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Abstract
Given the increasing number of people living with obesity and related chronic metabolic disease, precision nutrition 
approaches are required to increase the effectiveness of prevention strategies. This review addresses these approaches in 
different metabolic phenotypes (metabotypes) in obesity. Although obesity is typically associated with an increased cardio-
metabolic disease risk, some people with obesity are relatively protected against the detrimental effects of excess adiposity 
on cardiometabolic health, also referred to as ‘metabolically healthy obesity’ (MHO). Underlying mechanisms, the extent 
to which MHO is a transient state as well as lifestyle strategies to counteract the transition from MHO to metabolically 
unhealthy obesity (MUO) are discussed. Based on the limited resources that are available for dietary lifestyle interventions, it 
may be reasonable to prioritize interventions for people with MUO, since targeting high-risk patients for specific nutritional, 
lifestyle or weight-loss strategies may enhance the cost-effectiveness of these interventions. Additionally, the concept of 
tissue insulin resistant (IR) metabotypes is discussed, representing distinct etiologies towards type 2 diabetes (T2D) as well 
as cardiovascular disease (CVD). Recent evidence indicates that these tissue IR metabotypes, already present in individuals 
with obesity with a normal glucose homeostasis, respond differentially to diet. Modulation of dietary macronutrient composi-
tion according to these metabotypes may considerably improve cardiometabolic health benefits. Thus, nutritional or lifestyle 
intervention may improve cardiometabolic health, even with only minor or no weight loss, which stresses the importance of 
focusing on a healthy lifestyle and not on weight loss only. Targeting different metabotypes towards T2D and cardiometabolic 
diseases may lead to more effective lifestyle prevention and treatment strategies. Age and sex-related differences in tissue 
metabotypes and related microbial composition and functionality (fermentation), as important drivers and/or mediators of 
dietary intervention response, have to be taken into account. For the implementation of these approaches, more prospective 
trials are required to provide the knowledge base for precision nutrition in the prevention of chronic metabolic diseases.
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Abbreviation
BMI  Body Mass Index
BCFA  Branched-Chain Fatty Acids
CVD  CardioVascular Diseases
DASH  Dietary Approaches to Stop Hypertension
HIRI  Hepatic Insulin Resistance Index
HOMA-IR  Homeostatic Model Assessment of Insulin 

Resistance

IFG  Impaired Fasting Glucose
IGT  Impaired Glucose Tolerance
IR  Insulin Resistance
LIR  Liver Insulin Resistance
LED  Low-Energy Diet
MeDi  Mediterranean
MRI  Magnetic Resonance Imaging
MIND  Mediterranean-DASH intervention for 

Neurodegenerative Delay
MHO  Metabolically Healthy Obesity
MUO  Metabolically Unhealthy Obesity
metabotypes  Metabolic phenotypes
MIR  Muscle Insulin Resistance
MISI  Muscle Insulin Sensitivity Index
PREDIMED  Prevención con Dieta Mediterránea
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SCFA  Short-Chain Fatty Acids
TAG   Triacylglycerols
T2D  Type 2 Diabetes

1 Introduction

The prevalence of obesity, insulin resistance (IR) and related 
chronic metabolic diseases such as type 2 diabetes (T2D), 
cardiovascular diseases (CVD) and mental diseases has 
grown dramatically over the past decades, with far reaching 
consequences for individuals, society and economy [1, 2].

A healthy diet may improve cardiometabolic health, 
even in the presence of minor weight loss [3]. Nevertheless, 
although preventive strategies such as lifestyle interventions 
have improved over time, long-term maintenance and adher-
ence to a healthy lifestyle remains poor [4]. It is becom-
ing progressively evident that the concept of a universal 
dietary solution does not apply when considering lifestyle 
or dietary strategies for enhancing health, as a substantial 
subset of individuals does not respond to dietary interven-
tions. It is widely recognized that only about 40% of the 
study population exhibit a beneficial metabolic response to 
generic dietary interventions, wherein the responsiveness is 
closely linked to distinct metabolic phenotypes, so-called 
metabotypes [5–8]. The usage of machine learning algo-
rithms to improve blood glucose control has been proven 
successful [9–11]. In a retrospective analysis of the Tubin-
gen Lifestyle Intervention Program, a high-risk metabotype 
was identified, characterized by beta-cell dysfunction and/
or insulin-resistant (IR) nonalcoholic fatty liver disease 
with higher probability of long-term non-response to life-
style intervention [12]. In the latter group, intensification 
of lifestyle intervention showed a higher improvement in 
glucose tolerance [13]. Additionally, we recently provided, 
for the first time, the proof-of-concept that isocaloric dietary 
macronutrient modulation according to tissue IR metabotype 
may considerably further improve insulin sensitivity and 
cardiometabolic health [14]. Combined, these data indicate 
that a precision-based approach to improve cardiometabolic 
health seems promising and may increase intervention effi-
cacy as well as adherence to intervention.

This review will discuss the different metabotypes in 
obesity and their relationship with the risk of developing 
cardiometabolic disease, and highlight underlying (tissue-
specific) metabolic disturbances. Next, our focus lies in 
assessing the efficacy of a precision-based approach that 
targets specific (tissue) metabotypes to enhance the success 
of nutritional or lifestyle interventions in individuals who 
are living with overweight or obesity. Results from recent 
dietary intervention studies that used a precision nutrition 
or lifestyle approach targeting specific metabotypes to fur-
ther improve intervention effectiveness in individuals living 

with overweight or obesity will be discussed. Finally, future 
perspectives and approaches will be addressed.

2  Metabolically healthy versus unhealthy 
obesity metabotypes

Although obesity is typically related to metabolic dysfunc-
tion and an elevated cardiometabolic disease risk, expan-
sion of adipose tissue does not always result in metabolic 
perturbations. There is a group of individuals with obesity 
that is relatively protected against the detrimental effects of 
excess adiposity on cardiometabolic health, also alluded to 
as ‘metabolically healthy obesity’ (MHO). Several lines of 
evidence have shown that the absolute amount of body fat 
is not the main factor determining the metabotype in people 
with obesity. For example, abdominal liposuction did not 
improve metabolic health, including IR, in humans [15]. 
Furthermore, despite an increase in fat mass, pharmacologi-
cal activation of PPARγ using thiazolidinediones increased 
insulin sensitivity in humans [16]. Another condition show-
ing that there fat mass is not directly associated with meta-
bolic health is lipodystrophy. Adipose tissue deficiency in 
patients with (partial) lipodystrophy is accompanied by IR 
and an increased risk of T2D [17].

The location where lipids are stored is a stronger risk 
factor for metabolic and cardiovascular diseases than excess 
adiposity per se. Abdominal obesity (fat accumulation in 
the upper body) is positively associated with the develop-
ment of obesity-related comorbidities and all-cause mor-
tality, while lower body obesity (fat accumulation in the 
gluteofemoral region) is related to a protective lipid and 
glucose profile, and a lower prevalence of cardiometabolic 
diseases after adjustment for total fat mass [18–21] (Fig. 1). 
Noteworthy, deep abdominal subcutaneous adipose tissue, 
which refers to the fat situated below Scarpa’s fascia, divid-
ing the superficial and deep layers of abdominal subcuta-
neous fat, appears to increase disproportionately compared 
to the superficial fat as obesity progresses. This particular 
expansion tendency contributes to a higher susceptibility 
to cardiometabolic complications and chronic diseases in 
men, regardless of other measures of adiposity [22]. The risk 
associated with a certain body fat distribution pattern seems 
to be explained by strikingly distinct functional properties 
of different fat depots, as extensively reviewed elsewhere 
[23]. One important factor underlying the differential car-
diometabolic disease risk between people with upper versus 
lower body obesity is that abdominal adipose tissue has a 
high lipid turnover or, in other words, is able to rapidly take 
up and store nutrients after meal intake and release fatty 
acids under fasting or exercise conditions. In contrast, lower 
body fat stores exhibit a diminished rate of lipid turnover and 
retain lipids that would otherwise be directed to non-adipose 
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tissues [23]. Thus, lower body fat seems to act as a ‘meta-
bolic sink’ that protects from ectopic fat deposition (i.e. fat 
deposition in skeletal muscle, the liver and visceral adipose 
tissue) and, consequently, insulin resistance and cardiometa-
bolic complications [24–26] (Fig. 1). Although visceral fat 
mass is a key factor in cardiometabolic disease development 
compared with the amount of fat stored in other adipose 
tissue depots, there is evidence that a (relatively) low mass 
of lower body fat depots may independently predict cardio-
metabolic disease risk, suggesting that a reduced amount 
of lower body fat is as important as a high visceral fat mass 
regarding the risk of cardiometabolic disease development, 
at least in people with a normal weight [27].

In accordance with the importance of body fat distribu-
tion in cardiometabolic disease development, many studies 
have demonstrated that excess fat mass does not explain the 
distinct cardiometabolic profile between individuals with 
MHO and ‘metabolically healthy obesity’ (MUO). Rather, 
differences in the location where the excessive calories 
are stored seems to distinguish these obesity phenotypes. 
Indeed, several studies have shown that individuals with 

MHO have more subcutaneous adipose tissue (more glu-
teofemoral fat in women), less visceral fat mass, less fat 
accumulation in the liver and skeletal muscle, and less mac-
rophage infiltration and inflammation in (visceral) adipose 
tissue than people with MUO, matched for age, sex, BMI 
and fat mass [27–39]. Of note, it seems that beside dietary 
intake the physical activity level and cardiorespiratory fit-
ness are also important determinants of the metabotype in 
individuals with obesity [39, 40].

3  Metabolically healthy obesity: a transient 
state?

To date, there is no universally accepted definition of MHO. 
Most studies that compared characteristics of people with 
MHO and MUO phenotypes and/or examined the associa-
tion of MHO with the risk of developing chronic diseases 
or mortality defined MHO as having ≤ 2 components of 
the metabolic syndrome, although the homeostasis model 
assessment of insulin resistance (HOMA-IR) was used to 

Fig. 1  Body fat distribution is a key determinant of cardiometabolic 
disease risk. Subcutaneous adipose tissue buffers the daily influx of 
excess calories during a prolonged positive energy balance. Upper 
body fat storage in people with abdominal obesity (that is, predomi-
nant lipid storage in the abdominal region) is usually paralleled by 
more lipid spillover in the circulation, an increase in visceral adipose 
tissue and ectopic fat storage (that is, lipid accumulation in non-adi-
pose such as skeletal muscle, liver, pancreas and heart), which insti-
gates the development of insulin resistance and chronic cardiometa-
bolic diseases such as type 2 diabetes and cardiovascular diseases. In 
contrast, predominant fat storage in the lower body as seen in people 

with lower body obesity limits lipid spillover in the circulation, since 
gluteo-femoral adipose tissue acts as a metabolic sink to buffer excess 
lipids. Consequently, less lipids will accumulate in visceral adipose 
tissue and certain non-adipose tissues, thereby reducing cardiometa-
bolic disease risk. Premenopausal women living with obesity seem 
to be characterized by more lipid accumulation in skeletal muscle 
(smaller lipid droplets consisting of less saturated fatty acids) and 
similar or less lipid storage in the liver, with less detrimental effects 
on tissue-specific insulin sensitivity compared to men with obesity. 
Created with BioRender.com
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define MHO in other studies [41]. This means that many 
study participants were likely ‘misclassified’ as having 
MHO, while these individuals might just had fewer car-
diometabolic perturbations than those classified as having 
MUO. The latter is also important when interpreting the 
results of studies that reported the prevalences of MHO in 
different populations.

In addition to the criteria used to define MHO, the preva-
lences of MHO and MUO depend on several characteristics 
of the study populations such as BMI, age, sex, ethnicity 
and the absence/presence of other chronic diseases. These 
factors likely explain the large variability in reported MHO 
prevalence, ranging from ~5% (MHO defined as no meta-
bolic syndrome component and normal HOMA-IR) to ~50% 
(MHO defined as no metabolic syndrome) [41]. It has been 
shown that MHO is more common in individuals with a 
BMI below 35 kg/m2 [42], younger adults [43–47], women 
[43–45], and people of European ancestry compared to those 
from South Asia, South America and Africa [45, 48].

The risk of developing cardiovascular diseases among 
individuals in various BMI categories is likely influenced 
by their metabolic health. An key question is whether and 
to what extent metabolic health in people with MHO dete-
riorates over time and how this impacts cardiometabolic 
disease risk. Several prospective cohort studies and meta-
analyses have demonstrated that the majority of people 
with MHO has an increased risk of T2D and cardiovascu-
lar disease compared to healthy people with normal body 
weight [49–51]. A meta-analysis demonstrated that MHO 
was related to a higher risk of events when only studies 
with 10 or more years of follow-up were considered [51]. 
Longitudinal studies indicate that 30–50% of MHO indi-
viduals switch to the MUO phenotype after 4–20 years of 
follow-up [33, 52–57]. Indeed, it was shown in the North 
West Adelaide Health Study that MHO is a transient pheno-
type in about one-third of these individuals, and that those 
who maintained a MHO phenotype during 5.5–10.3 years 
of follow-up (i.e. younger individuals with less abdominal 
adiposity) had a similar T2D and cardiovascular disease risk 
compared to metabolically healthy, normal weight partici-
pants [33]. In the Nurses’ Health Study (median follow-up 
of 24 years), women with MHO had a higher CVD risk 
than women with metabolically healthy normal weight, 
but the risk was considerably higher in women who con-
verted to MUO [50]. In agreement with these observations, 
it was shown in a community-based population in China, 
in which ~45% of individuals with MHO developed MUO 
(follow-up period of 4.4 years), that individuals who expe-
rienced transient MHO, but not those with persistent MHO, 
demonstrated an elevated risk of subclinical atherosclerosis 
[58]. Population-based studies in Korea (Korean NHIS data-
sets (2002–2017, mean follow-up of 3.7 years)) and Norway 
(Nord-Trøndelag Health Study, mean follow-up of ~12 years) 

indicated that people with persistent MHO during follow-up 
were, however, not protected against heart failure [59, 60]. 
Taken together, although MHO seems a transient state in 
the majority of people, those with persistent MHO have a 
lower risk of chronic cardiometabolic diseases. One must 
take into account that the decline in cardiometabolic health 
associated with aging, the adverse metabolic consequences 
of prolonged excess adiposity, and the tendency to accumu-
late fat mass with age will influence the (lack of) stability 
of the MHO phenotype [41]. The development of IR and 
elevation of fasting glucose concentration seem major fac-
tors related to the transition from MHO to MUO [61]. In 
line, people with higher BMI, older age, more severe meta-
bolic perturbations, a poor lifestyle index, and body weight 
gain seem to have a greater risk of transitioning from MHO 
to MUO [53, 62–67].

4  Lifestyle interventions to improve 
cardiometabolic health and counteract 
the transition from metabolically healthy 
to unhealthy obesity

A healthy lifestyle can reduce the risk of cardiometabolic 
complications and many chronic diseases significantly. 
Several large population studies have investigated habit-
ual dietary intake in people with MHO and MUO. Most 
of these studies found that total dietary energy intake and 
macronutrient composition was similar between individuals 
with MHO and MUO [35, 68, 69]. In accordance with these 
observations, no difference in diet quality, appraised as the 
consumption of Mediterranean-style and DASH-style diets, 
was found between individuals with MHO and MUO in the 
US National Health and Nutrition Examination Survey [70]. 
An intriguing observation was made, indicating that women 
aged 19–44 years with MHO exhibited a higher total Healthy 
Eating Index 2005 (HEI-2005) score, which indicates bet-
ter dietary quality based on the 2005 US National Dietary 
Guidelines, compared to women with MUO. However, for 
men aged 19–44 years or adults aged 45–85 years, no sig-
nificant differences were found in the HEI-2005 total scores 
between MHO and MUO individuals [71]. Although calorie 
intake and dietary macronutrient composition did not differ 
between MHO and MUO individuals in several studies, dif-
ferences between these metabolic phenotypes were found 
in number of daily servings of fruit and vegetables, dairy, 
meats, fats and high fat/sugar food and drinks in some [35, 
68, 71–73] but not all [74] studies, with MHO individuals 
consuming less sugar, sugar-sweetened beverages, and satu-
rated fat and more whole fruits, whole grains, and protein 
from vegetable sources. Importantly, these results should 
be interpreted with caution, because of the limitations in 
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the assessment of dietary intake [75, 76] as well as in the 
definition of MHO in the current studies.

The first treatment recommended for body weight and 
cardiometabolic health management is lifestyle intervention 
[77]. To what extent are lifestyle interventions able to pre-
vent the transition from MHO to MUO, or reverse metabolic 
perturbations in people with MUO? In the Tübingen Life-
style Intervention Program, achieving ~9 kg median weight 
loss over 9 months through intensive lifestyle intervention 
consisting of diet changes and increased physical activity, 
was associated with improved metabolic health (i.e. conver-
sion from MUO to a healthier metabotype [78]. Interest-
ingly, BMI and liver fat content were independent predictors 
of the metabolic improvements in the latter study [78].

Would it also be possible to improve cardiometabolic 
health in MUO with nutritional or lifestyle interventions 
in the absence of marked weight loss? A very recent study 
investigated whether adherence to healthy diets was related 
to the incidence of metabolically unhealthy phenotypes in 
adults in various BMI categories. It was shown that high 
compliance with the Dietary Approaches to Stop Hyper-
tension (DASH), Mediterranean (MeDi), and Mediter-
ranean-DASH intervention for neurodegenerative delay 
(MIND) diets was related to a reduced risk of metabolically 
unhealthy normal weight. Furthermore, adherence to these 
dietary patterns was negatively associated with the incidence 
of MUO in those with MHO at baseline [79]. Furthermore 
the large Prevención con Dieta Mediterránea (PREDIMED) 
trial demonstrated that the Mediterranean diet lowered the 
risk of cardiovascular events by about 30% in comparison to 
the control diet, without large effects on body weight [80]. 
Interestingly, findings from the PREDIMED study also dem-
onstrated that even without substantial weight loss, adher-
ence to a Mediterranean diet can promote the transition from 
MUO to a healthy metabotype, and protects against worsen-
ing of metabolic health in MHO [81]. Comparable findings 
were seen in several other dietary intervention studies [82].

Differences in body composition, tissue-specific metabo-
lism and insulin sensitivity between men and women not 
only underlies sexual dimorphism in cardiometabolic dis-
ease risk, but may also affect the response to prevention 
and treatment strategies in a sex-specific manner [22]. 
Indeed, dietary interventions have a differential effect on 
body weight, weight maintenance and cardiometabolic risk 
factors in men compared to women, as extensively reviewed 
elsewhere [23]. The recent PREVIEW study investigated 
age- and sex-specific effects of a low-energy diet (LED), 
followed by a 3 year lifestyle-based weight maintenance 
intervention in overweight adults with prediabetes [83]. A 
lifestyle intervention had less beneficial effects with respect 
to body composition and cardiometabolic health markers 
in older than younger adults, despite better weight main-
tenance, which might be due to the loss of more fat-free 

mass in older adults. The LED, followed by a lifestyle inter-
vention, showed less beneficial effects on body weight and 
body composition in women than men [83]. The available 
evidence suggests that factors such as age and sex should 
be taken into account to optimize prevention and treatment 
strategies for those at risk of or already living with cardio-
metabolic diseases.

5  Tissue insulin resistance metabotype: 
the concept

Insulin plays a crucial role in regulating nutrient partition-
ing within the body. Insulin resistance (IR) encompasses 
impaired insulin action in various tissues, including muscle, 
liver, adipose tissue, gut, and brain. This dysfunction may 
occur before the onset of cardiometabolic diseases.

Importantly, IR may develop in different organs but the 
severity may vary between organs. Indeed, in individuals 
with prediabetes, the state of impaired glucose tolerance 
(IGT) or the state of impaired fasting glucose (IFG) and 
are characterized, among other factors by more pronounced 
peripheral (skeletal muscle) or more pronounced liver IR 
[26]. Consistent with this, our previous research demon-
strated that individuals with impaired fasting glucose (IFG) 
did not exhibit disruptions in skeletal muscle lipid turnover, 
whilst in individuals with impaired glucose tolerance (IGT), 
there were disturbances in skeletal muscle lipid handling. 
These disturbances were accompanied by impaired post-
prandial insulin sensitivity, an increase in postprandial tri-
glyceride (TAG) extraction, and a reduction in muscle lipid 
turnover [84].

Individuals with more pronounced liver insulin resistance 
(LIR) and individuals with more pronounced muscle insulin 
resistance (MIR) can already be distinguished in the over-
weight or obese state [85]. Using a 5 or 7-points oral glucose 
tolerance test, wherein insulin and glucose concentrations 
were measured, we calculated hepatic insulin resistance 
index (HIRI) and muscle insulin sensitivity index (MISI). 
These indices were validated against a hyperinsulinemic 
clamp, a well-established method for assessing insulin sen-
sitivity [86]. Additionally, we optimized the MISI calcula-
tion by means of cubic splining [87]. Individuals with LIR 
have a distinct metabolome [88] and lipidome profile [89] as 
compared to individuals with more pronounced MIR. Fur-
thermore, an enriched inflammatory gene expression profile 
was particularly present in abdominal subcutaneous adipose 
tissue of individuals with primarily MIR [90]. Additionally, 
an altered extracellular matrix remodelling gene expression 
profile was present in individuals with pronounced LIR 
[90]. In line with the former findings, in two population-
based cohorts, the Cohort on Diabetes and Atherosclerosis 
Maastricht and The Maastricht Study, we observed that an 
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elevated systemic low-grade inflammation profile, as indi-
cated by the combined score of plasma markers associated 
with low-grade inflammation, showed a specific association 
with MIR but not with LIR [90]. The connection between 
adipose tissue inflammation and IR has been previously 
shown, but our data further expand on these findings by 
demonstrating the tissue-specific nature of this relation-
ship. Nevertheless, only one-third of the population with 
overweight harbor the MIR/LIR phenotype, and it is evident 
that more tissue metabotypes can be identified (hypothesized 
around six assuming an even distribution). Recent findings 
show that adipose tissue IR and whole-body IR, as reflected 
by Homeostatic Model Assessment of Insulin Resistance 
(HOMA-IR), not always coincide [91]. Adults that are dis-
cordant for adipose tissue insulin resistance and HOMA-IR 
had unique features related to visceral fat, plasma triglycer-
ides and basal metabolic rate [91].

Furthermore, tissue metabotypes may also vary based on 
tissue fat accumulation and may vary between sexes. Body 
composition profiles, as assessed by whole body magnetic 
resonance imaging (MRI), may further our understanding 
of the complex interplay between muscle and liver metabo-
lism and ectopic fat and adipose tissue fat accumulation. 
Indeed, distinct etiologies towards cardiometabolic health 
outcomes have been shown for discordant visceral and liver 
fat phenotypes [92] as well as discordant liver and muscle 
fat/mass phenotypes [93]. Finally, sex-specific differences 
in the accumulation of surplus lipids, mobilization of stored 
lipids, as well as substrate supply and utilization in critical 
metabolic organs (such as skeletal muscle, adipose tissue, 
and the liver) are linked to variations in tissue-specific insu-
lin sensitivity and cardiometabolic risk profiles between men 
and women (Fig. 1). Premenopausal women have, in general, 
an increased liver and muscle insulin sensitivity as compared 
to males [23] (Fig. 1). We previously showed that in women, 
but not in men, LIR was positively associated with the sum 
of plasma diacylglycerols and triacylglycerols (TAG) [89]. 
The latter results remained consistent even after adjusting 
for body composition and body fat distribution, suggesting 
that factors beyond body composition play a significant role 
in these sex-specific differences. Furthermore, these women 
had lower plasma TAG and higher HDL concentrations and 
a reduced LIR as compared to men. In general, healthy pre-
menopausal women appear to possess a greater capacity for 
fat storage without incurring detrimental cardiometabolic 
health risks, a phenomenon often referred to as the female 
advantage [23]. Our findings revealing a deterioration in 
blood lipid profile among women as LIR progresses are 
particularly noteworthy. These findings imply that women 
with LIR eventually "catch-up" with men in terms of CVD 
risk highlighting a sex-specific relationship between (L)
IR and cardiometabolic risk. This is consistent with find-
ings of Kim and Reaven [94], who showed that the female 

advantage is not solely explained by differences in insulin 
action itself. Instead, they found that the female advantage 
arises from an attenuation of the association between IR and 
CVD risk, particularly evident in younger individuals (aged 
below 51 years). The mechanisms behind these intruiging 
sex-specific metabolic differences remain to be determined. 
In summary, distinct tissue metabotypes can be identified in 
individuals with overweight and obesity which may repre-
sent different etiologies towards cardiometabolic diseases.

6  Precision nutrition based on tissue‑ 
IR metabotype

Post-hoc analyses in large intervention studies show 
responders and non-responders that feed back to tissue 
metabotype [5–8, 83]. Parameters associated with glucose 
metabolism and IR, including plasma glucose and insulin 
concentrations and derived indices can serve as valuable pre-
dictors of the outcome of a dietary intervention [5, 6, 11]. 
Post-hoc evidence from an analysis of the CORDIO-PREV-
DIAB study shows an interaction between dietary macronu-
trient composition and tissue metabotype [8]. In the latter 
study, researchers compared the effects of a Mediterranean 
diet, rich in olive oil, to a low-fat high complex carbohy-
drate diet in relation to outcomes of glucose metabolism. 
After the study, a post hoc analysis was performed, divid-
ing participants based on their baseline tissue-IR phenotype. 
The results indicated that individuals with LIR may derive 
greater benefits from the low-fat high complex carbohydrate 
diet, displaying a more pronounced increase in disposition 
index (a composite marker considering insulin secretion 
adjusted for insulin sensitivity) as compared to the MIR 
phenotype. On the other hand, individuals with the MIR 
phenotype appeared to benefit more from the Mediterranean 
diet, showing a higher increase in the disposition index com-
pared to those with the LIR phenotype.

We recently provided the proof-of-concept that a preci-
sion nutrition strategy according to an individual’s tissue 
metabotype, within the context of healthy dietary guide-
lines, results in a clinically relevant further improvement in 
insulin sensitivity and cardiometabolic health (C-reactive 
protein and plasma triacylglycerol concentrations) in indi-
viduals with overweight or obesity, independent of body 
weight change [14]. Individuals with the LIR phenotype 
responded better to a diet high in mono-unsaturated fatty 
acids, whilst individuals with the MIR phenotype responded 
better to a diet low in fat and high in protein and fiber. Our 
data show the potential of precision nutrition based on tis-
sue metabotypes. The latter precision nutrition concept is 
depicted in Fig. 2. Thus, while a diet based on existing die-
tary guidelines may promote general health for many indi-
viduals, it is becoming increasingly evident that precision or 
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subgroup-based dietary approaches might be necessary for 
optimal dietary prevention or treatment outcomes.

7  Precision nutrition based on microbial 
phenotypes

During recent years, research has shown that a disbalance in 
gut microbiota communities and functionality is implicated 
in a large number of chronic metabolic diseases including 
obesity, IR, T2D and cardiometabolic risk [95]. Early stud-
ies reported an increased Firmicutes-to-Bacteroidetes ratio 
in both rodents and humans with obesity in comparison to 
lean individuals [96, 97]. However, subsequent studies have 
presented conflicting findings, with some reporting no sig-
nificant difference in the Firmicutes-to-Bacteroidetes ratio 
between lean individuals and individuals with obesity, and 
others even showing a decreased ratio [98, 99]. Consistent 
findings from various studies have revealed that overweight, 
moderate obesity, IR, and T2D are associated with decreased 
microbial richness and diversity compared to lean, healthy 
individuals [100]. In-depth characterization of people with 
overweight or obesity has demonstrated that microbial gene 
richness is negatively associated with various metabolic 
parameters, including fat mass, leptin levels, fasting insulin, 
HOMA-IR, systemic inflammation, and TAG levels [100]. 
Moreover, low microbial gene richness is prevalent in severe 
obesity, with approximately 75% of individuals affected, 
while the numbers range from 23 to 40% in lean individuals 
or those with overweight or moderate obesity [100, 101]. 
Dietary interventions have been shown to improve clinical 
phenotypes in individuals with low microbial gene rich-
ness. However, these interventions appear less effective 
in improving inflammatory markers in this subgroup. As 
a result, low gene richness may serve as a predictive factor 
for the efficacy of interventions [101].

Our gut microbiota produces a large variety of health-
modulating products, including short-chain fatty acids 
(SCFA) and branched-chain fatty acids (BCFA), by fer-
menting indigestible food components. It is increasingly 
clear that these products are essential for host health [95, 
102, 103]. The major SCFA are acetate, propionate and 
butyrate. SCFA are produced by saccharolytic fermenta-
tion mainly in the proximal and transverse colon, with 
beneficial effects on metabolic health, whereas BCFA pro-
duced by proteolytic fermentation in the distal colon have 
general adverse effects on host health (as reviewed in 105 
and 106). Interestingly, the gut microbiome of IR indi-
viduals has been shown to have an increased biosynthesis 
potential and decreased uptake and catabolism of branched 
chain amino acids (BCAAs, largely driven by Prevotella 
copri and B. vulgatus), which have been linked to adverse 
metabolic effects [104]. Additionally, metabolically com-
promised individuals as well as patients with T2D have an 
altered microbial functionality and a decreased fermen-
tation capacity when compared with healthy individu-
als, characterised in particular by a lower abundance of 
butyrate producing bacteria [105–107]. Previous research 
conducted by our group revealed that acutely administer-
ing acetate directly to the distal colon led to increased 
levels of circulating acetate in males with overweight. This 
intervention resulted in elevated concentrations of the sati-
ety-stimulating hormone peptide YY and reduced levels of 
the cytokine TNF-α. Notably, the acetate administration 
also resulted in a significant increase (25%) in fasting fat 
oxidation. Contrary, when acetate was administered in the 
proximal colon, no significant effects on the metabolic 
profile were observed. This suggests that the specific loca-
tion of acetate administration in the colon plays a crucial 
role in its metabolic effects [108]. Thus, increasing the for-
mation of SCFA in the distal colon by enhancing dietary 
fiber availability could be a critical factor in improving 

Fig. 2  The depicted precision 
nutrition concept is based on the 
definition of tissue metabotypes 
related to parameters of tissue-
specific metabolism like MIR, 
LIR and adipose IR, tissue fat 
accumulation and microbial 
composition; this strategy will 
improve insulin sensitivity, 
blood glucose homeostasis and 
cardiometabolic risk compared 
to current, one-size-fits-all 
dietary guidelines in the popula-
tion with overweight. Created 
with BioRender.com
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metabolic health. In particular, since a higher distal car-
bohydrate fermentation may help reduce detrimental pro-
teolytic fermentation. This concept of ‘microbial substrate 
switch’ emphasizes the importance of dietary strategies 
that promote the growth and activity of beneficial gut 
microbes in the distal colon and might provide a novel 
dietary strategy for preventing and/or treating metabolic 
diseases (as reviewed in 105).

Interestingly, the tissue IR metabotypes, MIR and LIR 
are characterized by a differential microbial composition 
with the LIR metabotype having a higher abundance of 
SCFA producing genera [109]. In line, modification of 
microbial composition by either fecal transplant [105, 110] 
or by dietary maize fiber intervention [111] has been shown 
to affect peripheral insulin sensitivity more than LIR. Addi-
tionally, it was recently shown that microbial composition 
of individuals with IFG, characterized by LIR, resembles 
more the normal glucose tolerant state, whilst individuals 
with IGT, characterized by MIR, show a microbial dys-
biosis resembling the T2D state with a reduced abundance 
of butyrate producing bacteria [107]. Combined, variation 
in microbial composition and functionality (fermentation) 
may affect (dys)metabolism in a tissue-specific manner.

Inter-individual differences in gut microbiota composi-
tion and functionality may be linked to an altered respon-
siveness to (dietary) interventions. Initial microbial phe-
notype has been shown to predict intervention outcome 
after dietary fiber interventions [112], after feces trans-
plantation [110], bariatric surgery [113] or ingestion of 
non-caloric sweeteners [114]. Microbial responses to fiber 
specific interventions have also revealed responders and 
non-responder phenotypes related to the magnitude of 
production of the fiber derived SCFA [115]. We recently 
showed that persons living with overweight or obesity and 
prediabetes show changes lower postprandial insulin sensi-
tivity in response to short-term administration of the prebi-
otic fiber long-chain inulin (combined with resistant starch) 
compared to lean individuals [116], along with reduced 
plasma concentrations of the SCFA butyrate. These effects 
were fiber-specific i.e. were not seen when administering 
beta-glucan and resistant starch, indicating complex struc-
ture–function relationships of dietary fibers [116]. These 
data suggest that the degree of saccharolytic fermentation 
and related SCFA production may be an important deter-
minant of intervention outcome. Additionally, our data 
show a lack of response in individuals with prediabetes, 
which is consistent with the observation that a 4-week oral 
administration of butyrate altered metabolism and insulin 
sensitivity in lean individuals but not in individuals with 
obesity and IR [117]. Combined, the initial microbial com-
position and related SCFA production may be important 
determinants of dietary intervention outcome.

8  Future perspectives

By investigating the relationship between metabotypes 
and intervention outcomes, we can identify which dietary 
approaches are most suitable for specific individuals or sub-
groups at risk for chronic cardiometabolic diseases. A better 
understanding of the biological, psychological and socio-
economic factors that may underlie the MHO and MUO 
phenotypes will generate important knowledge on obesity-
related cardiometabolic chronic diseases that may aid in the 
development of more personalized interventions. Based on 
the limited resources that are available for lifestyle inter-
ventions, it may be reasonable to prioritize interventions to 
people with MUO to improve the cost-effectiveness of inter-
ventions. A study investigating the effect of phentermine/
topiramate-induced weight loss on the prevention of T2D in 
subjects who were stratified by the Cardiometabolic Disease 
Staging score (very similar to the MHO/MUO concept) in 
those with a high or a low cardiometabolic risk provided 
support for this assumption [118], demonstrating that num-
bers needed to prevent one case of T2D over about 1 year 
were 120 in the low-risk group but 24 in the high-risk group 
[118]. Additionally, research has shown that nutritional or 
lifestyle interventions can significantly improve cardiometa-
bolic health, even in the absence of substantial weight loss. 
This finding indicates that the focus should be on promoting 
a healthy lifestyle rather than focusing on weight loss as the 
primary goal. In this respect, a diet based on existing guide-
lines for healthy nutrition, which emphasizes whole foods, 
a variety of nutrients, and moderation in portion sizes, can 
indeed serve as a good foundation for promoting health in 
the general population. Nevertheless, these guidelines may 
not represent the optimal diet for all. As evidenced by the 
recent proof of concept in the PERSON study [14], dietary 
macronutrient modulation according to tissue IR metabotype 
within the context of healthy dietary guidelines may fur-
ther improve cardiometabolic health. Thus, precision nutri-
tion based on tissue metabotype may be more effective in 
cardiometabolic disease prevention as compared to general 
dietary guidelines. These data demonstrate that the differ-
ent metabotypes towards T2D and cardiometabolic diseases 
have to be considered and may lead to more effective nutri-
tional or lifestyle prevention and treatment strategies. In 
this consideration, age and sex-related differences in tissue 
metabotypes and related microbial composition and func-
tionality, as important drivers or mediators of dietary inter-
vention response, have to be taken into account. Overall, 
investing in more prospective trials focused on precision 
nutrition will contribute significantly to advancing the field 
and optimizing dietary prevention for individuals at risk for 
chronic cardiometabolic diseases.
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