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A 10-m resolution impervious 
surface area map for the greater 
Mekong subregion from remote 
sensing images
Genyun Sun1,2, Zheng Li1, Aizhu Zhang1, Xin Wang1, Kai Yan3 ✉, Xiuping Jia4, Qinhuo Liu5 & 
Jing Li5 ✉

High-resolution and multi-temporal impervious surface area maps are crucial for capturing rapidly 
developing urbanization patterns. However, the currently available relevant maps for the greater 
Mekong subregion suffer from coarse resolution and low accuracy. Addressing this issue, our study 
focuses on the development of accurate impervious surface area maps at 10-m resolution for this 
region for the period 2016–2022. To accomplish this, we present a new machine-learning framework 
implemented on the Google Earth Engine platform that merges Sentinel-1 Synthetic Aperture Radar 
images and Sentinel-2 Multispectral images to extract impervious surfaces. Furthermore, we also 
introduce a training sample migration strategy that eliminates the collection of additional training 
samples and automates multi-temporal impervious surface area mapping. Finally, we perform a 
quantitative assessment with validation samples interpreted from Google Earth. Results show that the 
overall accuracy and kappa coefficient of the final impervious surface area maps range from 92.75% 
to 92.93% and 0.854 to 0.857, respectively. This dataset provides comprehensive measurements of 
impervious surface coverage and configuration that will help to inform urban studies.

Background & Summary
Continuous urbanization has been a widespread global trend in recent decades, especially in developing coun-
tries1. In this regard, the Greater Mekong Subregion (GMS), which covers Vietnam, Laos, Cambodia, Myanmar, 
and Thailand, as well as the Yunnan Province and Guangxi Zhuang Autonomous Region of China (Fig. 1), is 
undergoing an exceptionally rapid transition from rural to industrial societies2. Such dramatic urbanization 
has brought a cascade of environmental and socioeconomic challenges, including wetland degradation, forest 
destruction, and resource crises3,4. These challenges ultimately affect the sustainable development of society and 
human well-being5–7. Impervious surfaces refer to human-made materials that prevent water from infiltrating 
into soils, such as roads, roofs, and parking lots8,9. They are a sign of human activity and also serve as a critical 
indicator of the urbanization process10,11. The explicit spatial distribution of impervious surfaces offers a bet-
ter insight for exploring the driving forces and characteristics of urbanization. Therefore, high-resolution and 
multi-temporal maps quantitatively depicting the dynamics of impervious surfaces in the GMS are increasingly 
crucial for effectively addressing the aforementioned problems12–15. Such datasets provide detailed information 
about anthropogenic change and are valuable for studying urban environment in fields of hydrology, ecology, 
geography, planning, etc.

Currently, satellite remote sensing offers unique support for regional and even global impervious surface 
area mapping with its scheduled revisits, extensive coverage, and comparative affordability9. Especially since 
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2008, when the entire Landsat archive became freely available, multispectral images (MSI) from this program 
have become the main data source for land cover change studies due to their long duration (nearly 40 years) and 
medium spatial resolution (30 m)16–19. Multi-temporal datasets such as GAIA20, GlobleLand3021, GISD22 and 
GISA23, which have been produced using Landsat data, have been instrumental in regional sustainable devel-
opment studies. However, in the agriculture-dominated GMS, impervious surfaces tend to be small and patchy, 
often smaller than the minimum imaging unit of Landsat images. Even in urban cores with larger impervious 
surface areas, the heterogeneity of landscapes results in image pixels whose albedo is confused with other land 
covers. Therefore, maps based solely on Landsat data may not provide adequate guidance for finer-scale urban 
research.

The launch of the Sentinel-2 mission’s two satellites has led to the gradual development of advanced 10-m 
impervious surface area maps, such as FROM-GLC1024, GHS-S225, Esri Land Cover26, and Dynamic World27. 
The improved resolution facilitates a deeper understanding of the coverage and configuration for impervious 
surfaces. However, samples sourced globally can be unsuitable for detecting changes to impervious surfaces 
within a particular region. Therefore, training with geographical expertise embedded or developing maps 
tailored to unique regions is more responsive and beneficial for all stakeholders. However, higher-resolution 
images often come at the expense of weaker spatial and temporal coverage, entailing higher collection and map-
ping costs. While these data are now commonly used for impervious surface monitoring in affluent large cities, 
they are not well established for global or regional scale impervious surface area mapping.

Another concern is the impact of the GMS’ cloudy and rainy climate on the availability of cloud-free sat-
ellite optical images, resulting in these datasets being unreliable here. This limitation has prompted numerous 
studies to explore the fusion of multi-source data to supplement optical-based impervious surface area map-
ping28–32. Among the sources of alternative data, synthetic aperture radar (SAR) data stand out for their ability 
to sense geometric structures and electrical properties, making them responsive to buildings33,34. Importantly, 
SAR data are unaffected by weather conditions, thus offering the potential to generate more actionable maps35–

37. The Sentinel-1 mission, which provides C-band SAR images with comparable spatial resolution and revisit 
frequency as Sentinel-2, allows the creation of enhanced 10-m thematic maps. Leveraging the capabilities of 
cloud-based image processing, the Google Earth Engine (GEE) platform archives all Sentinel-1/2 images and 
hosts ample classification algorithms38, opening up the opportunity for fine-scale mapping and monitoring of 
land cover or impervious surface globally or regionally.

This paper develops a new framework using the GEE platform for merging time-series Sentinel-1 SAR and 
Sentinel-2 MSI data for multi-temporal impervious surface area mapping, producing a final 10-m impervious 
surface area map for GMS covering the period 2016–2022.

Fig. 1 (a) The location of the Greater Mekong subregion (GMS), and (b) its elevation distribution. The imagery 
for the digital elevation model (DEM) was acquired from the Shuttle Radar Topography Mission (SRTM).
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Methods
Figure 2 summarizes our workflow for developing multi-temporal impervious surface area maps, including (a) 
remote sensing image processing, (b) multi-source feature extraction, (c) training sample collection and migra-
tion, and (d) classification and post-processing.

Remote sensing images processing. We developed a GEE script to process online 173,247 Sentinel-2 
MSI images and 46,856 Sentinel-1 SAR images covering the GMS.

The Sentinel-2 MSI L1C data, which represent top of atmosphere (TOA) reflectance, contain 13 bands with 
wavelengths ranging from 443 nm to 2190 nm and spatial resolution ranging from 10 m to 60 m. For our analysis, 
we used only blue, green, red, and NIR bands at 10-m spatial resolution and narrow NIR, Red Edge 1–3, and 
SWIR 1–2 bands at 20-m spatial resolution. These bands are labelled B2, B3, B4, B5, B6, B7, B8, B8A, B11, and 
B12. All 20-m bands were resampled to 10-m resolution adopting the nearest-neighbour interpolation method. 
Prioritizing data quality, we retained only the images with less than 50% cloud cover. Additionally, we removed 
their cloud-contaminated pixels using the Quality Assessment (QA60) band. To obtain representative data for 
each year, we selected the pixel with the median value from multiple images taken at the same location within 
the same year. This operation of annual median composition removes extremely dark or bright pixels that may 
be caused by scene-specific illumination conditions24.

From Sentinel-1 products, we selected the Level-1 Ground Range Detected (GRD) scenes with 
vertical-vertical (VV) and vertical-horizontal (VH) bands in Interferometric Wide (IW) swath mode operated 
in an “ascending” or “descending” orbit. Each GRD image archived on the GEE platform has been pre-processed 
by the Sentinel-1 Toolbox, including thermal noise removal, radiometric calibration, and terrain correction, 
with a final conversion to the backscatter coefficient (σ°) in decibels (dB). To mitigate the influence of layover, 
speckle noise, and shadows, we will be using mean annual values for VV and VH in further calculations39.

Multi-source feature extraction. We calculated three spectral indices, namely the Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and modified Normalized Difference 
Water Index (mNDWI), to improve the distinction between vegetation, built-up areas, and water, which were the 
dominant land covers in the GMS. Their calculations are shown in Eq. 1 to Eq. 3:

NDVI NIR Red
NIR Red (1)

= −
+

Fig. 2 Workflow for developing multi-temporal impervious surface area maps. MSI: Multispectral Images; 
SAR: Synthetic Aperture Radar; SRTM: Shuttle Radar Topography Mission; DEM: Digital Elevation Model; 
SAD: Spectral Angular Distance; NDVI: Normalized Difference Vegetation Index; NDBI: Normalized 
Difference Built-up Index; MNDWI: modified Normalized Difference Water Index; VV: vertical-vertical band 
of Sentinel-1 images; VH: vertical-horizontal band of Sentinel-1 images.
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NDBI SWIR NIR
SWIR NIR

1
1 (2)

= −
+

mNDVI Green SWIR
Green SWIR

1
1 (3)

where Green is the green band (wavelength: 543–578 nm), Red is the red band (wavelength: 650–680 nm), NIR 
is the near infra-red band (wavelength: 785–900 nm) and SWIR1 is the short-wave infrared 1 (wavelength: 
1565–1655 nm).

We then derived the annual standard deviation of the VV and VH images from all GRD images available for 
each year to capture the temporal metrics of objects. Moreover, with reference to the climatic conditions in the 
GMS, we divided the annual VV and VH time-series images into four groups and performed intra-group mean 
compositions, yielding eight phenological backscattering metrics for each year. Since texture features highlight 
the local spatial characteristics of different land covers40, we calculated five texture variables for the VV and VH 
images each year using the gray-level co-occurrence matrix (GLCM). These texture variables included angular 
second moment (ASM), entropy (ENT), inverse difference moment (IDM), correlation (CORR), and sum aver-
age (SAVG). Previous studies have demonstrated the effectiveness of these variables in describing the texture of 
different urban land covers41,42. The texture features were calculated from the average of the directional bands 
within a 7 × 7 window. All these features, along with the annual composite optical and backscattering bands, 
were used as input to the classifier (Table 1).

Training sample collection and migration. The training samples were visually interpreted primarily 
based on the annual median composite Sentinel-2 images. Supplementary information from Google Earth images 
was also used. We adopted the clustered sampling technique43 to randomly allocate 2990 sample polygons across 
the GMS. Autocorrelation was attenuated by manipulating the number (about 10) and distance (>30 m) of sam-
ples within a polygon. Altogether, 9707 impervious surface samples and 18310 non-impervious surface samples 
were obtained for 2016. The impervious surface samples contained various features, such as buildings, roads, etc., 
while the non-impervious surface samples consisted of vegetation, water, and soil.

Next, a sample migration method was applied to eliminate the redundant collection of ground truth for 
multi-temporal mapping (Fig. 3). This method assumes that the transformations from natural surface to impervi-
ous surface are irreversible over a short time44, implying that land cover changes occur primarily in non-impervious 
surface samples. We split the changed samples into two groups based on whether the label is affected, including 
intra-class transformations within non-impervious surfaces and cross-class transformations from non-impervious 
surfaces to impervious surfaces. In the context of binary classification of impervious surfaces, intra-class transfor-
mations, mostly involving vegetation, water, and soil, do not interfere with the results. Thus, the proposed method 
is designed to remove samples that have undergone cross-class transformations in two steps.

The spectral angular distance (SAD) was first applied to detect whether the land cover of the non-impervious 
surface sample had transformed, as in Eq. 4:

SAD cos
X X

X X X X (4)
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where Xr are the reference spectra, and Xt are the target spectra at year t. Here, the spectra extracted from the 
beginning year’s Sentinel-2 MSI median composite data are considered the reference spectra, while those of the 
other years are considered the target spectra.

Afterward, a thresholding of 0.125 was experimentally set to determine the samples with a high probability of 
experiencing land cover changes. The unchanged samples were reserved as non-impervious surface training sam-
ples for the target year. For the changed samples, NDVI and mNDWI were utilized to count the samples’ vegeta-
tion and water frequencies in the target year, as in Eqs. 5, 6. Samples with any frequency greater than 0.5, indicating 
a higher likelihood of being non-impervious in the target year, were considered to have undergone only intra-class 
transformations and were consequently retained. The remaining samples were removed from the training set.

= > .Vegetation Frequency N N/ (5)NDVI Total0 25

Data source Input features Dimension

Sentinel-2 MSI
Spectral features: median composition of B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 10

Normalized indices: NDVI, NDBI, MNDWI 3

Sentinel-1 SAR

Backscattering features: annual mean of VV, VH time-series images 2

Phenological features: seasonal mean of VV, VH time-series images 8

Temporal features: standard deviation of VH, VV 2

Textural features: ASM, ENT, IDM, CORR, SAVG of each annual mean of VV and VH 10

Table 1. Input features for the classification. See text for the meaning of all acronyms.
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Water Frequency N N/ (6)mNDWI Total0 12= > .

where NNDVI>0.25 and NNmNDWI>0.12 denote the number of times that a sample meets the subscript condition in the 
target year, and NTotal is the times this pixel was retained in that year. We tested a sequence of thresholds ranging 
from 0.1 to 0.5, with a 0.01 step, to determine the optimal thresholds for these two equations.

classification and post-processing. Random forest (RF) is an ensemble classifier consisting of numer-
ous decision trees, with each tree growing from randomly selected samples and features based on the bootstrap 
aggregation technique. The final result depends on the majority vote of all decision trees. RF has two primary 
parameters: the number of trees (Ntree) and the number of variables split at each tree node (Mtry). In view of 
the computational efficiency and on a trial-and-error basis, Ntree was set as 500, Mtry was set as the square root 
of the number of input variables. For each year, a separate RF classifier was trained using migrated samples to 
extract impervious surfaces. The computational power necessary for this task was supported by the GEE platform.

In mountainous areas, the spectra and backscatter of bare rock closely resemble those of urban build-
ings. Consequently, pixel-level classifications often confuse these two land cover types. To address this issue, 
we calculated the slope from the DEM data and labelled the classified pixels with a slope greater than 15° as 
non-impervious surfaces. Additionally, we applied a median spatial filter with 3 × 3 windows to reduce the effect 
of “salt and pepper” noise.

In time-continuous mapping domains, misclassification can potentially lead to unreasonable sequences of 
results. To mitigate this problem, we first employed temporal filtering. For each pixel, a 1-D filter was applied 
to iterate through its time sequence, and the label of the filter centre was modified via majority voting. Then, 
we gradually increased the filter size and repeated this procedure until all the labels in the sequence no longer 
changed. Following this, we performed a consistency check to ensure the irreversibility of impervious surfaces: 
(1) if the next three years were all non-impervious, then the label for that year was set to non-impervious sur-
face; (2) if the previous three years were all impervious, then the label for that year was set to impervious surface.

Data Records
We have made the final impervious surface area maps for the GMS publicly available in the figshare repository 
(https://doi.org/10.6084/m9.figshare.21836196.v3)45. The dataset includes three sets of files: (1) the map data in 
GEOTIFF format, (2) the distribution of the tiles in shapefile format, and (3) the thumbnails of the dataset in 
JPEG format. This dataset can be viewed and processed with geographic information and remote sensing soft-
ware, programming packages, and cloud platforms such as ArcGIS, QGIS, ENVI, GDAL, and GEE. The details 

Fig. 3 Flowchart of the proposed automatic training sample migration method.
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of the metadata are given in Table 2, some samples of the impervious surface area map are shown in Fig. 4, and 
the comparison with other datasets is shown in Fig. 5.

Technical Validation
We applied a stratified random sampling strategy for technical validation. The subgroups of stratification include 
water bodies, vegetation (non-crop), cropland, bare land, and impervious surfaces. To assess the temporal com-
ponent of the dataset, samples were collected from 2016 and 2022. Finally, Google Earth images were used to 
visually interpret the samples. The size and distribution of the validation samples are depicted in Fig. 6.

Then, four accuracy metrics, including the overall accuracy (OA), user’s accuracy (UA), producer’s accuracy 
(PA), and kappa coefficient (Kappa), were calculated based on the validation samples. The complete validation 
results of the impervious surface area map for the entire GMS are shown in Table 3. Additionally, the dataset in 
urban areas and in suburban/rural areas was validated individually using subsets of validation samples. The OA 
is 93.69% and 93.66% for urban areas and 91.12% and 90.96% for suburban/rural areas, respectively.

Spatial Extent Top: 31°N, Bottom: 5°N, Left: 92°E, Right: 114°E

Cell Size 10 meters × 10 meters

Number of Bands 1 band named “b1”

Storage format 111 tiles (2° × 2°) in GEOTIFF format

Coordinate System WGS 1984 (EPSG: 4326)

Pixel type 16 Bit unsigned short

Pixel values

0: non-impervious surfaces,

2016: existing impervious surfaces in 2016 and before,

2017: newly expanded impervious surfaces in 2017

2018: newly expanded impervious surfaces in 2018

…

2022: newly expanded impervious surfaces in 2022

Table 2. The details of the impervious surface area map.

Fig. 4 Sample results of the impervious surface area map. The left panel presents its thumbnail, while the right 
panel presents the Sentinel-2 images used for mapping and their corresponding results.
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Usage Notes
With this dataset, researchers could describe the spatial distribution of impervious surfaces in the GMS, such as 
coverage and configuration. The map’s temporal continuity further enables the calculation of dynamic metrics 

Fig. 5 Comparison of the impervious surface area map with other datasets. The first column presents Sentinel-2 
images in 2022, the second column presents our impervious surface area map, and other the columns present 
some examples of existing multi-temporal maps. The legend for this figure is the same as for Fig. 4.

Fig. 6 Size and distribution of the validation samples, (a) validation samples for 2016, (b) validation samples for 2022.
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of urban expansion, such as speed, intensity, and orientation, etc. However, uncertainties still persist within 
this dataset. The presence of mixed pixels in Sentinel images poses challenges for accurately recognizing meter 
and sub-meter targets. Therefore, when it comes to micro-analysis, we encourage orthophotos to be used.  
The overlays of our dataset with other land covers’ datasets, for example, vegetation and water maps, allows 
exploring more sustainable urban planning solutions. But the temporal matching of different datasets needs to 
be carefully considered. Given the build rate of impervious surfaces, we employed annual composite images. 
This is unsuitable for shorter-term dynamic analysis. The above programs can be implemented with geographic 
information and remote sensing software, programming packages, and cloud platforms such as ArcGIS, QGIS, 
ENVI, GDAL, and GEE.

code availability
Every step from obtaining Sentinel data to processing images into impervious surface temporal data 
was done in Google Earth Engine. All steps, including image processing, sample migration, and image 
classification have been made publicly available in the GEE code snippet (https://code.earthengine.google.
com/74d0845d708a01fde1484c30ca73cc72). The collected training and validation samples have been archived 
in the same code snippet.
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