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Abstract

The classification of human tumors based on molecular criteria offers tremendous clinical 

potential; however, discerning critical and “druggable” effectors on a large scale will also 

require robust experimental models reflective of tumor genomic diversity. Here, we describe 

a comprehensive genomic analysis of 101 melanoma short-term cultures and cell lines. Using 

an analytic approach designed to enrich for putative “driver” events, we show that cultured 

melanoma cells encompass the spectrum of significant genomic alterations present in primary 

tumors. When annotated according to these lesions, melanomas cluster into subgroups suggestive 

of distinct oncogenic mechanisms. Integrating gene expression data suggests novel candidate 

effector genes linked to recurrent copy gains and losses, including both phosphatase and tensin 

homologue (PTEN)–dependent and PTEN-independent tumor suppressor mechanisms associated 
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with chromosome 10 deletions. Finally, sample-matched pharmacologic data show that FGFR1 
mutations and extracellular signal–regulated kinase (ERK) activation may modulate sensitivity 

to mitogen-activated protein kinase/ERK kinase inhibitors. Genetically defined cell culture 

collections therefore offer a rich framework for systematic functional studies in melanoma and 

other tumors.

Introduction

The recognition that cancer is fundamentally a genetic disease (1, 2), combined with an 

expanding repertoire of targeted small molecules (3–7), provides grounds for optimism 

that genome-based therapeutics may ultimately prove broadly applicable to human cancer. 

However, rational use of targeted anticancer agents is often encumbered by an inability 

to identify a priori those tumors whose unique biology confers heightened susceptibility 

to a particular treatment. Toward this end, considerable insights into tumorigenesis have 

been derived from functional studies involving cultured human cancer cells (e.g., established 

cell lines, short-term cultures, etc.). Despite their limitations, cancer cell line collections 

whose genetic alterations reflect their primary tumor counterparts should provide malleable 

proxies that facilitate mechanistic dissection and therapeutic development. Indeed, matched 

genomic and experimental data from these models may refine hypothesis generation and 

reveal new insights, as evidenced by recent studies (8, 9). Such results can also be integrated 

with analogous data from clinical specimens to infer molecular subtypes and therapeutic 

vulnerabilities in tumors that manifest the relevant genomic changes (10–12).

When it escapes early detection, malignant melanoma usually becomes a highly lethal 

malignancy that is refractory to existing therapeutic avenues (13, 14). However, whereas 

many other solid tumors lack robust in vitro counterparts, melanoma offers an attractive 

experimental platform for systematic functional characterization of genomic aberrations in 

cancer. Melanoma cells from patients with advanced disease proliferate readily in vitro; thus, 

hundreds of “short-term” melanoma cultures and established cell lines have been generated 

(15–17). Melanoma short-term cultures have typically undergone a relatively small number 

of passages outside of the patient, and the majority of these lines proliferate readily 

under standard laboratory conditions. In principle, then, a cultured melanoma collection 

that reflects the diversity of genomic aberrations observed in primary melanomas should 

facilitate the characterization of critical and “druggable” effectors linked to key molecular 

lesions in this malignancy. Accordingly, in this study we have undertaken detailed genomic 

characterization and integrative analysis of a large cultured melanoma cell collection, 

thereby establishing a robust framework for systematic cancer gene discovery and tumor 

dependency characterization in this malignancy.

Materials and Methods

Cell culture and reagents.

Short-term melanoma cultures were selected from cryopreserved collections at the Wistar 

Institute (62 lines), the University Hospital of Zurich (24 lines), and the Dana-Farber Cancer 

Institute (37 lines). Established melanoma cell lines were kindly provided by Drs. David 
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Fisher (Dana-Farber Cancer Institute, Boston, MA), Frank Haluska (Tufts - New England 

Medical Center Cancer Center, Boston, MA), Susan Holbeck (National Cancer Institute, 

Bethesda, MD), and Neal Rosen (Memorial Sloan Kettering Cancer Center, New York, 

NY). All cell lines and short-term cultures were cultured in RPMI medium (MediaTech) 

supplemented with 10% fetal bovine serum (MediaTech), except for the Dana-Farber short-

term cultures, which were cultivated in DMEM (MediaTech) supplemented with 10% serum. 

For some Wistar lines, tissue culture dishes were first coated with 1% porcine gel solution 

(Sigma) to enhance cell adherence.

High-density single-nucleotide polymorphism array hybridization.

Genomic DNA was prepared from near-confluent cells using the DNEasy Tissue Kit 

(Qiagen) according to the manufacturer’s instructions. For highly pigmented cultures, 1:1 

phenol-choloroform extractions were done before column purification. Single-nucleotide 

polymorphism (SNP) array data were generated using either the StyI chip from the 500K 

Human Mapping Array set (70 samples; see Supplementary Table S1) or the XbaI chip from 

the 50K Human Mapping Array set (31 samples; Affymetrix, Inc.). Array experiments using 

250 ng of genomic DNA were carried out in a 96-well format using a Biomek FX robot 

with dual 96 and span-8 heads (Beckman Coulter) and a GeneChip Fluidics Station FS450 

(Affymetrix), as described in Supplementary Methods. After hybridization, microarrays 

were scanned using the GeneChip Scanner 3000 7G (Affymetrix) to generate .cel and .txt 

files. Subsequent data processing steps are detailed in Supplementary Methods.

High-throughput oncogene mutation profiling and DNA sequencing.

Genomic DNA was genotyped for 238 known mutations in 17 oncogenes as described 

previously (18). Alternatively, BRAF and NRAS mutations were determined by Sanger 

sequencing (Agencourt). Available samples were sequenced for phosphatase and tensin 

homologue (PTEN) coding and splice junction mutations using prevalidated exon primers 

(Agencourt) and analyzed with Mutation Surveyor software (SoftGenetics, LLC.).

Gene expression profiling.

RNA was purified by a TRIzol extraction protocol (Invitrogen), as described in 

Supplementary Methods. Affymetrix HT-HGU133A chips were used for gene expression 

profiling (19). Using 1.0 μg of RNA, synthesis of the cRNA target product, microarray 

hybridization, and scanning (Affymetrix HT scanner) were done in a 96-well plate format 

according to the manufacturer’s protocols. Scanned data were processed using MAS 5.0 

(Affymetrix) as described in Supplementary Methods.

Bacterial artificial chromosome array data processing.

Bacterial artificial chromosome (BAC) array comparative genomic hybridization (CGH) 

primary melanoma data (20) were downloaded from the GEO database (GSE2631). The 

genomic markers were converted from hg16 to hg17 using the UCSC genome browser.11 

Missing data were imputed using the mean of neighboring values. Log2 ratio values were 

11 http://genome.ucsc.edu/cgi-bin/hgLiftOver 
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smoothed using the GLAD segmentation algorithm (21). BAC markers in regions of known 

copy number polymorphisms were removed12 before downstream analysis.

Genomic Identification of Somatic Targets in Cancer analysis.

Details of the Genomic Identification of Somatic Targets in Cancer (GISTIC) algorithm 

are described elsewhere (22). Briefly, each SNP array or CGH data set is defined in terms 

of copy-number values for N markers along the genome in M tumor samples. To identify 

significant regions of amplification and deletion, the GISTIC algorithm considers both the 

frequency F of an amplification or deletion above (or below) a certain threshold defined 

by normal samples and the average amplitude of that alteration A beyond the threshold. 

Thereby, a genome significance score (G score) G = F × A is defined over N markers 

for all M samples. At each individual marker n, the computed metric g is compared with 

the null hypothesis—a background metric defined by permutation testing across all the 

markers. Correcting for multiple hypotheses, a false discovery rate (q value) is generated 

at each marker n, aggregating information from M samples. Using GLAD-segmented copy 

number data from each sample (21), the minimal common region of overlap is used to define 

boundaries of peaks in the distribution of q values. A “wide peak” boundary is determined 

by the samples remaining after leaving out the individual samples that define the borders of 

the “narrow peak.” This wide peak reduces the influence of individual samples in dictating 

peak borders. In Tables 1 and 2 the wide peak region is indicated.

Inference of loss of heterozygosity.

A Hidden Markov Model (dChipSNP, August 16, 2006 build) that considers haplotype 

information from a pool of normal samples was used to infer loss-of-heterozygosity (LOH) 

calls, as previously described (ref. 23; Supplementary Methods).

Hierarchical clustering using genomic alterations.

An input binary matrix was generated from the GISTIC algorithm (see above). For each 

lesion defined by GISTIC, a ”1” was assigned to a lesion i in a given sample j if the 

middle marker in the lesion i region exceeded the designated log2 ratio threshold of 0.3 for 

amplifications, or −0.3 for deletions. Otherwise, that cell ij was assigned a “0.” Hierarchical 

clustering (24) with Euclidean distance and complete linkage was applied to this matrix 

using the GenePattern software package (25).

Significance analysis of microarrays.

Significance analysis of microarray (SAM) was done using TIGR MeV 4.013 to identify 

differentially expressed genes associated with a broad copy number lesion (i.e., chromosome 

10 copy number loss) or a more focal event (i.e., peak of a GISTIC lesion). For the 

chromosome 10 studies, samples were first ranked into three classes based on mean 

log2 copy number over the region. Thresholds were chosen based on the 33rd and 

67th percentiles of the copy number distribution. Calculations were done with K-nearest 

12 http://projects.tcag.ca/variation/ 
13 http://www.tm4.org/mev.html 
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neighbors (10 neighbors), 200 permutations, and the Tusher method (26) to select the 

minimum δ where the median number of false-positive genes is zero.

Pharmacologic growth inhibition assays.

Cultured melanoma cells were added to 96-well plates at 1,000 (A375 and MCF7) and 3,000 

(all short-term melanoma cultures and the MALME 3M cell line) cells per well. Cells were 

allowed to adhere overnight, and medium containing serial dilutions of CI-1040 (from 100 

to 1 × 10−6 μmol/L; WuXi PharmaTech) was added. Cells were incubated for 96 h, at which 

time cell viability was measured using the CellTiter-Glo viability assay (Promega). Viability 

was calculated as a percentage of untreated control values after background subtraction.

Western blotting and biochemical studies.

After cell lysis, Western blot analysis was done as described in Supplementary Methods.

Results

Systematic genomic analysis of cultured melanoma cells.

To enhance global knowledge of melanoma genomic alterations while also establishing 

a robust experimental system for downstream functional characterization, we generated 

comprehensive genomic data for 101 cultured melanoma cells, which included both “short-

term” cultures derived primarily from metastatic foci (median, 9 passages in vitro; range, 

5–51) and established melanoma cell lines (Supplementary Table S1). Chromosomal copy 

number and LOH alterations were examined using high-density SNP arrays (8, 27, 28), 

and the mutation status of 17 known oncogenes was interrogated by Sanger sequencing 

or a mass spectrometry–based mutation profiling approach described previously (18). 

Gene expression patterns were determined for 88 cultured melanoma lines and 5 normal 

melanocyte lines using a high-throughput microarray platform (ref. 19; Affymetrix; see 

Materials and Methods). Altogether, 123 cultured melanoma lines were examined by one or 

more of these platforms (Supplementary Table S1).

Next, we wished to identify which genetic changes represented statistically significant 

events (presumably enriched for driver alterations) in melanoma. To accomplish this, we 

used an algorithm termed Genomic Identification of Significant Targets in Cancer (GISTIC; 

refs. 22, 29). This method systematically computes a significance score at each locus across 

the genome using smoothed microarray/CGH copy number data based on the frequency 

and amplitude of each alteration (G score; see Materials and Methods). After permutation 

testing and multiple hypothesis correction, resulting false discovery rate–corrected P values 

are plotted as a function of chromosomal location. Significant genomic regions of gain or 

loss are denoted by peaks in the GISTIC plot; the underlying chromosomal regions may then 

be inspected for candidate target genes.

The GISTIC output revealed 14 major regions of significant copy number gain and 13 

regions of significant copy number loss in the cultured melanoma collection (Fig. 1A and 

B; Tables 1 and 2). One of the most significant regions of copy gain was located on 

chromosome 7q34 (65% of samples; Fig. 1A). This locus harbors the BRAF oncogene, 
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which contains activating point mutations in 56% of samples in our study, consistent with 

previously reported frequencies of >50% in cutaneous melanomas (30). A co-occurrence 

of these two events (36 of 79 samples) suggests that mutated BRAF may also be 

amplified in melanoma, although this correlation did not reach statistical significance (P 
= 0.14, two-tailed Fisher’s exact test). Additional prominent GISTIC copy gain peaks 

localized exquisitely to MITF, which is the master transcriptional regulator of melanocyte 

development and an amplified oncogene in 10% to 15% of melanomas (8), and to CCND1, 

a well-known oncogenic cell cycle regulator (Fig. 1A). The most prominent region of copy 

loss identified CDKN2A, an established melanoma tumor suppressor gene (ref. 31; Fig. 1B). 

Thus, GISTIC analysis afforded a robust and unbiased means to identify key genomic loci 

whose target genes may contribute importantly to melanoma biology.

“Cross-platform” analyses of melanoma tumor genomic DNA.

Given that the GISTIC algorithm computes genomic regions of significance using smoothed 

copy number data, we reasoned that this method might also facilitate systematic genomic 

studies of tumors whose chromosomal copy number data derive from distinct microarray 

platforms. To explore this possibility, we compared the GISTIC plots generated on 250K 

SNP arrays from 70 melanoma short-term cultures, 50K SNP arrays from 31 additional 

short-term cultures and cell lines, 33K tiling arrays from 45 independent cell lines (32), and 

BAC array CGH data derived from 70 primary cutaneous melanomas (ref. 20; see Materials 

and Methods; Fig. 1A and B; Supplementary Fig. S1). The resulting GISTIC plots were 

strikingly similar across all data sets, suggesting that this algorithm could extract essential 

tumor genomic information regardless of the platform used. To confirm these similarities, 

we carried out pairwise Pearson correlations between GISTIC significance values of 

cultured melanoma data, primary melanomas, and several additional solid tumor data sets 

whose chromosomal aberrations had previously been examined (Supplementary Table S2; 

see Supplementary Methods). Notably, GISTIC correlations between cultured melanoma 

cells and primary cutaneous melanomas from nonchronic sun-damaged skin were stronger 

than any other correlation observed among all pairs of primary tumor sets, approaching that 

of the positive control (see Supplementary Methods). Thus, the chromosomal regions of 

significance gleaned from GISTIC analyses were robust to the types of microarray platform 

variances common to cancer genomic data sets.

The genomic diversity of melanoma in vitro and in vivo.

Theoretically, cultured human cancer cell collections may represent a biased malignant 

subset that fail to encompass the pathophysiology relevant in primary tumors. To address 

this at a genomic level in cutaneous melanoma, we compared the genomic regions of 

significance found in cultured melanoma cells to those observed in primary tumors. As 

shown in Fig. 1A and B, the landscape of genomic alterations was strikingly similar 

between cultured cells and primary tumors, even with respect to subtle contours within 

the GISTIC plots. Some significant alterations present in cultured cells were absent in 

primary tumors [e.g., gains on chromosome 3p14 (MITF) and chromosome 15q, and a 

region of loss on 4q]; in most cases, these were attributable to low BAC clone coverage 

in the primary tumor data. Conversely, a single peak of chromosomal deletion centered 

at 13q33 exhibited reduced prominence in cultured cells compared with primary tumors 
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(Fig. 1B). Interestingly, the underlying 3.2-Mb locus spanned the ERCC5 excision repair 

gene, and this deletion showed increased significance in primary melanomas from chronic 

sun-damaged skin (ref. 20; Supplementary Fig. S2). These findings raised the possibility 

that deletions involving ERCC5 may contribute to melanoma genesis in the setting of 

chronic sun damage. Overall, this comparative analysis suggested that, in aggregate, cultured 

melanoma collections might provide a genetically appropriate model system for systematic 

functional genomic characterization.

Integration of significant genomic lesions with melanoma gene expression data.

Although the majority of GISTIC peaks pinpointed genomic regions implicated previously 

in melanoma (refs. 20, 32, 33; Supplementary Fig. S1A), in most cases the relevant effector 

genes remain unknown. To identify candidate genes targeted by the GISTIC lesions, we 

systematically partitioned our data set into two classes based on the presence or absence 

of the relevant GISTIC lesion and used the resulting classes to carry out SAM analysis of 

sample-matched gene expression data (see Materials and Methods). In principle, amplified 

genes that exhibit significantly up-regulated expression may denote candidate oncogene 

targets, whereas those within regions of deletion that show significant down-regulation may 

exert tumor suppressor mechanisms.

The results of this genome-wide SAM analysis are shown in Tables 1 and 2. In 

several instances, a short list of differentially expressed genes was identified whose 

cellular functions suggested plausible cancer mechanisms. For example, we identified 

five up-regulated genes from the 15q26 GISTIC region that included IQGAP1 (Table 1), 

which encodes a GTPase-activating protein that modulates RAC1/cdc42-mediated cellular 

adhesion (34). Similarly, four up-regulated genes from the GISTIC locus at 22q13 included 

the EP300 gene (Table 1), which encodes a key transcriptional coactivator that cooperates 

with numerous cancer-associated factors, including microphthalmia-associated transcription 

factor (MITF; ref. 35). Several known or candidate melanoma tumor suppressors were also 

suggested by this analysis (Table 2), including PTEN (10q23) and KLF6 (10p15; described 

below). Thus, combined analyses of sample-matched, genome-scale data posit multiple 

candidate tumorigenic mechanisms enacted by melanoma genomic aberrations.

Genome-wide measurements of LOH in melanoma.

High-density SNP arrays also enable inference of LOH (36), even in the absence of matched 

normal DNA (23). To identify significant LOH regions within our cultured melanoma 

collection, we predicted LOH patterns within each sample using a hidden Markov model 

(23), and applied the GISTIC algorithm to the resulting LOH segments (see Materials and 

Methods). A strong concordance was observed between regions of LOH and copy loss 

(Fig. 1C), suggesting that most melanoma LOH events occur by hemizygous deletion. The 

major exceptions to this pattern occurred at chromosomes 5q and 17p, where LOH in the 

absence of significant hemizygous deletion (“copy-neutral” LOH) was apparent. Although 

the relevant tumor suppressor at chromosome 5q has not been identified, the LOH peak at 

chromosome 17p centers on the well-known TP53 tumor suppressor gene (Fig. 1C). This 

suggests that copy-neutral LOH may represent an important mechanism of p53 inactivation 

in melanoma. In a subset of short-term culture samples, a segment of chromosome 4q 
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contained hemizygous deletion but limited LOH (Fig. 1C). This unusual phenomenon, 

which could potentially be explained by copy loss and biallelic retention in the setting of 

hyperploid tumors, implies that this region of the melanoma genome might be relatively 

refractory to LOH or uniparental disomy.

Molecular classification of melanoma based on chromosomal aberrations.

We next sought to determine if significant chromosomal events might organize the 

melanoma samples into molecularly distinct and/or biologically relevant subsets. To address 

this, we applied established unsupervised learning methods (37, 38) to the lesions identified 

by GISTIC (see Materials and Methods). As shown in Fig. 2, hierarchical clustering 

grouped GISTIC-annotated cultured melanoma samples into six main branches. Two major 

subclusters (clusters 4 and 5) were characterized by the presence of chromosome 7p/7q 

gains (P = 1.1e–05, P = 2.5e–05, two-tailed Fisher’s exact test) and chromosome 10 losses 

(P = 7.9e–4, P = 6.5e–05) with cluster 5 being enriched for additional alterations, most 

notably gains on chromosome 22q (P = 1.4e-3). These clusters were associated with an 

enrichment of BRAF mutation compared with NRAS mutation (P = 4.7e-3, two-tailed 

Fisher’s exact test; Fig. 2), thereby highlighting the observation that in a subset of samples 

mutated BRAF is amplified, at least to low levels, in melanoma (Supplementary Fig. S3C–

E). Another prominent subcluster (cluster 6) was largely defined by a relative paucity of 

chromosome 10 losses when compared with clusters 1 to 5. Interestingly, although 7q 

gains were relatively common in this terminal branch, the prevalence of BRAF(V600E) 

mutation was diminished compared with clusters 4 and 5, raising the possibility of an 

additional target(s) of 7q copy gains in melanoma. In contrast, clusters 1 and 2 exhibited 

a reciprocal pattern, with chromosome 10 losses characteristic of both branches. Overall, 

these results suggested that clustering GISTIC lesions may provide biologically relevant 

molecular groupings of melanoma tumor samples.

Predicting genes targeted by nonfocal chromosome 10 deletions in melanoma.

In melanoma, as in many solid tumors, most statistically significant chromosomal 

aberrations span large genomic regions whose target genes are unknown (20, 32, 33). 

Among many other lesions, this pattern is exemplified by the gains and losses involving 

chromosomes 7 and 10, respectively, two prominent drivers of the GISTIC-based melanoma 

subclusters described above. Although one of the most significantly “amplified” regions 

on chromosome 7 centers at 7q34 (contains BRAF; Fig. 1A), most chromosome 10 copy 

losses cover the entire chromosome, punctuated by a more focal GISTIC peak at 10q23.31 

(Fig. 1B; Supplementary Fig. S1A and B) spanning the PTEN tumor suppressor gene. 

These initial observations are consistent with a model in which chromosome 7 gains 

and chromosome 10 deletions enhance oncogenic BRAF and diminish PTEN expression, 

thereby suggesting cooperating effects of these two cancer genes in melanoma, as previously 

suggested (39). On the other hand, whereas broad chromosome 10 deletions are highly 

prevalent even in early-stage primary melanomas (ref. 20; Fig. 1B), the relative contribution 

of PTEN inactivation in melanoma establishment remains unclear.

To investigate this, we examined the extent to which panchromosome 10 deletions were 

associated with functional PTEN inactivation, either through genetic mutation or mRNA/
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protein loss. As shown in Fig. 3A, 5 of 42 short-term cultures and cell lines harboring 

large chromosome 10 losses also contained focal PTEN homozygous deletions; similar 

results were observed in an independent melanoma cell line panel previously described 

(Supplementary Fig. S3A). However, consistent with prior DNA sequencing analyses of 

short-term melanoma cultures and primary tumors (40, 41), only 8 of 78 lines examined by 

sequencing contained inactivating PTEN mutations; of these samples, only 5 also harbored 

hemizygous loss and LOH of chromosome 10. Using sample-matched gene expression data, 

we then examined PTEN mRNA expression in relation to genomic deletion. Here, whereas 

PTEN homozygous deletion correlated with a marked reduction in PTEN expression, <50% 

of samples with hemizygous deletions exhibited decreased PTEN levels when compared 

with samples without alterations at this locus (Fig. 3B). Similar results were observed 

following immunoblot analysis of PTEN protein levels in a subset of samples (Fig. 3C). 

Although tempered by the incomplete sensitivity to detect small-scale deletions at the 

PTEN locus, these observations raised the possibility that an as yet uncharacterized tumor 

suppressor gene(s) located on chromosome 10 might contribute to melanoma establishment 

in addition to PTEN.

To identify candidate tumor suppressor genes enacted by nonfocal chromosome 10 deletions 

in an unbiased manner, we partitioned 66 matched samples into tertiles based on the 

ranked magnitude of chromosome 10 loss (see Materials and Methods) and segregated 

the two extreme tertiles according to the class distinction “chromosome 10-deleted” 

(22 samples) versus “chromosome 10-wild-type” (22 samples). We then carried out a 

genome-wide significance analysis (SAM) using sample-matched gene expression data, 

as described above. As shown in Fig. 3D, 43 unique transcripts exhibited significantly 

diminished expression in association with chromosome 10 deletion at a δ value of 1.4673 

(median false number of genes = 0). Interestingly, two chromosome 10 genes with putative 

tumor suppressor roles—CUL2 (chromosome 10p11) and KLF6 (chromosome 10p15)—

scored even more highly than PTEN in this analysis (Fig. 3D; Supplementary Fig. S6). 

CUL2 encodes a cullin protein whose yeast homologues negatively regulate the cell cycle 

(42) and also forms an E3 ubiquitin ligase complex with the von Hippel-Lindau tumor 

suppressor protein (43, 44). KLF6 encodes a zinc finger transcription factor implicated as 

a tumor suppressor in several malignancies (45–47). Notably, the KLF6 locus was also 

identified as significantly deleted by GISTIC analysis (Table 2). Thus, CUL2 and KLF6 
represent intriguing candidate melanoma tumor suppressor genes targeted by chromosome 

10 deletions.

Modifiers of RAF/mitogen-activated protein kinase/extracellular signal–regulated kinase 
kinase dependency in melanoma.

The establishment of an experimentally tractable system reflective of melanoma genomic 

diversity provides a means to identify molecular predictors and modifiers of therapeutic 

response in this highly chemoresistant malignancy. Because most cutaneous melanomas 

harbor activating point mutations in BRAF or NRAS (30, 48)—two key effectors of the 

mitogen-activated protein (MAP) kinase signaling cascade—several ongoing clinical trials 

are investigating the efficacy of RAF and MAP kinase/extracellular signal–regulated kinase 

(ERK) kinase (MEK) inhibitors in this setting. To identify genetic/molecular modifiers of 
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MAP kinase dependency that might influence therapeutic response, we examined cellular 

response to pharmacologic MAP kinase inhibition in a panel of 31 short-term cultures using 

the MEK inhibitor CI-1040. BRAFV600E mutation was invariably associated with sensitivity 

to MEK inhibition, as previously shown (ref. 9; e.g., submicromolar CI-1040 GI50 values; 

Fig. 4A and Supplementary Fig. S4), although one BRAFV600E line (WM853-2) was 

moderately less sensitive to CI-1040. In contrast, NRAS-mutant melanomas exhibited 

highly variable MAP kinase dependencies; whereas four NRAS-mutant lines with codon 

61 mutations showed CI-1040 sensitivity patterns similar to the BRAFV600E panel, two lines 

harboring codon 12/13 NRAS mutations were “indifferent” to CI-1040 treatment. PTEN 

protein loss was more common in lines showing decreased sensitivity to CI-1040 (Fig. 4A), 

although this trend did not reach statistical significance. Surprisingly, a short-term culture 

harboring the BRAFK601E mutation also showed insensitivity to CI-1040. Together, these 

data suggested the presence of additional genetic or molecular modifiers of melanoma MAP 

kinase dependency apart from BRAF or NRAS mutation.

To investigate this in more detail, we examined the associated genomic and protein data 

in the melanoma lines described above. Despite the diversity of CI-1040 GI50 values, a 

similar degree of target inhibition was evident in several representative lines, as measured 

by p-ERK immunoblotting studies (Supplementary Fig. S4A). A genome-wide analysis 

of correlated chromosomal alterations and expressed genes (Supplementary Fig. S5) was 

unrevealing, encumbered by the relatively small CI-1040–insensitive sample size (three 

samples). However, two lines harboring the FGFR1S125L mutation exhibited markedly 

enhanced sensitivity to MEK inhibition when compared with the A375 control cell line (Fig. 

4B). These data suggest that FGFR1 mutations may provide an alternate (and independently 

druggable) means of eliciting a MAP kinase dependency in melanoma.

In contrast, “steady-state” immunoblot analyses of MEK and ERK found that p-ERK levels 

were markedly elevated in all CI-1040–insensitive lines (Fig. 4C). These results suggested 

that insensitivity to MEK inhibition might be characterized by differential regulation of 

ERK activation. To explore this, we grouped the melanoma lines into two classes based 

on either high or low p-ERK levels (seven lines each; as defined by data in Fig. 4C) and 

examined the mean expression of several ERK-regulated genes known to mediate feedback 

regulation of MAP kinase signaling using sample-matched gene expression data. As shown 

in Fig. 4D, induction of feedback regulatory genes such as DUSP6, SPRY2, and SPRY4 
was readily detectable in the melanoma cells relative to a panel of normal melanocytes 

(4 lines); however, the levels of induction were comparable regardless of steady-state 

p-ERK levels. Together, these data raise the possibility that posttranscriptional and/or 

novel regulatory mechanisms may affect MAP kinase activation/dependency in melanoma, 

and that concomitant measurement of oncogene mutations and p-ERK levels may refine 

knowledge of melanoma patients likely to respond to targeted RAF or MEK inhibition.

Discussion

The unprecedented opportunities of cancer genomics also present new challenges to the 

identification of “target-able” tumor mechanisms. For example, distinguishing causal from 

passenger alterations requires analytic approaches capable of transcending technology 
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platform limitations. Moreover, characterizing the downstream effectors of common 

genomic alterations requires tractable in vitro models reflective of these events. Our 

global genomic analyses indicate that melanoma short-term cultures seem to encompass 

the spectrum of essential genomic diversity present in primary cutaneous melanomas, 

suggesting that these may offer a robust platform for functional genomic characterization. 

Moreover, the high-resolution statistical delineations enabled by the GISTIC analytic 

framework strongly suggest (but do not prove) that such regions contain genes whose 

perturbation contributes to melanoma genesis or maintenance. Further, the availability of 

orthogonal genomic data sets such as gene expression profiles has helped to credential 

and prioritize several candidate effector genes for detailed functional study in relation to 

recurrent melanoma genomic changes.

Existing tumor genomic data sets have been generated using a variety of different 

technological platforms with widely divergent resolution and data output. This variation 

may pose a barrier to the types of cross-comparisons that might inform an overarching 

molecular taxonomy of cancer. In this regard, this study also exemplifies how GISTIC or 

related algorithms might overcome this bottleneck by providing a unifying analytic medium 

for comparative cancer genomics studies. As the number of genomically annotated tumor 

data sets continues to proliferate, this framework may facilitate systematic meta-analyses 

spanning large numbers of tumors and many diverse malignancies.

These analytic refinements also call renewed attention to instances where a full chromosome 

or chromosome arm displays a common tumor-associated alteration. In melanoma, deletions 

and LOH involving chromosome 10 provide an instructive example. Several previous studies 

have implicated inactivation of the PTEN tumor suppressor gene as a key (epi)genetic event 

in melanoma. Whereas the current study supports the notion that PTEN loss provides a 

driver alteration in some melanomas, it also suggests a model wherein broad chromosome 

10 losses may enact a polygenic melanoma genesis mechanism(s) together with (or even 

apart from) PTEN inactivation. It should be noted, however, that none of the microarrays 

analyzed in this study have “tiling-level” resolution across the genome; thus, these platforms 

may be insensitive to the presence of “micro-genomic” deletions involving the PTEN locus 

(or other small-scale recurrent events). Nonetheless, the pervasive tendency toward large 

chromosomal perturbations in cancer underscores the future need for systematic functional 

studies in genetically characterized tumor model systems.

Application of hierarchical clustering to a matrix of (GISTIC-derived) significant genomic 

lesions yields melanoma subclasses whose characteristics are suggestive of mechanistic 

relevance. When applied broadly in cancer genomics, these analyses may help reduce 

the complexity of cancer genome aberrations while also laying a robust groundwork for 

molecular classification and downstream functional approaches. In the future, genetically 

annotated melanoma lines could be subjected to systematic RNA interference studies 

informed by GISTIC or related statistical information. Genes located within statistically 

credentialed genomic regions whose knockdown modulates a cancer phenotype of interest 

may illuminate druggable cellular pathways linked to tumor genomic events identifiable in 
situ.
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Finally, cell culture models reflective of in vivo tumor genetic diversity offer an attractive 

avenue to identify molecular features that modify the efficacy of therapeutic agents. In 

melanoma, the MAP kinase pathway is commonly activated by BRAF or NRAS oncogene 

point mutations, and BRAF(V600E) mutation is associated with sensitivity to RAF or 

MEK inhibition. The data presented here suggest that in some contexts, NRAS or FGFR1 

mutations may also confer sensitivity to MAP kinase pathway inhibition, but that high 

p-ERK may correlate with insensitivity to these inhibitors. Whereas these observations 

require detailed experimental followup, they show how cultured cell models facilitate 

orthogonal analyses of genomic and protein data to yield new insights into targeted 

therapeutic response. Overall, the large-scale application of these approaches to genetically 

annotated cancer cell culture models should provide a rich framework for extraction of key 

dependencies from tumor genomic data, thereby offering new therapeutic possibilities in 

melanoma and many other solid tumors.
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Figure 1. 
Significant copy number and LOHalterations in melanoma. Statistically significant genomic 

amplifications (A) and deletions (B) pinpointed by GISTIC analysis of 101 cultured 

melanoma lines primarily from dermal metastases (dark red and dark blue, respectively) 

and 70 primary cutaneous melanomas (orange and light blue, respectively). Top axis, false 

discovery rate–corrected q values (threshold false discovery rate, 0.25; green line); left axis, 

chromosome; bottom axis, G-score (see text). C, GISTIC plot of inferred LOH (gray) is 

superimposed onto the chromosome deletion plot from B (dark blue) in cultured melanoma 

lines. Selected known melanoma oncogenes and tumor suppressors are indicated.
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Figure 2. 
Clustering analysis of significant melanoma genomic alterations. Hierarchical clustering 

of GISTIC lesions (discretized smoothed copy number; see Materials and Methods) by 

the Euclidean distance metric and complete linkage. Rows, genomic lesions identified by 

GISTIC algorithm (see text); columns, samples. Red, presence; blue, absence of lesions 

denoted by cytobands (A, amplification; D, deletion; right). Mutation status of BRAF and 

NRAS are noted above the matrix. Major clusters are indicated by boxes labeled 1 to 6.
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Figure 3. 
Integrative analysis of chromosome 10 deletions in melanoma. A, heatmap view of 

smoothed 250K and 50K SNP array data spanning the PTEN locus (red, copy gains; 

blue, copy losses). Samples (columns) are sorted based on copy number values derived 

from segmented data. B, PTEN gene expression values stratified according to homozygous 

deletion, hemizygous loss, or retention of the underlying locus. C, summary of PTEN 

protein levels in relation to chromosomal deletions affecting the PTEN locus. D, significance 

analysis of melanoma gene expression data. Samples are stratified according to loss or 

retention at chromosome 10 (see Materials and Methods). The positions of CUL2, KLF6, 

and PTEN are shown.
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Figure 4. 
Molecular modifiers of MAP kinase dependency in melanoma. A, pharmacologic GI50 

values for the MEK inhibitor CI-1040. Mutation status for BRAF and NRAS genes, 

genomic status at the PTEN locus, and PTEN protein levels are indicated. B, GI50 values 

for two short-term cultures harboring FGFR1 mutations are shown alongside a control 

melanoma cell line (A375). C, Western blot analyses of p-ERK, total ERK, p-MEK, total 

MEK, and α-tubulin are shown for selected melanoma lines (CI-1040 GI50 values are 

indicated). D, relative expression of MAP kinase feedback regulatory genes in melanoma 

lines with low or high p-ERK levels in relation to normal melanocytes.
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