.1

ASIC2 TTTACTGACAGAGAAGGATGGAGGGTTT Texas Red-BHQ2a PIO37540.1

Kir5.1 TGGCGTGTTGGTGACTTTCGAC FAM-BHQ1a XM_040331031.1*

*
Kir 5.1 coding sequence was found in Rana temporaria (closely related to L. catesbeianus); see methods.
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