Skip to main content
. 2023 Apr 13;160(3):169–192. doi: 10.1007/s00418-023-02191-8

Table 2.

Tools that can assist in dealing with challenges posed by big data in cryo-electron microscopy (cryo-EM) and tomography (cryo-ET)

Big-data challenge Tool References Comment
Data transfer
 File-transfer service Globus

www.globus.org

(Foster 2011; Allen et al. 2012)

rclone rclone.org Useful for workflow optimisation
 Network performance (baselining and benchmarking) perfSONAR

www.perfsonar.net

(Hanemann et al. 2005)

RIPE Atlas atlas.ripe.net
SolarWinds www.solarwinds.com Commercial solution
Data processing and analysis
 Virtual research environments (VREs) ScipionCloud (Cuenca-Alba et al. 2017)
COSMIC2 (Cianfrocco et al. 2017) Available in the USA
Electron Microscopy Data-Processing Portal (van Schyndel 2022) Available in Australia
Characterisation Virtual Laboratory imagingtools.au/characterisation-virtual-laboratory Available in Australia
Virtual Desktop Service desktop.rc.nectar.org.au Available in Australia
Australian Research Environment nci.org.au/our-services/data-services Available in Australia
 Cloud-computing workflow cryoem-cloud-tools (Cianfrocco et al. 2018) Uses Amazon Web Services
ZeroCostDL4Mic (von Chamier et al. 2021) Uses Google Colab to run deep-learning-based programs (e.g. image segmentation, object detection and denoising)
 Artificial-intelligence-based solutions DeepPicker (Wang et al. 2016) Particle picking (cryo-EM)
DeepFinder (Moebel et al. 2021) Identification of macromolecules (cryo-ET)
Topaz-Denoise (Bepler et al. 2020) Image denoising
AD_LTEM (Zhou et al. 2021) Enhanced resolution and sensitivity
DoG Picker (Voss et al. 2009) Particle picking (cryo-EM)
TiltPicker (Voss et al. 2009) Particle picking from image tilt pairs (cryo-EM)
DeepEMhancer (Sanchez-Garcia et al. 2021) Post-processing of cryo-EM maps
Data management
 Image data management OMERO (Allan et al. 2012; Burel et al. 2015; Li et al. 2016)
Pitschi (Nguyen 2022)
NexusLIMS (Taillon et al. 2021)
XNAT (Marcus et al. 2007)
MyTardis (Androulakis et al. 2008; Meyer et al. 2014)
 User training MyScope myscope.training