Skip to main content
. Author manuscript; available in PMC: 2024 Mar 1.
Published in final edited form as: Atherosclerosis. 2023 Jan 14;368:14–24. doi: 10.1016/j.atherosclerosis.2023.01.010

Table 2.

Summary of gene editing approaches to treat dyslipidemias.

Target Model Method Results Reference

LDLR Mouse, C57BL/6J AAV-CRISPR/SaCas9 disruption Severe hypercholesterolemia
Atherosclerotic lesions in aortas
Jarrett, K. E. 2018 (21)
Mouse, C57BL/6 CRISPR/SpCas9 HDR
into fertilized eggs
Elevated plasma cholesterol
Atherosclerotic lesions in aortas
Zhao, H. 2020 (23)
Mouse, LdlrE208X Knock-in Dual AAVs-CRISPR/SpCas9 HDR 18% restoration LDLR protein
~65% decrease cholesterol
Smaller atherosclerotic lesions in aortas
Zhao, H. 2020 (23)
Human iPSC, FH Patient CRISPR/SpCas9
Nickase, HDR repair
Restored normal LDLR structure Omer, L. 2017 (63)

LDLR + APOB Mouse, Cas9 Transgenic AAV disruption Reduced plasma cholesterol
Protection against atherosclerosis
Jarrett, K. E. 2017 (64)

PCSK9 Mouse, C57BL/6 Adenovirus-CRISPR/SpCas9 disruption 90% decrease PCSK9 protein
35–40% decrease plasma cholesterol
Ding, Q. 2014 (84)
Mouse, C57BL/6 AAV-CRISPR/SaCas9 disruption ~95% decrease PCSK9 protein
~40% decrease plasma cholesterol
Ran, F. 2015 (53)
Mouse, C57BL/6 LNP-CRISPR/SpCas9 disruption Undetectable PCSK9 protein
35–40% decrease plasma cholestero
Yin, H. 2017 (87)
Mouse, C57BL/6J Adenovirus-BE3 base editing disruption ~55% decrease PCSK9 protein
~30% decrease plasma cholesterol
Chadwick, A. C. 2017 (88)
Mouse, C57BL/6 Dual AAVs-CBE base editing disruption ~20–25% editing efficiency Pcsk9
38% editing in liver overall
Levy, J. M. 2020 (89)
Mouse, Chimeric Liver-Humanized Adenovirus-CRISPR/SpCas9 disruption 52% decrease human PCSK9 protein Wang, X. 2016 (86)
Non-human primate, Rhesus macaque AAV-1st generation meganuclease disruption Up to 84% decrease PCSK9 protein
Up to 60% decrease LDL-C
Wang, L. 2018 (24)
Non-human primate, Rhesus macaque AAV-2nd generation meganuclease disruption 55–62% decrease PCSK9 protein
33–39% decrease LDL-C
Wang, L. 2018 (24)
Non-human primate, Rhesus macaque AAV-2nd generation meganuclease (self-targeting) disruption 24–60% decrease PCSK9 protein
11–36% decrease LDL-C
Breton, C. 2021 (90)
Non-human primate, Cynomolgus macaque LNP-ABE base editing disruption 32% decrease PCSK9 protein
14% decrease LDL-C
Rothgangl, T. 2021 (46)
Non-human primate, Cynomolgus macaque LNP-ABE8.8 base editing disruption 81–90% decrease PCSK9 proteinn
60–65% decrease LDL-C
Musunuru, K. 2021 (47)

ANGPTL3 Mouse, C57BL/6 LNP-CRISPR/SpCas9 disruption 65% decrease ANTPL3 protein
56% decrease LDL-C
29% decrease TG
Qiu, M. 2021 (96)
Mouse, C57BL/6J Adenovirus-BE3 base editing disruption 49% decrease ANGPTL3 protein
19% decrease cholesterol
31% decrease TG
Chadwick, A. C. 2018 (97)
Mouse, Ldlr Knockout Adenovirus-BE3 base editing disruption 51% decrease cholesterol
56% decrease TG
Chadwick, A. C. 2018 (97)
Non-human primate LNP-ABE base editing disruption 95% decrease ANGPTL3 protein
19% decrease LDL-C
64% decrease TG
Verve Therapeutics (98)

PCSK9 + ANGPTL3 Mouse, C57BL/6J Adenovirus-BE3 base editing disruption ~20% decrease cholesterol
~20–30% decrease TG
Chadwick, A. C. 2018 (97)

APOC3 Hamster, Syrian Golden CRISPR/Cas9 disruption ~50% decrease TG
Some protection against atherosclerosis
Guo, M. 2020 (102)
Rabbit, New Zealand White CRISPR/Cas9 disruption 50% decrease TG
Protection against atherosclerosis
Zha, Y, 2021 (103)

AAV, adeno-associated virus; ANGPTL3, angiopoietin-like 3; APOB, apolipoprotein B; APOC3, apolipoprotein C3; CRISPR/CAS, clustered regularly interspaced short palindromic repeats /CRISPR-associated; HDR, homology-directed repair; LDL-C, low density lipoprotein cholesterol; LDLR, low density lipoprotein receptor; LNP, lipid nanoparticle; PCSK9, proprotein convertase subtilisin/kexin type 9; SaCas9, Staphylococcus aureus Cas9; SpCas9, Streptococcus pyogenes Cas9; TG, triglyceride.