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CONTEMPORARY REVIEW

Clonal Hematopoiesis of Indeterminate 
Potential From a Heart Failure Specialist’s 
Point of View
Maurits A. Sikking , MD; Sophie L. V. M. Stroeks , MD; Olivia J. Waring, MSc; Michiel T. H. M. Henkens , MD;  
Niels P. Riksen , MD, PhD; Alexander Hoischen, PhD; Stephane R. B. Heymans , MD, PhD;  
Job A. J. Verdonschot , MD, PhD

ABSTRACT: Clonal hematopoiesis of indeterminate potential (CHIP) is a common bone marrow abnormality induced by age-
related DNA mutations, which give rise to proinflammatory immune cells. These immune cells exacerbate atherosclerotic 
cardiovascular disease and may induce or accelerate heart failure. The mechanisms involved are complex but point toward 
a central role for proinflammatory macrophages and an inflammasome-dependent immune response (IL-1 [interleukin-1] and 
IL-6 [interleukin-6]) in the atherosclerotic plaque or directly in the myocardium. Intracardiac inflammation may decrease cardiac 
function and induce cardiac fibrosis, even in the absence of atherosclerotic cardiovascular disease. The pathophysiology and 
consequences of CHIP may differ among implicated genes as well as subgroups of patients with heart failure, based on cause 
(ischemic versus nonischemic) and ejection fraction (reduced ejection fraction versus preserved ejection fraction). Evidence 
is accumulating that CHIP is associated with cardiovascular mortality in ischemic and nonischemic heart failure with reduced 
ejection fraction and involved in the development of heart failure with preserved ejection fraction. CHIP and corresponding in-
flammatory pathways provide a highly potent therapeutic target. Randomized controlled trials in patients with well-phenotyped 
heart failure, where readily available anti-inflammatory therapies are used to intervene with clonal hematopoiesis, may pave the 
way for a new area of heart failure treatment. The first clinical trials that target CHIP are already registered.
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C lonal hematopoiesis (CH) refers to any clonal 
expansion state in the blood-forming system. 
Somatic mutations may provide a selective ad-

vantage to hematopoietic stem cells (HSCs) and lead 
to expansion of a hematopoietic stem cell clone. In 
case a leukemogenic driver mutation is present in 
at least 4% of unnucleated blood cells (ie, excluding 
red blood cells and platelets), and a hematological 
malignancy is absent, we speak of clonal hemato-
poiesis of indeterminate potential (CHIP).1 CHIP is 
a common phenomenon, strongly associated with 
aging, and contributes to the formation of a genet-
ically distinct subpopulation of blood cells. It occurs 
in hematologically healthy people and is increasingly 

recognized as a risk factor for a spectrum of age-
related diseases, including hematological cancers 
and atherosclerotic cardiovascular disease (ASCVD) 
(coronary heart disease and stroke).2–5 Interestingly, 
accumulating evidence points to a role for CHIP in 
the development and prognosis of heart failure, in 
both ischemic and nonischemic causes.6–19 Previous 
reviews reported on the associations of CHIP on car-
diovascular disease as a whole.20–27 However, most 
articles reporting on the association between CHIP 
and heart failure were reported in the past year and 
are not included in the previous reviews. In this re-
view, we look at CHIP from a heart failure special-
ist’s perspective by schematically overviewing the 
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pathophysiology and consequences of CHIP using 
the left ventricle ejection fraction as a cornerstone. 
Furthermore, we evaluate CHIP and corresponding 
inflammatory pathways as treatment targets and em-
phasize anti-inflammatory drugs as future therapy for 
patients with heart failure and CHIP.

PATHOPHYSIOLOGY OF CHIP
Although HSCs are quiescent cells, during each cell 
division they are at risk to stochastically acquire cod-
ing mutations.28 Most of the time, these mutations are 
neutral; hence, they do not increase the formation of 
blood cells and do not increase the HSC’s ability to 
form a clone.29 At other times, the mutation stimulates 
the HSC to either progressively expand or brings a 
survival advantage to the HSC or its progeny.25,29,30 
Ultimately, the percentage of circulating leukocytes 
with these clonal hematopoiesis driver mutations 
(CHDMs) increases, leading to distinct subpopula-
tions of blood cells (eg, monocytes, T cells) in the 
circulation.30,31

There are currently 3 mechanisms known for muta-
tions to cause CHIP: (1) loss of balance between self-
renewal and differentiation of HSCs,32,33 (2) enhanced 
resistance of HSCs against extrinsic insults (eg, che-
motherapy),34–36 and (3) protect against inflamma-
tion.30 Each CHDM may have its own mechanism that 
leads to HSC dominance. CHDMs are most commonly 
found in genes encoding epigenetic enzymes (eg, 
DNMT3A, TET2, and ASXL1), signaling proteins (eg, 
JAK2),3,4,37 spliceosome components (eg, SRSF2 and 
SF3B1), or members of the DNA damage response 
(eg, PPM1D and TP53).3,4,37 Normally, differentiation 
signals stimulate DNMT3A to epigenetically turn off 
self-renewal genes in HSCs and upregulate differenti-
ation factors.38,39 Mutations in DNMT3A may increase 
self-renewal and lower the ability of HSCs to differ-
entiate into progenitor cells, as was shown in mice: 

complete knockout of DNMT3A in HSCs of mice im-
mortalized HSCs, increased self-renewal, and reduced 
differentiation efficiency.32 Comparably, restoring TET2 
reversed aberrant self-renewal of preleukemic HSCs.33 
CHDMs may increase resistance against external 
insults. CHDMs in PPM1D and p53 lead to a clonal 
dominance by increasing resistance to external insults 
(ie, only in case the external result occurs). Radiative 
cancer therapies, topoisomerase II inhibitors (eg, anth-
racyclines), or platinum therapeutics select clones with 
mutations in PPM1D and p53, probably by killing non-
mutated HSCs, whereas these mutations provide pro-
tection for the mutated clone itself.34–36 Lastly, CHDMs 
may lead to clonal dominance by protecting against 
inflammation. CHDMs in ASXL1 enhance protection of 
HSC offspring against inflammation while stimulating 
release of proinflammatory factors at the same time, 
thereby giving the clone an advantage against nonmu-
tated cells.30

There are specific conditions that drive clonal he-
matopoiesis. Although the mutation rate per DNA 
replication is constant,40 HSCs replicates while we 
age; hence, it is estimated that humans harbor up to 
1.4 million coding mutations within the HSC pool by 
70 years of age.41 Besides aging, other conditions that 
drive clonal hematopoiesis are reactive oxygen spe-
cies,42 smoking,43 and chemotherapy34 by inducing 
DNA mutations, and chronic inflammation,30,44 chronic 
infections,45 HIV,46 certain germline mutations,47,48 and 
atherosclerosis49 by chronically activating HSCs to 
form clones (Figure 1).

Despite their varied functions, most mutated genes 
still associate with a comparable, proinflammatory 
phenotype in a wide variety of diseases. For instance, 
TET2 (ten-eleven translocation 2) mediates gene tran-
scription via DNA demethylation and indirect histone 
deacetylation. Loss-of-function TET2 mutations lead 
to an increased myeloid-led inflammatory response 
by 2 potential mechanisms. In the first mechanism, 
TET2 recruits Hdac1/2 (histone deacetylase1/2) to the 
IL-6 (interleukin-6) promotor DNA segment.50 Hdac1/2 
deacetylates this promotor segment, and thereby inhib-
its IL-6 expression.50 TET2 dysfunction therefore leads 
to higher expression of IL-6, especially in late-stage in-
flammation, when the inflammatory trigger is already 
resolved.50 In the second mechanism, TET2 increases 
IL-1 (interleukin-1) expression either via the NLRP3 
(NLR family pyrin domain containing 3)-inflammasome 
or direct IL-1 upregulation, and subsequently increases 
IL-6 expression.11,14,51

CHDMs in DNMT3A are associated with a com-
parable phenotype but likely via a different intracellu-
lar mechanism, because DNMT3A regulates different 
genes than TET2. The exact intracellular pathways are 
unknown, but loss-of-function mutations in DNMT3A 
associated with myeloid upregulation of NLRP3 and 
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IL-1 and IL-6.16 It is important to know that inflammation 
itself may stimulate dominance by DNMT3A mutated 
clones, as was shown in vivo and in vitro in mice.52 
Transfer of DNMT3A mutated bone marrow cells led 
to a higher proportion of circulating DNMT3A-mutated 
blood cells in aged mice (age 15 months) compared 
with young mice (age 2 months).52 The authors attri-
bute this to age-related inflammation and show that 
in vitro stimulation of HSCs by TNF-α (tumor necro-
sis factor-α) increases the proportion of DNMT3A-
mutated HSCs.52

Valine-to-phenylalaline mutations at amino acid 
617 (V617) in the JAK2 gene (Jak2V617F) are gain-of-
function mutations by upregulating of JAK2/STAT 
signaling. They were relatively common in a Danish 
population (prevalence of 3.1%) and are associated 
with smoking, alcohol consumption, aging, and my-
eloproliferative neoplasms.53 These mutations are 
associated with upregulation of AIM2 (absent in mel-
anoma 2) inflammasome and IL-1, at least in ASCVD.54 
The exact mechanism by with mutations in Jak2V617f 
lead to clonal dominance is incompletely elucidated 

but at least drive proliferation of macrophages in the 
atherosclerotic plaque.54 A potential second mecha-
nism by which these mutations cause disease is by 
increased production of neutrophil extracellular traps 
by Jak2V617f-mutated neutrophils. Jak2V617f mutations 
associate with increased risk of thrombosis potentially 
via neutrophil extracellular trap formation.55,56 Inhibition 
of JAK–STAT signaling abrogated neutrophil extracel-
lular trap formation and reduced thrombosis in mice 
carrying the Jak2V617f mutation.55

ASSOCIATIONS BETWEEN 
CLONAL HEMATOPOIESIS AND 
ATHEROSCLEROSIS
The detection of ischemia is one of the first steps in 
the diagnostic workup of new patients with heart 
failure. Therefore, we first outline the associations 
between clonal hematopoiesis and atherosclero-
sis. Because the association between CHIP and all-
cause mortality, coronary artery disease, and stroke 

Figure 1.  The association between clonal hematopoiesis and heart failure.
Mutations in hematopoietic stem and progenitor cells give rise to clones that expand over time (1). Factors stimulate clonal proliferation 
(2). Consequently, these mutated cells enter the blood stream and myocardium and cause atherosclerosis (3) or impair cardiac 
function (4). An inflammasome/interleukin 1/6-mediated response (5) is central in clonal hematopoiesis-induced heart failure (6). 
Heart failure could be a driver of clonal proliferation, as indicated by the dashed line. Solid lines are based on published results. CHIP 
indicates clonal hematopoiesis of indeterminate potential; IL-1, interleukin-1; IL-6, interleukin-6; LV, left ventricular; NLRP3, NLR family 
pyrin domain containing 3; and ROS, reactive oxygen species.
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was first demonstrated in 20143 (Figure 2), interest in 
the field has surged. These associations established 
the role of CHIP in ASCVD.2,51 CHIP is implicated in 

cardiovascular and atherosclerotic risk factors, as well 
as the development and progression of ischemic and 
nonischemic heart failure.

Figure 2.  Timeline of scientific advancements in clonal hematopoiesis and overview of research currently performed 
across the left ventricle ejection classification.
A, Since the first discovery of CH-associated cardiovascular disease in 2014, research in CH grew with multiple major scientific 
advancements in the years thereafter. In 2019, CH was associated with a worse prognosis in patients with ischemic HFrEF. In 2020, the 
first mouse study that did not use any external trigger to cause heart failure (eg, pressure overload, ischemia) showed that CH by itself 
may lead to HFrEF. In 2021, CH was associated with a worse prognosis in patients with HFrEF regardless of ischemic cause. In 2022, 
CH was associated with development of HFpEF. B, In vitro, in vivo, and patient studies performed across nonischemic and ischemic 
HFrEF and HFpEF. + indicates association studies; ++, studies that established mechanisms; – the absence of research. CH indicates 
clonal hematopoiesis; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; IL-1, 
interleukin-1; IL-6, interleukin-6; and NLRP3, NLR family pyrin domain containing 3.
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INTERPLAY BETWEEN 
CLONAL HEMATOPOIESIS AND 
CARDIOVASCULAR RISK FACTORS
There is a broad range of cardiovascular risk factors 
associated with CHIP; however, the directionality of the 
relationships is difficult to determine due to their com-
plexity. For example, it is suggested that CHIP may 
cause cardiometabolic complications in obesity and 
diabetes, but smoking may be a driver of CHIP, espe-
cially for CHDMs in ASXL1,34,57 and DNMT3A.57

The effect of CHIP on the cardiometabolic com-
plications of obesity is a complicated example of the 
association between CHIP and cardiovascular health. 
These complications are more prevalent in patients 
with obesity with CHIP compared with those without 
CHIP, even including those with diabetes,3,58 chronic in-
flammation (eg, IL-1/IL-6),59 and dyslipidemia.49 Myeloid 
cells derived from mice with Tet2 loss-of-function mu-
tations are able to trigger systemic inflammation, medi-
ated via IL-1, in white adipose tissue. Increased insulin 
resistance then follows, indicating a direct effect of CH 
on the development of diabetes.60 However, circulating 
proinflammatory factors such as IL-1 or IFN-γ (interfer-
on-γ) have a stimulating role in clonal proliferation and 
expansion,30,45,61 and this systemic inflammation may 
stimulate CHIP through induction of clonal proliferation. 
Insulin resistance, in turn, may also promote the de-
velopment of CHIP by stimulating clonal proliferation. 
A longitudinal analysis of patients with diabetes noted 
increased clone presence at multiple time points.58 
Likewise, mice models showed that obesity may pro-
mote the development of CHIP by driving the growth of 
at least clones with mutations in Tet2, Dnmt3a, Asxl1, 
or Jak2.62

Dyslipidemia is one of the cardiometabolic sequela 
in obesity but may also be present in patients without 
obesity as part of the atherosclerosis trait complex.49 
Tet2-deficient macrophages in the atherosclerotic 
plaque produce more IL-1 and IL-6 when stimulated with 
low-density lipoprotein compared with macrophages 
without Tet2 mutations,2,51 suggesting that hypercho-
lesterolemia may increase the proinflammatory effects 
of CHIP. Furthermore, low-circulating high-density lipo-
protein,63,64 high-intracellular cholesterol in HSCs,49 and 
atherosclerosis itself49,65 stimulate clonal proliferation. 
However, clinical studies could not confirm an increased 
prevalence of hypercholesterolemia in patients with 
CHIP, suggesting that these effects are either small, not 
universal to all CHDMs, or independent from low-density 
lipoprotein cholesterol. Furthermore, smoking is a clas-
sical cardiovascular risk factor that clearly increases the 
risk of CHIP.4,47,57,66–69 Smoking induces DNA mutations, 
and evidence suggests that it also increases hematopoi-
etic proliferation,70 making it another possible cause of 
CHIP, especially for CHDMs in ASXL1.34,57

In summary, CHIP is deeply intertwined in the de-
velopment and progression of cardiovascular risk 
factors; however, these risk factors, in-turn, stimulate 
clonal proliferation and CHIP. Cardiovascular risk man-
agement is vital, and in the future, CHIP can be taken 
forward for use in risk stratification and therapy.

INTERACTION BETWEEN 
CLONAL HEMATOPOIESIS AND 
ATHEROSCLEROSIS
Studies on CHIP and atherosclerosis were the first 
that established its role in nonhematological diseases 
(Figure 2). Patients with CHIP have twice the risk for 
coronary artery disease and stroke,3 and up to 4 times 
the risk for early-onset (<50 years of age) myocardial 
infarction,2 independent of cardiovascular risk factors. 
Even patients with already established ASCVD have a 
higher risk of an atherosclerotic event when they have 
CH.71 This emphasizes CHIP as an important novel 
risk factor for ASCVD, especially because up to 17% 
of patients with coronary artery disease have clonal 
hematopoiesis.2,72

Three mechanisms are important in the interaction 
between CHIP and ASCVD: (1) CHIP upregulates the 
inflammasome/IL-1/IL-6 pathway (Figures 1 and 3). (2) 
CHIP increases ASCVD in a dose-dependent manner 
(ie, larger mutated leukocyte clones associate with 
higher ASCVD risk). (3) Atherosclerosis stimulates the 
progression of CH.

The dependency on the inflammasome/IL-1/IL-6 
pathway was suggested in mice,2,54 where either 
Tet2-deficient2,51 or Jak2V617F macrophages54 with 
increased inflammasome activity51,54 accumulated 
in the atherosclerotic plaque. These cells produced 
an inflammatory response initiated by IL-1 and IL-
62,51,54 production, leading to worsened plaque sta-
bility.2,51 Importantly, inflammasome inhibitors (either 
an NLRP3-inflammasome51 or AIM2-inflammasome54 
inhibitor depending on the gene involved) confirmed 
the involvement of the inflammasome/IL-1/IL-6 path-
way and could restore plaque stability.51,54 Interestingly, 
2 studies went on to confirm the role of the inflam-
masome/IL-1/IL-6 pathway in humans.44,72 Firstly, a 
population-based association study used a com-
mon germline variant in the IL-6 receptor gene (IL6R, 
p.[Asp358Ala]) as a genetic proxy of IL-6 deficiency.44 
CHIP was associated with a higher risk of ASCVD, 
but only in the absence of genetic IL-6 signaling de-
ficiency.44 This was later repeated in a larger analysis 
as well as in a population with ischemic stroke, show-
ing that the variant in IL6R at least partially mitigates 
the risk of (recurrent) vascular events.73,74 Secondly, 
there are already promising data from Canakinumab 
Anti-inflammatory Thrombosis Outcomes Study on the 
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use of canakinumab (a monoclonal antibody directed 
at IL-1β) for prevention of major adverse cardiovascular 
events in patients with previous myocardial infarction 
and increased C-reactive protein.72,75 In an exploratory 
secondary analysis, patients with CHDMs in TET2 had 
lower risk of major adverse cardiovascular events while 
taking canakinumab compared with placebo.72

Thirdly, a dose–response relationship between the 
variant allele frequency (VAF; a marker for clone size in 
which a VAF of 1% corresponds with mutations in 2% 
of leukocytes) and ASCVD is suggested.2,3,44,72 Patients 
with a higher VAF had a higher coronary artery calcium 
score2 as well as a higher risk of major adverse car-
diovascular events.3,44 This dose-dependent effect of 
the VAF was also suggested in patients with a genetic 
IL6R deficiency and DNMT3A or TET2 CHDMs,44 be-
cause the effect of this genetic deficiency was mostly 
present in patients with a large clone size. As such, pa-
tients with a higher VAF may be better candidates for 
anti-inflammatory therapy. Fourthly, although CHIP may 
cause atherosclerosis, atherosclerosis itself might also 
accelerate CH.49 Apoe−/− mice fed with an atherogenic 
diet showed increased HSC proliferation and increase in 
leukocytosis.49 Although this mouse model cannot ex-
clude that the increase in HSC proliferation is primarily 

driven by the atherogenic diet itself, a second study in 
humans showed atherosclerosis increased proliferation 
markers in HSCs, whereas cholesterol levels in these 
patients were normal, suggesting increased proliferation 
and subsequent acceleration of CH49 (Figure 1).

Lastly, although the interaction between atheroscle-
rosis and CHIP is increasingly established, most evi-
dence published concerns CHDMs in TET2, DNMT3A, 
and JAK2.2,51 Although in-human association studies 
do suggest a proatherogenic effect of DNMT3A and 
JAK2, there are no publications on mouse studies that 
have clearly proven this to date.

In summary, the inflammasome/IL-1/IL-6 pathway 
plays a central role in CHIP-induced ASCVD. Anti-
inflammatory therapies could, therefore, be an important 
asset to lower cardiovascular risk in patients with CH.

CLONAL HEMATOPOIESIS ACROSS 
THE LEFT VENTRICLE EJECTION 
CLASSIFICATION
CHIP was first described as both an inducer and 
progressor of heart failure with an ischemic cause. 
However, later discoveries also depicted CHIP as a 

Figure 3.  Potential treatment targets for clonal hematopoiesis-related inflammation.
Depending on the clonal hematopoiesis driver mutation involved, therapeutic targets upstream of proinflammatory cytokines may be 
targeted by JAK2 inhibitors (eg, in case of the gain-of-function mutation JAK2V617F) or by NLRP3 inhibitors (eg, in case of a TET2 or 
a DNMT3A mutation). Downstream of the inflammasome proinflammatory cytokines, such as interleukin-1, interleukin-6, and tumor 
necrosis factor, are a potential target of clonal hematopoiesis-mediated inflammation. Purple indicates a mutated cell, and light blue 
indicates a normal cell. IL indicates interleukin; IL-1, interleukin-1; IL-1R, interleukin-1 receptor; IL-6, interleukin-6; IL-18, interleukin-18; 
NLRP3, NLR family pyrin domain containing 3; and TNF-α, tumor necrosis factor-α.
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possible trigger of nonischemic heart failure with re-
duced ejection fraction (HFrEF), in the absence of any 
heart failure stimulant such as ischemia or an increased 
afterload (Figure 2).

ISCHEMIC HFREF
HFrEF originates from a lack of blood flow to the car-
diomyocytes, most often secondary to atherosclerotic 
coronary artery disease. Although CH prevalence in-
creases with age, its prevalence in ischemic HFrEF is 
not entirely attributable to patient age or CHIP detection 
techniques.6–9,18 CH associates with mortality in pa-
tients with HFrEF independent of age.8,9,18 Interestingly, 
mutations in genes other than DNMT3A and TET2 may 
indicate increased risk for ischemic HFrEF.6,7

CH doubles the risk of mortality or heart failure 
hospitalization in ischemic HFrEF,8,9 but this is highly 
dependent on the specific gene mutation and the 
VAF. Using the current definition of CHIP (a VAF of 
at least 2%1), and including patients regardless of the 
mutated gene involved, CHIP increases the risk for 
cardiac adverse events (cardiac death and heart fail-
ure hospitalization) by a factor of 2.8,76 Likewise, in a 
cardiogenic shock cohort (consisting of patients with 
ischemic and nonischemic HFrEF), CHIP doubled 
30-day mortality.18

The VAF cutoff at 2% to define CHIP was histori-
cally set by the technical sensitivity of exome sequenc-
ing.3,25 Current technological advancements allow us 
to sequence even deeper below this threshold, even 
down to a VAF of 0.01%,77 and studies to date show 
promising results, providing more detailed clinical as-
sociations.6,8,9,77 Already, sequencing up to a VAF of 
0.5% showed that clone populations <2% are prog-
nostically relevant in patients with ischemic HFrEF.6,8,9 
Survival receiver operating characteristic curves show 
that DNMT3A and TET2 mutations are prognostically 
relevant when clone size and corresponding VAF is at 
least 1.15% and 0.73%, respectively. Consequently, a 
new, lower cutoff value of VAF is suggested.9 Patients 
with a VAF above these thresholds had a 5-year mor-
tality rate of 31% to 32%, whereas below this threshold 
the rates were much lower at 18% to 19%.9 These re-
sults still need validation in larger, multicenter studies, 
but show much promise.

Like optimizing the VAF cutoff in a mutation-specific 
manner, there are further indications of mutation-led 
disease mechanisms. Studies thus far have implicated 
common inflammatory pathways, marked by different 
upstream regulators (Figure 3). There are currently no 
animal or human studies that directly compare differ-
ent gene mutations in ischemic HFrEF. An overview of 
animal studies performed is provided in Table S1.

In mice with ischemic HFrEF and Tet2-mutated 
CHDMs, Tet2-deficient macrophages accumulate 

in the myocardium and atherosclerotic plaque,11 
leading to a deterioration in cardiac function with 
lower ejection fraction and increased fibrosis. These 
macrophages show upregulation of the NLRP3-
inflammasome and increased IL-1, IL-6, and IL-18 (in-
terleukin-18)11 expression. The mechanism by which 
IL-6 is increased could also be NLRP3-independent, 
because TET2 normally functions as an inhibitor 
of IL-6 gene expression in the late phase of inflam-
mation.50,78 However, in mice with ischemic HFrEF 
and a Jak2V617F mutation,12 JAK/STAT signaling in-
creased over time,54 leading to higher expression of 
IFN-γ and increased AIM2 inflammasome activity.54 
Inflammasome complexes consist of a sensor pro-
tein (eg, NLRP3 or AIM2), an adaptor protein, and an 
effector protein (ie, caspase-1). In Jak2V617F-mutated 
macrophages, there seems to be an overactivation of 
the AIM2 sensor, as opposed to the NLRP3 sensor 
in Dnmt3a- and Tet2-deficient macrophages.11,12,16 
Similar to the activation of NLRP3, AIM2 also leads 
to the formation of the inflammasome complex that 
activates caspase-1, allowing IL-1 and IL-18 matu-
ration.12,54 Therefore, although the proinflammatory 
outcome of TET2 and JAK2 mutations are the same, 
the upstream intracellular sensors used to form the 
activated inflammasome complexes are different 
(Figure 3). This suggests that the same drugs can be 
used to target the downstream proinflammatory cy-
tokines, but for targeting upstream regulators (eg, by 
NLRP3, AIM2, or JAK2 inhibitors), the different sen-
sor proteins must be considered. Both Dnmt3a and 
Jak2 mutations led to a worse prognosis in mice, in-
creasing cardiac inflammation and worsening cardiac 
fibrosis and function compared with their littermates 
without a mutation.10,12 To date, mechanistic studies 
performed in patients used single-cell RNA sequenc-
ing on peripheral blood mononuclear cells of patients 
with either ischemic HFrEF or aortic stenosis,16,79 
and all had a DNMT3A or TET2 CHDM. The NLRP3-
inflammasome/IL-1/IL-6 pathway was upregulated in 
circulating monocytes from patients with ischemic 
HFrEF.16 Future studies should correlate these find-
ings to intracardiac inflammation and investigate the 
effect of NLRP3 (eg, colchicine), IL-1 (eg, anakinra, 
canakinumab), or IL-6 inhibition (eg, tocilizumab, zil-
tivekimab) in this patient population. An initial anti-
inflammatory study to prevent heart failure following 
myocardial infarction is already set but does not look 
at CH specifically (NCT05177822).

In summary, mice and patient studies provide evi-
dence that targeting the inflammasome/IL-1/IL-6 path-
way is worth exploring in the treatment of ischemic 
HFrEF. Future studies should investigate potential pa-
tient subgroups that would benefit from these immu-
notherapies, paving the way for the first clinical heart 
failure trial based primarily on CHIP.
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NONISCHEMIC HFREF
Nonischemic HFrEF is a heterogeneous group of dis-
eases that comprise dilated cardiomyopathy and hy-
pokinetic nondilated cardiomyopathy. Coronary artery 
disease is excluded as a cause for nonischemic HFrEF, 
highlighting CH in an atherosclerosis-independent 
manner. Interestingly, a population-based analysis 
combining 5 non–heart failure cohorts shows CHIP 
predicts the incidence of heart failure, mainly in patients 
without previous ASCVD.80 CHIP increased the risk of 
subsequent onset of heart failure by 25%.80 Although 
data on coronary arteries and left ventricular ejection 
fraction status at time of heart failure onset are lack-
ing, it is tempting to suggest CHIP predicts later onset 
of nonischemic HFrEF, especially because JAK2V617F 
mutations are associated with reduced left ventricular 
ejection fraction.80

To date, 2 studies have analyzed the prognostic im-
pact of CHIP in nonischemic HFrEF.8,18 The first study 
comprised a relatively small population and detected 
CHIP in 24 of 62 patients with HFrEF, of which 12 had 
a nonischemic cause.8 The second study included pa-
tients with cardiogenic shock regardless of ischemic 
cause.18 CHIP doubled the risk for heart failure hospi-
talization or cardiac death, independent of an ischemic 
cause,8 and increased 30-day mortality following car-
diogenic shock.18 Although these results are promis-
ing and suggest a clear prognostic impact of CHIP on 
nonischemic HFrEF, they require validation in a larger 
population.

Mechanistically, CHIP worsens prognosis in HFrEF 
likely through the cardiac infiltration of immune cells 
(mainly monocytes) holding CHDMs (eg, in TET2 or 
DNMT3A). Inflammation develops in the myocardium 
with subsequent reduction in systolic function and 
cardiac fibrosis (Figure  1). Therefore, several mecha-
nisms that are present in nonischemic HFrEF are ex-
pected to be similar to the direct mechanisms of CHIP 
in ischemic HFrEF. Two mouse studies (using Tet2 and 
Jak2V617F as CHDM genes) compared these 2 HFrEF 
causes. They showed that mice with either transverse 
constriction of the aorta (ie, pressure overload) or li-
gation of the anterior descending artery (ie, ischemia) 
had a comparable cardiac macrophage-led inflamma-
tion profile with an inflammasome-dependent immune 
response with IL-1 and IL-6,11,12 strengthening the simi-
larities between CHIP-associated ischemic HFrEF and 
CHIP-associated nonischemic HFrEF.

Most of the mechanistic studies on the effect of 
CHIP on heart failure used a trigger to simulate pres-
sure overload (eg, transverse aortic constriction) or 
ischemia (eg, ligation of the anterior descending ar-
tery)10–12 in the mice. Importantly, when a bone marrow 
transplantation with Tet2-deficient hematopoietic stem 
cells was performed that led to Tet2 CHIP, without 

using any trigger or conditioning to induce heart fail-
ure, HFrEF still developed.14 In this study, Tet2-deficient 
macrophages also showed intracardiac upregulation 
of the inflammasome/IL-1/IL-6 pathway,14 suggesting 
that the innate immune system was overactive even 
in the absence of any trigger. This strongly contends 
that CHIP could be an inducer and accelerator of non-
ischemic HFrEF. One of the next steps is to translate 
anti-inflammatory targets into the clinic. Current ongo-
ing anti-inflammatory trials do not yet subset patients 
based on CHIP (eg, NCT03797001, NCT04705987).

In summary, CHIP could be a novel therapeutic target 
in nonischemic HFrEF. Aiming to dampen this immune 
response through the application of anti-inflammatory 
agents and other immunotherapies would open a new 
field to the HFrEF treatment regimen.

HEART FAILURE WITH PRESERVED 
EJECTION FRACTION
Heart failure with preserved ejection fraction (HFpEF) is 
a highly complex, multiorgan syndrome, with multiple 
pathophysiological phenotypes.81,82 Inflammation is 
highlighted as a key driver of the disease and a potential 
treatment target.83–92 However, HFpEF has multiple 
patient phenogroups, and not every phenogroup is 
characterized by increased inflammation. CHIP may be 
of interest in at least some of the HFpEF phenogroups.

A recent publication underlines the potential role 
of CHIP in HFpEF. CHIP predicted the develop-
ment of HFpEF in patients <65 years of age in a pro-
spective population-based cohort in Groningen, the 
Netherlands.19 CHIP was associated with a risk for 
HFpEF development twice as high as patients without 
CHIP and did not associate with an increased risk for 
HFrEF.19 Despite the age-related nature of CHIP and 
association with comorbidities, CHIP may be a lone-
standing risk factor for HFpEF development below the 
age of 65 years.19 Additionally, CHIP predicts the onset 
of HF, whereas the most common CHDMs (ie, DNMT3A 
and TET2) could not predict reduction of left ventricu-
lar ejection fraction, suggesting CHIP predicts onset of 
HFpEF in at least a minority of patients with CHIP.80

No other human studies on HFpEF and CHIP have 
been performed to date, and even CHIP mouse mod-
els always led to a HFrEF phenotype10–12 (Figure 2 and 
Table  S1). Nevertheless, multiple HFpEF studies did 
report inflammatory profiles with striking similarity to 
inflammatory pathways upregulated in CHIP86,89–91,93,94 
(Table). In particular, soluble IL-1 receptor, IL-6, and 
C-reactive protein were upregulated and correlated 
with a worse prognosis in HFpEF,89,91 which also as-
sociated with the inflammasome/IL-1/IL-6 pathway in 
HFrEF and CHIP.10,14,16 Surprisingly, the expression of 
these CHIP-associated biomarkers was even higher 
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in HFpEF compared with HFrEF.89 A clinical trial to 
suppress NLRP3 inflammasome activity using colchi-
cine is currently ongoing in HFpEF (NCT04857931). 
Additionally, the tumor necrosis factor family was up-
regulated in a subgroup of patients with HFpEF with 
multiple comorbidities (eg, obesity, diabetes).91,94 
TNF-α itself drives clonal expansion with myeloid skew-
ing at least in an in vitro setting,95 and an increase in 
TNF-α was also observed in circulating monocytes of 
patients with heart failure (including aortic stenosis pa-
tients) with DNTM3A CHDMs, as well as in pressure-
overload mice models with Jak2 CHDMs.12,79 Although 
previous TNF-α trials did not improve outcome in pa-
tients with HFrEF,96,97 better patient selection based on 
CHIP could help to identify a targetable patient sub-
group for this treatment.

In summary, research has begun to show associ-
ations between CHIP and HFpEF development, but 
any underlying pathophysiological mechanism is still 
speculative. Previous studies investigating inflamma-
tion in HFpEF highlight overlapping biomarker profiles 
with CHIP.

FUTURE OUTLOOK AND POTENTIAL 
TREATMENT TARGETS
CHIP could be an important contributor to our un-
derstanding of the phenotypes of inflammatory heart 
failure, both as a diagnostic marker and a treatment 
guide. A feedback loop may exist between inflamma-
tion and CHIP, which deserves further investigation in 
a heart failure setting. Heart failure is associated with 
elevated circulating proinflammatory cytokines,98 and 

these cytokines (TNF-α, IL-1) stimulate CHIP at least 
in mice and in vitro in humans.61,95 Even when this 
feedback loop does not exist, CHIP is still a biomarker 
for heart failure development and progression, and 
mechanistic studies performed already suggest a 
benefit in targeting the associated inflammatory path-
ways (Figure 3).

The evidence accumulated over the past several 
years is sufficient to initiate a clinical trial that targets 
CHIP. Firstly, proinflammatory cytokines downstream of 
TET2, DNMT3A, and JAK2V617F CHDMs are targetable 
with immunotherapy, as revealed in both murine and 
human studies. Secondly, in a single-center study, the 
variant allele frequency of TET2 and DNMT3A CHDMs 
was suggested to be already clinically significant at 
0.73% and 1.15%, respectively (no clinical heart failure 
study has been performed on JAK2V617F). Thirdly, both 
DNMT3A and TET2 CHDMs have been associated with 
the same targetable upstream sensor protein NLRP3, 
initiating the inflammasome/IL-1/IL-6 cascade. This 
does not count for JAK2V617F mutations, which are as-
sociated with AIM2.12,54 Finally, there are already prom-
ising data on the use of an IL-1 blockade to prevent 
major adverse cardiovascular events in patients72,75 
with TET2 mutations.72 Therefore, it would be possible 
and arguably vital to initiate a clinical trial with NLRP3, 
IL-1, or IL-6 blockers with patients who have DNMT3A 
and/or TET2 CHDMs, and a variant allele frequency 
of 1.15% or 0.73%, respectively. There are already 2 
studies registered as clinical trials that target CHIP, a 
phase I study on selnoflast (ie, a NLRP3 inhibitor) in 
patient CHDMs in TET2 and ASCVD (10 520 571 in the 
International Traditional Medicine Clinical Trial Registry), 
and a phase II study on colchicine in patients with CHIP 

Table.   Clinical Studies Showing the Inflammasome/IL-1/IL-6 Pathway Is Often Upregulated in HFpEF

First author (year)
No. of HFpEF 
patients

No. of 
control 
patients Type of controls

Increase of 
CH-associated 
cytokines in 
HFpEF Comment

Matsubara90 (2011) 82 171 Patients without HF or 
another type of HF

Yes CRP and IL-6 were upregulated in 
HFpEF.

Santhanakrishnan86 (2012) 50 101 Patients without HF or 
another type of HF

No il1rl1 was tested and was not 
increased in the HFpEF study 
group, possible due to small 
sample sizes.

Sanders-van Wijk89 (2015) 112 458 Patients with another 
type of HF

Yes il1rl1, hs-CRP, and IL-6 were 
upregulated in HFpEF.

Van Tassell93 (2018) 21 10 Patients with HFpEF who 
were not treated with 
IL-1 blockade

Yes IL-1 blockade by anakinra reduced 
CRP and NT-proBNP in HFpEF.

Sanders-van Wijk94 (2020) 345 30 Patients without HF or 
another type of HF

Yes IL-1, IL-6, and TNF-α were 
upregulated in 2 separate clusters 
of HFpEF patients.

Kresoja91 (2021) 999 999 Patients without HF Yes IL-1, the TNF superfamily, and IL-6 
were upregulated in HFpEF.

CH indicates clonal hematopoiesis; CRP, C-reactive protein; HF, heart failure; HFpEF, heart failure with preserved ejection fraction; hs-CRP, high-sensitivity 
C-reactive protein; IL-1, interleukin-1; il1rl1, interleukin 1 receptor ligand-1; IL-6, interleukin-6; TNF, tumor necrosis factor; and TNF-α, tumor necrosis factor-α.
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and ischemic HFrEF (2021-001508-13 in the European 
Union Clinical Trials Register). No clinical trials on non-
ischemic HFrEF have been registered to date.

Lastly, although our review focusses on CHIP, mo-
saic loss of the Y chromosome is another blood disorder 
comparable to CHIP of potential future interest for heart 
failure specialists and deserves mentioning. Mosaic loss 
of the Y chromosome, a common blood disorder in men 
in which a proportion of white blood cells lose their Y 
chromosome, leads to the onset of nonischemic HFrEF 
in mice, possibly via dysfunctional macrophages that 
release tumor growth factor-β1 and trigger myocardial 
fibrosis.99 Mosaic loss of the Y chromosome is already 
associated with increased mortality after transcatheter 
aortic valve implantation for aortic stenosis.100

CONCLUSIONS
CHIP is a contributor to heart failure development re-
gardless of ejection fraction phenotype. The discovery 
and improved mechanistic understanding of this phe-
nomenon provide the possibility to select patients who 
will benefit from new immunotherapies in this novel area 
of heart failure therapeutics. Basic and translational re-
search should work in parallel to discover gene-specific 
disease mechanisms and identify new patient sub-
groups potentially eligible for immunotherapy.
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Supplemental Material 



Table S1. murine studies on the effect of clonal hematopoiesis in heart failure. 

First author 
(year) 

Cases Controls Additional 
interventions 

Outcome 

Sano 10 

(2018) 

Mice with bone 
marrow radiation 
followed by bone 
marrow 
transplantation with 
Tet2 deficient (Tet2 
+/- or Tet2 -/-) or 
Dnmt3a loss-of-
function cells 

Mice with 
bone marrow 
radiation 
followed by 
bone marrow 
transplantation 
with control 
cells 

Angiotensin II 
in a subgroup 
of mice. 

Bone marrow transplantation 
with Tet2-deficient or 
Dnmt3a loss-of-function 
mutated cells led to 
increased cardiac 
inflammation (IL-1, IL-6, 
CXCL1, CXCL2), hypertrophy 
and fibrosis and a decreased 
ejection fraction, compared 
to controls. 

Sano 11 

(2018) 

Mice with bone 
marrow radiation 
followed by bone 
marrow 
transplantation with 
Tet2 deficient (Tet2 
+/- or Tet2 -/-) cells, 
additionally these 
mice TAC or ligation 
of the LAD.   

Mice with 
bone marrow 
radiation 
followed by 
bone marrow 
transplantation 
with control 
cells, 
additionally 
these mice had 
TAC or ligation 
of LAD.   

Inhibition of 
the NLRP3-
inflammasome 
with MCC950 
in a subgroup 
of mice.  

Bone marrow transplantation 
with Tet2-deficient cells led 
to decreased ejection 
fraction and increased 
inflammation (IL-1, CXCL2, 
CD45) and fibrosis in mice 
with TAC or ligation of the 
LAD. The NLPR3-
inflammasome inhibitor 
MCC950 reversed post-
infarction and pressure 
overload remodeling caused 
by the CHIP-driver mutation 
in Tet2.  



Table S1 (continued): murine studies on the effect of clonal hematopoiesis in heart failure 

  

First author 
(year) 

Cases Controls Additional 
interventions 

Outcome 

Sano 12 

(2019) 

Non-radiated mice 
with bone marrow 
transplantation 
from  Jak2 (V617F) 
mutated mice, 
additionally these 
mice had TAC or 
ligation of the LAD.  

Non-irradiated 
mice with 
bone marrow 
transplantation 
from wild-type  
mice, 
additionally 
these mice had 
TAC or ligation 
of the LAD.  None 

Bone marrow transplantation 
with Jak2(V617F) mutated 
bone marrow cells led to 
increase cardiac 
inflammation (IL-1, IL-6, TNF-
alpha) and fibrosis and a 
decreased ejection fraction in 
mice with TAC or ligation of 
the LAD. Jak2 (V617F) 
expressing HSPCs displayed a 
competitive advantage over 
Jak2 (wild-type) HSPCs that 
was highly restricted to the 
myeloid lineage and shown 
as an increase of mutated 
neutrophils and monocytes 
in the blood.  

Wang 14 

(2020) 

Non-radiated mice 
with bone marrow 
transplantation 
from Tet2 deficient 
mice (Tet2 +/- or 
Tet2 -/-) 

Non-irradiated 
mice with 
bone marrow 
transplantation 
from wild-type 
(Tet2 +/+) mice None 

Bone marrow transplantation 
with Tet2-deficient cells led 
to progressive expansion of 
Tet2-deficient HSPCs as well 
as expansion of Tet2-
deficient bone marrow 
derived myeloid cells within 
the heart, without an 
significant effect on yolk sac-
derived cardiac-resident 
macrophages. Consecutively, 
there was a reduction in 
ejection fraction parallel to 
an increase in hypertrophy. 
Of note: this was the first 
study that showed a 
detrimental effect of the 
Tet2-driver mutation without 
an external injury (LAD 
ligation, TAC, or infusion with 
angiotensin II) or Ldlr 
knockout.  



Table S1 (continued): murine studies on the effect of clonal hematopoiesis in heart failure 

First author 
(year) 

Cases Controls Additional 
interventions 

Outcome 

Yura 15 

(2021) 

Mice with 
bone marrow 
radiation 
followed by 
bone marrow 
transplantation 
with ppm1d 
gain-of-
function 
mutation 

Mice with 
bone marrow 
radiation 
followed by 
bone marrow 
transplantation 
with control 
cells 

Angiotensin II 
and the NLRP3-
inflammasome 
inhibitor 
MCC950 in a 
subgroup of 
mice.  

The ppm1d mutation 
reduced left ventricle 
fraction shortening at 4 
weeks and lead to an higher 
fibrotic cardiac tissue area 
parallel to higher bone 
marrow-derived (CCR2) 
macrophages/monocytes 
with higher IL1-β and IL-6 
expression. This was 
abrogated by CCR2 knock-
out or by the NLRP3 
inflammasome inbibitor 
MCC950.  

Sano 13 

(2021) 

Non-radiated 
mice with 
bone marrow 
transplantation 
from Trp53 
heterozygous-
deficient  
(Trp53+/-) 
donor mice 

Non-irradiated 
mice with 
bone marrow 
transplantation 
from Trp53 
homozygous 
wild type 
(Trp53+/+) 
donor mice 

Doxorubicin in 
a subgroup of 
mice.  

Doxorubicine led to 
expansion of Trp53-
deficient HSPCs, myocardial 
neutrophil infiltration that 
produced IL-1β, IL-6 and 
TNF-α (without increased 
monocyte infiltration), and 
worse left ventricle systolic 
function. Neutrophil 
depletion prevented 
cardiac dysfunction.  

 

CD = cluster of differentiation; CHIP = clonal haematopoiesis of indeterminate potential; CCR2 = C-C 

chemokine receptor 2; CXCL = chemokine (X-C-X) motif ligand; DNMT3A = DNA (cytosine-5)-

methyltransferase 3A; HSPCs = hematopoietic stem and progenitor cells; IL = interleukin; JAK2 = 

Janus Kinase 2; LAD = left anterior descending artery; LDLR = low density lipoprotein receptor; NLRP3 

= NLR family pyrin domain containing 3; TAC = transverse aortic constriction; TET2 = Tet 

methylcytosine dioxygenase 2; TNF = tumor necrosis factor; Trp53 = transformation related protein 

53.  
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