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Abstract
Purpose: Myocardial perfusion (MP) stress single-photon emission computed tomography (SPECT) is an
established diagnostic test for patients suspected of coronary artery disease (CAD). Meanwhile, coronary
artery calcification (CAC) scoring obtained from diagnostic CT is a highly sensitive test, offering incremental
diagnostic information in identifying patients with significant CAD yet normal MP stress SPECT (MPSS)
scans. However, after decades of wide utilization of MPSS, CAC is not commonly reimbursed (e.g. by the
CMS), nor widely deployed in community settings. We studied the potential of complementary information
deduced from the radiomics analysis of normal MPSS scans in predicting the CAC score.

Methods: We collected data from 428 patients with normal (non-ischemic) MPSS (99mTc-sestamibi;
consensus reading). A nuclear medicine physician verified iteratively reconstructed images (attenuation-
corrected) to be free from fixed perfusion defects and artifactual attenuation. Three-dimensional images
were automatically segmented into four regions of interest (ROIs), including myocardium and three vascular
segments (left anterior descending [LAD]-left circumference [LCX]-right coronary artery [RCA]). We used
our software package, standardized environment for radiomics analysis (SERA), to extract 487 radiomic
features in compliance with the image biomarker standardization initiative (IBSI). Isotropic cubic voxels
were discretized using fixed bin-number discretization (eight schemes). We first performed blind-to-
outcome feature selection focusing on a priori usefulness, dynamic range, and redundancy of features.
Subsequently, we performed univariate and multivariate machine learning analyses to predict CAC scores
from i) selected radiomic features, ii) 10 clinical features, and iii) combined radiomics + clinical features.
Univariate analysis invoked Spearman correlation with Benjamini-Hotchberg false-discovery correction. The
multivariate analysis incorporated stepwise linear regression, where we randomly selected a 15% test set
and divided the other 85% of data into 70% training and 30% validation sets. Training started from a
constant (intercept) model, iteratively adding/removing features (stepwise regression), invoking the Akaike
information criterion (AIC) to discourage overfitting. Validation was run similarly, except that the training
output model was used as the initial model. We randomized training/validation sets 20 times, selecting the
best model using log-likelihood for evaluation in the test set. Assessment in the test set was performed
thoroughly by running the entire operation 50 times, subsequently employing Fisher’s method to verify the
significance of independent tests.

Results: Unsupervised feature selection significantly reduced 8×487 features to 56. In univariate analysis, no
feature survived the false-discovery rate (FDR) to directly correlate with CAC scores. Applying Fisher’s
method to the multivariate regression results demonstrated combining radiomics with the clinical features
to enhance the significance of the prediction model across all cardiac segments. 

Conclusions: Our standardized and statistically robust multivariate analysis demonstrated significant
prediction of the CAC score for all cardiac segments when combining MPSS radiomic features with clinical
features, suggesting radiomics analysis can add diagnostic or prognostic value to standard MPSS for wide
clinical usage.

Categories: Cardiology, Radiology, Nuclear Medicine
Keywords: coronary artery calcium score, ai, coronary artery disease, computer aided diagnosis, standardized
radiomics, machine learning, cac score, coronary artery calcification, cardiac spect, radiomics

Introduction
This paper aims to enhance the clinical utility of routine clinical myocardial perfusion (MP) single-photon
emission computed tomography (SPECT) imaging through advanced radiomics analysis. We hypothesize
that identifying mild heterogeneities via radiomics analysis can enable the identification of subclinical
coronary artery disease (CAD) that would carry important diagnostic and prognostic information. We aim to
evaluate our exciting and novel hypothesis that MP SPECT radiomic features extracted from clinically
normal (non-ischemic) MP SPECT scans correlate with coronary artery calcification (CAC) as extracted from

1 1 2 1 3

 
Open Access Original
Article  DOI: 10.7759/cureus.43343

How to cite this article
Ashrafinia S, Dalaie P, Schindler T H, et al. (August 11, 2023) Standardized Radiomics Analysis of Clinical Myocardial Perfusion Stress SPECT
Images to Identify Coronary Artery Calcification. Cureus 15(8): e43343. DOI 10.7759/cureus.43343

https://www.cureus.com/users/445319-saeed-ashrafinia
https://www.cureus.com/users/469292-pejman-dalaie
https://www.cureus.com/users/469270-thomas-h-schindler
https://www.cureus.com/users/469268-martin-g-pomper
https://www.cureus.com/users/431340-arman-rahmim


CT imaging. This section continues with an introduction to MP imaging using SPECT, CAC scoring using CT,
and clinical motivations for our work. Subsequently, we describe our methods, followed by results and
conclusions. 

Myocardial perfusion stress SPECT
Myocardial perfusion SPECT (MPS) is established for non-invasive evaluations of patients suspected of
CAD [1,2]. It is probably the most widely used technique of nuclear cardiology, and its purpose is to assess
the adequacy of blood flow to the myocardium [3]. Although MP imaging can be performed with either
planar or tomographic techniques [3,4], nowadays tomographic MP imaging through SPECT scanners has
become widely popular, more accessible, and more affordable to patients.

MP stress SPECT (MPSS) has an established pathophysiologic basis with radiotracers capturing blood flow. If
a patient with CAD is at rest, typically, blood flow through a diseased coronary artery (e.g., narrowed
through plaque build-up) is not decreased until coronary stenosis exceeds 90% of the artery. On the other
hand, coronary reserve, which refers to the ability to increase coronary blood flow in case of increased
metabolic demand, is reduced if coronary stenosis exceeds 50% [5]. As a result, patients who suffered from
CAD may have a homogeneous uptake of myocardial blood flow even in the presence of a severely narrowed
coronary artery. But the same degree of narrowing can result in reduced flow reserve when the heart is
stressed under exercise, resulting in inhomogeneity of regional MP. Such inhomogeneity can be captured
using radiotracers that are distributed in the body in proportion to myocardial blood flow [3]. 

CAC quantitation using coronary artery calcium scoring
Large prospective studies have shown that CAC scoring is associated with the risk of future cardiovascular
events [6-9]. Studies have shown that noninvasive tests for CAD including electrocardiogram (ECG),
ultrasound imaging, and even MP SPECT scan, which are used quite often in cardiac patients’ assessment
and diagnosis, were of limited value to detect this calcification due to their low sensitivity [10]. A minimum
of 25% of the patients who experience a nonfatal acute myocardial infarction or sudden death do not have
previous symptoms [11], and it is necessary to identify asymptomatic individuals at greater risk of future
cardiovascular events to plan for preventive strategies.

Agatston is the mainstream CAC scoring method and is often used in clinical practice [12]. The score is
calculated for each of the main arteries of the heart, namely the left anterior descending (LAD), the right
coronary artery (RCA), and the left circumference (LCX), as well as the left main (LM). This calculation,
despite being relatively straightforward, requires special software and the cost associated with its licensing
requirements might be another hurdle in the widespread application of CAC scoring in smaller cost-effective
radiology centers. 

CAC is a highly specific marker of coronary atherosclerosis, and higher CAC scores are associated with
increased plaque burden and increased cardiovascular risk [13,14]. Previous studies demonstrated that a
considerable number of stenoses do not result in abnormal perfusion on MP imaging [15,16], which is why
in our work we set the inclusion criteria of “non-ischemic normal” MP stress scans. Furthermore, the CAC
score is shown to offer incremental diagnostic information over MPS for identifying patients with significant
CAD and negative MP imaging results [17]. Therefore, quantifying the uptake heterogeneity from MPSS
images aiming at predicting CAC score would be beneficial as it eliminates an additional non-contrast CT for
CAC assessment, thus reducing the excessive dose to the patient. Unlike MPS, the CAC test is NOT
reimbursed by CMS, while it is known to improve risk stratification in asymptomatic individuals [13,15]; but
our study enables CAC assessment from MPSS. Moreover, CAC calculation requires sophisticated software
and trained radiologists. Large institutions include this in their CAD patients’ diagnosis package, but is not
readily available in community settings.

Utilizing a standardized radiomics framework for reproducibility
Radiomics transforms digitally encrypted medical images that contain information regarding tissue
pathophysiology into mineable high-dimensional data [18,19]. In other words, it hypothesizes that different
phenotypic characteristics such as intra- and inter-tissue uptake heterogeneity can be quantified as features
called “radiomic features” through advanced image processing and computer vision techniques [18]. The
information is harnessed through image processing and quantitative image analyses [20] and can be
leveraged via clinical decision support systems to improve decision-making and personalized medicine [21].
In this study, we developed a pipeline to evaluate various classes of standardized radiomic features of
clinical MPS images. Radiomics is a relatively young discipline and has experienced relatively fast growth,
yet, it has not been readily translated to routine clinical practice. This may be due to the low reproducibility
of most current studies [22]. Radiomics has a complex workflow involving many steps that often suffers from
incomplete reporting of methodologic information. Consequently, few radiomics studies available in the
current literature are readily reproducible from start to end [22]. Another major issue is the relatively small
number of images in radiomics research datasets that may induce overfitting and high false-positive rates.
This further worsens with the tendency to report overly optimistic results [22].
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Guidelines and protocols are available for quality control measures in nuclear medicine imaging to
standardize patient preparation, dose production, and administration, image acquisition, image
reconstruction, standardized uptake value (SUV) normalization, etc., such that the absolute SUV values are
interchangeable in multicenter studies [23]. Nonetheless, the methodology to prepare the image and
calculate radiomic features is also subject to variability, showing a crucial need for standardization [24-26].
Several studies have shown the importance of robust and standardized protocols to enable reliable
quantification of heterogeneity with textural features. They demonstrated an important need to standardize
the computation methods due to the complexity of the radiomics workflow [22,24,27]. Since September 2016,
an initiative comprising over 50 researchers from 21 top universities and cancer centers, including our group
from Johns Hopkins University, has participated in the image biomarker standardization initiative (IBSI) [28].
IBSI aims at standardizing feature computation and image preprocessing phases of the radiomics workflow
to ensure its reproducibility.

An IBSI-certified radiomics workflow starts by harmonizing all images within the dataset to ease the
variations between different scanners. Features are then calculated based on standardized definitions.
Feature selection is performed subsequently, where features are inspected and narrowed down
toward improved statistical significance and reduced false-discovery rate (FDR). Finally, by investigating the
relationship between radiomic features and the CAC scores, we hope to open a new possibility: to use
clinical MPSS scans for additional assessment of CAC. This has important implications, given that, as
mentioned above, CAC assessment is not commonly performed nor reimbursed in a wide community setting,
and as such, our proposed framework holds promise for new added usage and value for routine MPSS
imaging.

Radiomics has witnessed significant activity, especially in oncologic magnetic resonance imaging (MRI), CT,
and positron emission tomography (PET). Yet, it has not been thoroughly assessed in 3D SPECT and/or
cardiac imaging, partially due to their low spatial resolution that may appear less likely to provide valuable
texture and heterogeneity information. However, our group has successfully demonstrated the exciting use
of radiomics in brain SPECT [29,30]. At the same time, cardiac SPECT radiomics remains unexplored.
Moreover, the prevalence of these scans is significantly higher compared to PET exams, enabling the
collection of a higher volume of data for such data-oriented MPS research.

An important ingredient to success in the translation of radiomic features to clinical reality is to quantify
and ascertain their robustness, which was one of the aims of this study. The result of our reproducibility
analysis would be valuable for future MPS radiomics research by other researchers, as well as for the next
steps in our radiomics research toward discovering prognostic cardiac imaging biomarkers. In the following
section, we elaborate on our methodology followed by results. We subsequently provide discussions on our
findings and a conclusion. This article was previously posted to the medRxiv preprint server on February 01,
2021 [31].

Materials And Methods
Figure 1 depicts the overall aim of this study. We constructed a dataset of 428 clinical MPSS images with a
normal scan (non-ischemic) and a separate CT for CAC scoring with their detailed CAC reading.

FIGURE 1: Objective of the study
Diagram of the problem addressed in this paper: using radiomics of stress MP stress SPECT to predict
CAC scores obtained from CT scan. The CAC scores of main cardiac arteries are calculated using clinical
software for LAD, RCA, LCX, and LM. 

MP, myocardial perfusion; SPECT, single-photon emission computed tomography; CAC, coronary artery
calcification; LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex artery; LM, left main.

We constructed a dataset consisting of 428 clinical MPSS images with a normal scan (non-ischemic) with a
separate CT for CAC scoring with their detailed CAC reading. We pursue the following three steps:

Step 1: Improved quantitative assessment through analysis of standardized radiomic features on MPSS
images. We start by identification of patients with normal MPSS tests and CAC CT, followed by image
segmentation.
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Step 2: Eliminating nonreproducible and redundant features (feature selection).

Step 3: Use of machine learning techniques to extract CAC information directly from MPSS image radiomics,
in contrast to the routine use of CT scans.

Patient collection 
After obtaining approval from the Institutional Review Board (IRB) at Johns Hopkins University, we searched
for patients with stress MPS scans from 2011 to 2015. We investigated around 1,800 reports of patients
undergoing MPSS, out of which 428 cases were selected. All patients had a CT scan for CAC scoring at the
same time as their MPS scan in the PACS database. A nuclear medicine physician (NMP) investigated the
MPSS images independent of their CAC scoring report to be free from i) image artifacts, ii) overcorrection,
and iii) spillover from nearby liver or stomach. Our NMP also derived detailed CAC scores for each of the
arteries of the heart using clinical software.

The dataset consists of images collected from various Siemens®, GE®, and Phillips® hybrid SPECT/CT
scanners, at the Johns Hopkins Hospital throughout those years, but all were reconstructed with an
“attenuation-corrected iterative reconstruction” (AC-IR) algorithm using the low-dose CT AC acquired at the
time of the scan, along with a consistent voxel size of 4.8 mm. According to the quality factors of radiomics
research, this is an important characteristic of a study to have imaging acquisition protocols that are “well
described and ideally similar across patients,” and “methodologic steps taken to incorporate only images of
sufficient quality” [22].

We recorded many parameters for each patient, including basic information (age, gender, race, height, and
weight at the scan time), clinical history (smoking, diabetes, hypertension, hyperlipidemia, and family
history of cardiac disease), scan info (voxel size, slice thickness), and any possible outcome info.

Image Segmentation 

The study involves three different layers of segmentation as applied to MPSS images: i) the entire
myocardium, ii) three vascular segments, and iii) 17 polar segments. Feature evaluation and statistical
analysis were performed over all three layers. These three segmentation methods are depicted in Figure 2.
The reason we selected two different methods for vascular segmentation is that both methods are widely
used in the clinic. The three vascular segment method has a more stringent segment, while the subsets of
the 17 polar segments span the whole heart, as can be observed from Figure 2.
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FIGURE 2: Three cardiac segmentation methods
Three methods of segmentation were used in our study. A) The entire myocardium segment. B) Three vascular
segments of the heart (LAD, RCA, and LCX), and C) subsets of 17 polar segments of the heart grouped into LAD,
LCX, and RCA.

LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex artery.

We used MIM software® and developed a workflow that automatically draws 3D contours over 21 regions of
the heart, namely the endocardium, epicardium, three vascular segments (as depicted in Figure 2B), and 17
polar segments (as depicted in Figure 2C). The workflow was generating the myocardium segment using epi-
and endocardium segments. A radiologist supervised this automated segmentation to assure the contours
are correctly placed over corresponding segments. Our workflow then exported the 3D SPECT image and

these 22 contours as 3D MATLAB® matrices for analysis.

Radiomics framework
We used our in-house-developed standardized environment for radiomics analysis (SERA) package to derive
radiomic features that are standardized and reproducible, consistent with the IBSI guideline. IBSI is a global
initiative consisting of the world’s top universities and cancer centers [28], in which our group is an active
participant [32]. The standardized definition of radiomics terms, features, and feature classes have been
well elaborated in [28]. SERA calculates 487 standardized radiomic features aiming to standardize the
preprocessing and feature evaluation phases and to meet ISBI’s standards in order to conduct and pursue
reproducible research [33]. 

Images produced for MPS scans have arbitrary units - counts - that do not relate to any biological
phenomena. Therefore, we ought to use the fixed bin number discretization. We considered and investigated
a range of gray level (GL) discretizations, specifically using 4, 8, 16, 32, 64, 128, 256, and 512 bins. All the
images in our dataset were reconstructed into 3D images with identical isotropic voxel sizes of 

 mm3; thus, no resampling and interpolation were needed. We did not perform any GL
rounding or re-segmentation. The framework was then ready to calculate 487 features for eight GLs over
seven different segmentations of the heart. 

Statistical analysis
We used statistical analysis to eliminate non-useful features, including features that are identical,
nonrobust, and redundant. We performed a multistep feature selection to significantly reduce the size of our
feature space of 487×8 features. This process was performed completely independent of the outcome (e.g.,
CAC score). The selected feature set was subsequently passed on to univariate and multivariate analysis

2023 Ashrafinia et al. Cureus 15(8): e43343. DOI 10.7759/cureus.43343 5 of 33

https://assets.cureus.com/uploads/figure/file/550191/lightbox_1f561c70a02311ed9e22f9ecf0ec43de-Figure-02-1.png
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


schemes to predict and correlate with clinical outcomes. We also accounted for false discovery by employing
Benjamini-Hochberg false-discovery correction method [34].

Results
Analysis of dataset statistics
In this section, we present the statistics of data based on the variables previously introduced in the Methods
section. The dataset was composed of 229 female (49.7%) and 232 male (50.3%) subjects. Distributions of
patient age, height, weight, and body mass index based on gender are depicted in Figure 3.

FIGURE 3: Patients' demographics
Distribution of patients’ A) age, B) weight, C) height, and D) BMI at the time of scan grouped into male (orange)
and female (blue).

BMI, body mass index.

We observe a relatively close distribution of age between males and females. The frequency of race is
presented in Table 1.

 Frequency Percent

African American 225 48.8

Asian 10 2.2

Hispanic/Latino 7 1.5

Indian 2 0.4

Middle eastern 19 4.1

Native American 1 0.2

White 197 42.7

Total 461 100

TABLE 1: Patients’ race distribution.

Clinical Factors
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Our dataset consists of 428 normal scans. In our dataset, 274 patients received stress compounds by injection
(264 A2A adenosine, seven dipyridamole, and two regadenoson), and 186 patients were stressed on a
treadmill based on the Bruce protocol [35]. Figure 4 shows the distribution of left ventricular ejection
fraction (LVEF) for all patients. The ejection fraction compares the amount of blood in the heart to the
amount of blood pumped out. It helps to describe how well the heart is pumping blood to the body. The
ejection fraction of a normal heart is between 50% and 70%. A higher LVEF may indicate a heart condition
such as hypertrophic cardiomyopathy [36,37]. Other patients’ clinical factors are detailed in Table 2.

FIGURE 4: Distribution of LVEF in patients of the dataset
LVEF, left ventricle ejection fraction.
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Factor Attribute No. of cases % of Total

Smoking    

 Nonsmoker 220 47.7

 Current smoker 137 29.7

 Previous smoker 104 22.6

Diabetes    

 No 313 67.9

 Yes 148 32.1

Hypertension    

 No 138 29.9

 Yes 323 70.1

Hyperlipidemia    

 No 243 52.7

 Yes 218 47.3

Family history of CAD    

 No 283 61.4

 Yes 178 38.6

TABLE 2: Patients’ clinical factors.
CAD, coronary artery disease.

A well-known stratification method presented by Berman et al. divides CAC scores into five established

categories 0, 0+ to 10, 10+ to 100, 100+ to 400, 400+ to 1000, and >1000 [15]. The distribution of our patients
into these five categories is presented in Figure 5.
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FIGURE 5: Distribution of patients’ CAC score based on widely used
clinical stratification criteria.
CAC, coronary artery calcification.

This shows that 58.4% of the patients with normal MP stress scans had a non-zero CAC score, out of which
33% had a CAC score ≥100. Studies have shown that MP ischemia is rare in patients with CAC <100, whereas
in patients with CAC ≥100, the chance of myocardial ischemia increases progressively [15]. Also, one-third of
patients with normal MPSS had a CAC score ≥100. As previously mentioned, CAC scoring is known for its
high specificity and very small false positives, suggesting that assessment of atherosclerosis burden by CAC
scoring may be useful in finding CAD when MPSS fails to report. It also underlies our motivation to develop
and study a radiomics-based scheme to extract CAC information directly from MPSS scans.

Feature selection 
SERA calculates all 487 features as defined in the IBSI documentation that are from the 11 main feature
categories, namely statistical, morphological, local intensity, histogram, intensity histogram, GL
cooccurrence, GL run length, GL size-zone, GL distance-zone, neighboring gray tone difference,
neighborhood gray-tone difference, and neighboring gray-level dependence. All these features were initially
considered and were calculated for eight GLs.

In this section, we aim to systematically narrow down this large feature set and arrive at a smaller set of
meaningful, robust, nonredundant, and reproducible features for further investigation of their predictive or
prognostic value, while discouraging overfitting. Our feature selection phase can be generally divided into i)
pre-feature calculation and ii) post-feature calculation as explained below. Following feature selection, we
discuss how to narrow down to an optimum discretization level.

Pre-Feature Calculation 

In the first step, before performing any analysis, we eliminate irrelevant feature families based on the nature
of cardiac SPECT images and our knowledge about what each feature captures.

Removing 2D and 2.5D feature families: Our dataset originally consists of images with isotropic voxels.
Therefore, there would be no additional information provided to us from 2D or 2.5D feature families. These
feature families would have been beneficial when slice thickness (i.e. voxel size in z dimension) was different
from the voxel size in x and y dimensions. In that case, resizing and interpolating the images to isotropic
voxel sizes may have resulted in modification of the original voxel distribution, causing possible loss or
modification of data. In any case, the following feature families were eliminated: 2D and 2.5D gray-level co-
occurrence matrix (GLCM) (25 features) and gray-level run-length matrix (GLRLM) (16 features) (both
merged and averaged), 2D and 2.5D gray-level size zone matrix (GLSZM) (16 features), gray-level distance
zone matrix (GLDZM) (16 features), neighborhood gray-tone difference matrix (NGTDM) (five features), and
neighboring gray-level dependence matrix (NGLDM) (17 features). This removed 272 features, narrowing
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down our feature space to 215.

Removing useless feature families: MPS images typically have voxels with arbitrary units (they are not
quantitative unlike PET or some SPECT imaging applications). Therefore, any feature that conveys
information regarding the exact intensity values of the original region of interest (ROI) is not considered
meaningful. As such, intensity-based features (18 features) and local intensity features (two features) were
excluded. Furthermore, the seven segments were created by an automatic segmentation procedure that
generates ROIs with similar shapes (all registered to the same reference space). As such, the shape of the
segments does not carry any differentiating information, and we are interested mainly in the heterogeneity
caused by voxel intensity variations that carry information about the blood flow in different heart segments.
As such, morphological features (29 features) were excluded as well. At the end of this step in our analysis,
we were left with 166 features out of 487, eliminating the majority via our knowledge of the underlying
nature of the features. 

Post-Feature Calculation 

Removing features with identical values: Next, we searched for features with identical values across all
patients to exclude. In our dataset, four features were found with identical values across all patients:
histogram minimum, maximum, and range, and NGLCM dependence count percentage. Once eliminated, we
arrived at 162 features. 

Removing feature families with more than one variety : In the next step, we calculate the Spearman rank
correlation between each feature and all other features. This enables us to explore the relationship between
features and find redundant and highly correlated features. At this step, every higher-order feature class
remained has only one subtype (e.g., only 3D features, after excluding 2D and 2.5D) except for GLCM and
GLRLM, and these two classes have two 3D subtypes: 3D merged and 3D averaged. We investigated the
correlation between each variety of higher-order 3D calculations (i.e., 3D GLCM averaged vs. merged, and
3D GLRLM averaged vs. merged) and used a systematic approach to narrow them down. Figure 6 shows a
heatmap of their correlation. In the diagonal of both heatmaps in Figure 6, we observe a very high Spearman
correlation (between 0.98 and 1) between all the same features within the two feature families, i.e., GLCM-
averaged entropy vs. 3D GLCM-merged entropy, etc., indicating the redundancy of features calculated in
two varieties (merged vs. averaged). Let us consider  as the Spearman rank correlation between
feature families  and . We subtracted  from 

, and did the same for GLRLM, and observed it yields
values very close to zero, which further indicates that using one variety vs. the other does not add additional
information to our analysis, suggesting the exclusion of one variety from both GLCM and GLRLM.
Subsequently, to decide which of the two varieties to exclude, we calculated the range of features in both
varieties and removed the one with a smaller range, which yields to exclusion of the 3D-merged of both
categories and keeping 3D GLCM-averaged and 3D GLRLM-averaged. This further reduced the number of
features to 121. This observation is also consistent with findings in [38], where the authors reported merged
features with tighter distribution in a smaller range and subsequently remove them from the rest of their
study.
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FIGURE 6: Heatmaps of Spearman rank correlation between A) 3D
GLCM-averaged vs. 3D GLCM-merged, and B) 3D GLRLM-averaged vs.
3D GLRLM-merged. Values in the diagonal of both plots are >0.98.
The acronyms of the above radiomic features in the GLCM and GLRLM classes are mentioned in [28].

GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix.

Removing redundant features: After using Spearman correlation to reduce the feature space at the feature-
family level, we move on to investigate the correlation at the feature level. The next set of features to
remove is the feature pair with a Spearman rank correlation coefficient of 1, indicating their redundancy.
These features included three pairs: i) “3D GLSZM-zone percentage (ZP)” and “3D GLDZM-ZP”, ii) “3D
GLSZM-GL nonuniformity (NU) normalized” and “3D GLDZM-GL NU normalized”, and iii) “3D GLSZM-GL
NU” and “3D GLDZM-GL NU”. From each pair, we selected the feature with a lower range to exclude which
yielded the removal of the GLDZM features from each pair. 

Removing features with a low dynamic range: In the next step, we calculated the percent variance of the
features (variance/mean) representing their dynamic range. Subsequently, we removed features with a very
low dynamic range of less than , which were five: Histogram-skewness, Histogram-kurtosis, Histogram-
min gradient, GLCM-averaged cluster shade, and GLCM-averaged first measure of information correlation.
Now the dataset has 113 features. 

Removing highly correlated features: In the last step of this phase, using the Spearman correlation of features
with respect to each other calculated earlier, we opt to remove highly correlated features as defined by those
having a Spearman correlation coefficient  as suggested in the literature [39]. These feature pairs
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are considered highly correlated and likely to provide redundant rather than complementary information.
We remove these features through the following recursive operation.

We use the heatmap of feature-pair Spearman correlation to find features with . We subsequently
record the number of instances a feature fits this criterion. Then, we sort these features based on which
feature has more instances of  with others in descending order and call it . We then start
from the first feature in this set. We denote this first feature by , i.e., the feature to keep, and save it to 

 the set of features we intend to keep. Subsequently, we mark the highly correlated features with 
and save them to an empty set denoted by , i.e., for removal. We then loop over each feature inside  and
find other highly correlated features with these features and append them to . Once the procedure is
complete, we update  by removing  and all features inside . The algorithm then continues
recursively with this update , letting its first member be  and append it to , and find features
and add them to  for removal. This process continues until  becomes empty. 

The above algorithm cuts the number of features in half, removing 57 features from 113 and yielding 56
features remaining that are not highly correlated with each other and are more likely to provide
complementary information.

Selecting the Best Discretization Level (GLs)

The above procedure reduced the feature set from 487 8 to 56 8 features for eight GLs. Now we focus on
discretization levels to systematically remove non-useful GLs. First, we observe that for the three smallest
GLs, the number of identical features is higher than for the other five GLs. Furthermore, features with
smaller dynamic range increase by 22%, 4%, 29%, and 29% compared to GL =64 or 128. Moreover, the two
highest GLs have 11% and 22% more feature pairs with Spearman correlation  0.9. Therefore, we can safely
remove all GLs except 64 and 128. 

The procedure in the previous paragraph could have been performed without the analysis of the range and
Spearman rank correlation of features. We can safely remove the first three GLs since the intervals that voxel
intensities were discretized into are so large that they do not provide enough opportunity to capture the
heterogeneity of a region. On the other hand, the two largest GLs produce so many bins to discretize voxels
into that many bins will be empty or just have very few representations in the ROI. For instance, the LAD
segment consists of 460 voxels on average. When it is discretized into 512 GLs, they are more bins than
voxels, and many bins would be empty or just occur very scarcely. In this case, our higher-order matrices
such as GLRLM, GLSZM, and GLDZM, in which the number of columns represents different run-lengths,
zone sizes, distance zones, etc., would be very long and narrow matrices with very small variability. As a
result, these higher GLs should be eliminated, too.

Interestingly, this finding is consistent with some previously published studies on the radiomics of PET
imaging [38,40].

Finally, out of the remaining two GLs, 64 and 128, we found very similar behavior from both discretization
levels in terms of the range of the features and the number of feature pairs with high Spearman correlation.
We decided to choose 64 for the rest of this study, because 1) as mentioned GL =128 does not demonstrate
different statistical properties, 2) our results in the previous study suggested 64 GLs for the other SPECT

study - imaging of renal cell carcinoma with 99mTc, which is the same radiotracer as the one used for MPSS
imaging [41], and 3) some previous studies have demonstrated that GL =64 provided higher textural feature
reproducibility [42] and robustness [40].

Wrapping Up Feature Selection 

Through the above procedures, we reduced our feature set 487 8 to 56. One important note is that these
features were excluded in a completely unsupervised manner without any involvement in the clinical outcome
(e.g., CAC score, patient survival, etc.). This is a key factor to make our effort statistically sound and more
believable. 

Outcome prediction
In this section, we elaborate on efforts toward outcome prediction using the narrowed-down feature set. We
also included our negative findings and unsuccessful attempts, as we believe reporting them helps future
researchers, and, thus, is of scientific value.

Univariate Analysis

We define our outcome as the CAC score of each region of the heart calculated from the CT scan, and we aim
to predict this outcome from the radiomic features extracted from the same region of the MPSS image, as
explained in the Methods section. We started by investigating whether our selected radiomic features
(previous section) directly correlate with the outcome, that is the CAC score. We adopted two approaches to
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represent the outcome. In the first approach, the actual CAC score with a continuous scale was utilized. In
the second approach, we discretized CAC scores of each region of the heart based on the five-scale clinical
stratification criteria explained in the “Clinical factors” section and plotted in Figure 5. Spearman rank
correlations between features of every segment with the CAC score of the same segment were calculated for
both CAC approaches (continuous and discrete). We also employed the Benjamini-Hochberg FDR correction
with  to discourage overfitting. None of the features were able to survive FDR correction and still
significantly correlate with the outcome under this univariate scheme. Figure 7 shows the absolute value of
Spearman correlation coefficient values between 56 selected radiomic features and discretized CAC for eight
segments, where we can observe the mediocre correlation values. Figure 8 shows their corresponding p-
values (not FDR corrected in this plot). Following the Benjamini-Hochberg FDR correction, no feature
survives. This emphasizes the difficulty of the task at hand, and that it is necessary to adopt a more
sophisticated, multivariate algorithm for regression (for continuous CAC outcome) or classification (for
discrete CAC outcome).

FIGURE 7: Spearman rank correlation between a selected feature of
each segment (56 selected features) and the CAC score of that
segment. The maximum correlation observed in all plots is 0.15, which
is mediocre.
LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex artery; CAC, coronary artery
calcification.
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FIGURE 8: Spearman rank correlation p-value between a selected
feature of each segment (56 selected features) and the CAC of that
segment.
LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex artery; CAC, coronary artery
calcification.

Multivariate Analysis

We observed from Figure 7 that in general, the correlation values between features and CAC scores are
relatively low. Despite their low correlation, these selected features had a relatively higher significance,
suggesting that while none of these slightly significant features are highly correlated with the outcome, a
certain multivariate combination of them might be predictive and provide significant prediction
information. Thus, we pursue a multivariate approach to predict CAC scores. In this subsection, first, we
introduce stepwise linear regression, then we describe how we handle feature selection. We then explain how
our proposed algorithm manages data to produce a fair analysis, and finally, we run the analysis for three
different configurations: i) radiomics features only, ii) clinical features only, and iii) radiomic + clinical
features and present the results.

Stepwise linear regression: In this stage, we pursue a multivariate analysis approach employing stepwise
linear regression. Stepwise regression is a systematic method for adding and removing terms from a linear or
generalized linear model based on their statistical significance in explaining the response variable. The
method begins with an initial model, which in our case is a linear model, and then compares the explanatory
power of incrementally larger and smaller models, which is performed by adding or removing terms by
stepwise regression and returning the linear model at the end. The initial fit can be a linear or a constant
(intersect) model. After the initial fit, the function examines a set of available features and adds the best one
to the model if an F-test for adding the term results in a p-value of , or less. If no terms can be added, it
examines the terms currently in the model and removes the worst one if an F-test for removing it has a p-
value of , or greater. This process is repeated until no terms can be added or removed. The constant
term (intercept) is never removed from the model. 

Feature handling: At each step, the method searches for terms to add to or remove from the model based on a
criterion, which we set to be the Akaike information criterion (AIC), a commonly used estimator of the
relative quality of statistical models for a given dataset. The AIC method estimates the quality of each model
relative to other models, providing a mean for model selection. It reduces the chance of overfitting and
underfitting by providing a balance between the goodness of fit and having too many parameters [43].

We can specify the order this algorithm starts to add features and later removes them. Instead of an
unstructured approach of starting from the arbitrary first feature in the list, we developed a feature selection
method to enter those with higher Spearman correlation to the model first. For this purpose, the Spearman
rank correlation between each individual feature in the training set and the outcome (CAC score of the same
segment) was calculated. The Spearman correlation coefficients and their corresponding p-values were
recorded. Then, merely significant features with a p-value smaller than a certain range (e.g. 0.3) were
selected and others were discarded. The selected features were then sorted into descending order, based on

2023 Ashrafinia et al. Cureus 15(8): e43343. DOI 10.7759/cureus.43343 14 of 33

https://assets.cureus.com/uploads/figure/file/550281/lightbox_6ecc8e70a05411eda80609035d7946e3-Figure-09.png
javascript:void(0)
javascript:void(0)


the value of their Spearman correlation. The input dataset is then rearranged based on this subset of
Spearman correlation-sorted features to enter features with the highest correlation to the stepwise
algorithm first.

Training/cross-validation/testing setup: The following procedures were performed for each of the cardiac
segments separately. First, the given dataset was shuffled and 15% of the data was set aside as the
“independent test set.” This set was not used until the very end of an independent assessment. Then, the
following procedure was performed 20 times: the remaining 85% of the data “training + dev set” was
randomly divided into training and cross-validation sets with 75%/25% ratios. The procedure described in
the previous subsection has already reduced the number of radiomic features to 56. We use the procedure
described in the previous subsection to further reduce the number of features and input more useful features
for the regression algorithm first. We subsequently perform stepwise linear regression on the training set.
We set  as 0.05 and  as 0.2. 

Once the training is over, we perform cross-validation using the dev set. Cross-validation aims to reduce
overfitting to the training set. The cross-validation algorithm is configured the same as training, except for
the training algorithm the initial fit was a constant (intercept), whereas for cross-validation the initial fit is
the output fit from the training dataset. During the above steps, we recorded the model, including the set of
features remaining in it, the value of the log-likelihood, the p-value, and the final AIC.

The model fit is typically composed of several features that survived the stepwise algorithm, and it might be
possible that only the intercept term survives. If by coincidence the best model consists of only the intercept
term, we skip that and choose the best fit with more than one term. 

Following the above procedure, we select the model with the highest AIC of the 20 runs to run on the
independent test set blind to the entire operation. To assess its prediction performance, Pearson’s
correlation was used to assess the relationship between the two distributions (prediction vs. actual) and
subsequently recorded the correlation coefficients ( ) and their corresponding p-values. The above
operation was performed for each of the segmented lesions of the heart separately. 

This is not where we come to a conclusion yet. We kept the test set aside during the whole analysis to assure
a completely independent and blind-to-training assessment; however, our result might still be biased to a
specific randomly selected test set chosen. To mitigate such a bias even further, we took an extra step and
run the entire above operation 50 times. That is, randomly shuffling and dividing the dataset into “training
+ dev” and “test” sets 50 times, then running the stepwise algorithm 20 times over the “training + dev” set.
We subsequently perform 50 predictions on 50 independent test sets that give us the 50 best regression fits
and their p-values, which we subsequently used to derive our conclusion. A flowchart of the algorithm is
depicted in Figure 9.

FIGURE 9: A flowchart of the proposed machine-learning classification
algorithm

Running the multivariate analysis for three configurations: We performed the above entire operation three
times: A) with radiomic features only (imaging), B) with clinical features (non-imaging), and C) with both
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radiomics and clinical features. The 10 clinical features employed were i) gender, ii) race, iii) age, iv)
smoking, v) diabetes, vi) hypertension, vii) hyperlipidemia, viii) family history of cardiac disease, ix) BMI,
and x) LVEF. We also assured that a certain subset of clinical features such as gender, race, diabetes, etc. was
treated as “categorical” variables, as opposed to continuous, by the algorithm. 

Analysis results
We used Fisher’s method for combining p-values and use the chi-squared distribution test to determine if
the stepwise regression method yields a significant fit after running 50 independent trials [44]. Based on this
method, under the null hypothesis, the statistics of Fisher’s method computed as

follows a chi-squared distribution with a degree of freedom of , where N is the total number of runs (in
our case, ). Comparing the value of  to the appropriate chi-squared distribution can determine
whether the sample is significant. Assuming a significant level of 0.01, the value of the chi-squared
distribution for a degree of freedom of  is 135.81. Table 3 shows the result of applying Fisher’s
method to the three configurations, where significant results are shown in bold. We observed that radiomic
features were unable to yield a significant model for any of the segmentation, and clinical features were able
to result in a significant fit for most of the segments. But the combined clinical + radiomic features result in
a significant fit across all segments. 

 RCAMIM LCXMIM LADMIM Myocardium LAD17 LCX17 RCA17

Radiomics 95.87 88.02 115.02 111.93 139.25 53.8 53.28

Clinical 84.12 153.14 253.13 294.43 253.13 153.14 84.12

Combined 174.53 194.73 348.97 341.39 326.97 189.2 141.6

TABLE 3: The value of the chi-squared distribution for each segment and feature configuration.
The value of the chi-squared distribution with a degree of freedom of 100 is 135.81, and values
above this threshold (shown in bold) are considered significant under the null hypothesis.
MIM shows the segmentation performed using three vascular segments (LAD, RCA, and LCX) using MIM software, while 17 shows segmentation
according to standard 17 polar segments. 

LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex artery.

Figure 10 shows the distribution of the absolute value of Pearson’s correlation coefficient  for all seven
segments. We observe the same pattern across all segments that the combined radiomics + clinical features
are more correlated to the CAC scores of that region. Moreover, Figure 11 shows the distribution of p-values
of the best fit out of the 50 independent runs of the stepwise regression algorithm, each including 20 model
fits where the best is selected. This plot shows that adding radiomics to the 10 clinical features will enhance
the significance of the regression model and promise a more robust prediction. 
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FIGURE 10: Pearson correlation coefficient results for each cardiac
segment
Distribution of absolute values of the Pearson’s coefficient of the best fit out of 50 randomized trials of stepwise
linear regression for radiomics, clinical and combined features, and for all seven segmentations as defined in the
Methods section (the higher, the better). Adding radiomics to clinical features increases the correlation to the
CAC score of the corresponding ROI.

LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex artery; ROI, region of interest;
CAC, coronary artery calcification.
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FIGURE 11: Distribution of p-values (log-scale) of the best fit out of 50
randomized trials
Distribution of p-values (log-scale) of the best fit out of 50 randomized trials of stepwise linear regression for
radiomics, clinical and combined features, and for all seven segmentations as defined in the Methods section (the
lower, the better). Adding radiomics to clinical features is seen to enhance the regression significance across all
segmentations.

LAD, left anterior descending; RCA, right coronary artery; LCX, left circumflex artery.

In clinical configurations, the most prevalent features in the best fit were somehow consistent across
different segmentations and included age, hyperlipidemia, hypertension, and smoking. In the combined
configuration, usually, the age variable was the first in the fit, followed by hyperlipidemia, GLSZM-small
zone large GL emphasis, and GLDZM-short distance large GL emphasis. 

Discussion
The current proposal is the first demonstration of employing radiomics of normal MPSS to predict CAC score
as derived from the CT scan. To our knowledge, no study has been published on the radiomics of cardiac
SPECT imaging. Moreover, we did not find any study with the same approach as ours that incorporates
readily reconstructed 3D images and preserves the voxel intensities. They focus on using the polar plot for
their analyses, which is a 2D projection of the 3D reconstructed image. Recently, few studies have
investigated the use of deep learning to predict CAD [45,46]; nonetheless, no studies, to our knowledge,
exist on predicting CAC scores from the 3D images of SPECT scans, which is, as indicated earlier, a very
challenging task.

Challenges with the proposed idea
The study of MPSS radiomics is a challenging task due to several reasons. First, SPECT is a low-resolution
imaging modality that results in a substantial loss of heterogeneity information that had the potential to
provide extra knowledge about the blood flow and other functionalities of the heart that could have been
captured by radiomics. Moreover, the lack of quantitation in SPECT imaging further causes a major loss of
information, resulting in a mostly qualitative interpretation of the scan. Of course, the absence of
quantitation prevents the utilization of many useful radiomic features. It also impedes performing cross-
scan comparisons. Another drawback of nonquantitative SPECT images can be explained by an example of a
patient who has calcification in all three main arteries but has a uniform uptake in his SPECT image reported
as normal. This can be due to a condition where blood flow is reduced in all three main arteries, resulting in
uniformly decreased flow all around the heart. But since blood flow is not quantifiable, this effect cannot be
noticed. However, methods to perform quantitative SPECT scans have been published and even recently
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been commercialized [47,48]. Quantitative SPECT is shown to carry many clinical implications [49] and
promises an increased chance of more accurate and impactful radiomics analysis of the heart.

Another reason that significantly contributes to the challenges in SPECT radiomics is heterogeneity caused
by inherent artifacts of SPECT imaging. MPSS, specifically, can cause artifacts on the reconstructed image
that can appear as reduced uptake in the image. An example of this is shown in Figure 12. This effect is
called apical thinning and is a well-known phenomenon in MPS. It is often attributed to a reduced
myocardial thickness at the apex of the left ventricle. Attenuation correction during the reconstruction
appears to exaggerate this effect [50]. Moreover, soft tissue attenuation artifacts also impact MPS images
[51]. These artifacts generally appear as fixed defects. Attenuation due to breast tissue usually results in a
perfusion defect along the anterior wall of the left ventricle, also affecting the lateral wall, septum, and apex
[52]. The effect would be similar to that in Figure 12. During our data collection phase, we observed many
cases with this effect apparent in their reconstructed image. Undoubtedly, the heterogeneity caused by this
effect may be captured by the radiomic features, while it is completely irrelevant to calcifications in arteries.

FIGURE 12: A normal MPSS with apical thinning.
MPSS, myocardial perfusion stress SPECT.

Figure 13 shows an example of an MPSS scan image in a polar plot form, which is a 2D projection of the 3D
SPECT image into its apex (center circle). This image is interpreted as normal, due to the absence of any
reversibility and/or defect. But the CT scan of this patient shows an enormous calcification in the arteries of
this patient, having an outstanding CAC score of 2239.
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FIGURE 13: A normal MPSS with severe calcification. This scan is
reported as normal due to relatively uniform uptake with no reversibility
and/or fixed defect, but the CAC CT scan shows an extraordinary CAC
score of 2239. Our proposed research promises to assist in finding
such cases with elevated CAC scores.
MPSS, myocardial perfusion stress SPECT; CAC, coronary artery calcification.

Intuition from radiomics
We mentioned that radiomic features mostly included in the fit were GLSZM GLSZM-small zone large GL
emphasis and GLDZM-short distance large GL emphasis. Both features emphasize higher GLs, and higher
GLs in a discretized SPECT image depict higher blood flow. It is interesting to observe and seems intuitive
that the radiomic features that capture higher blood flow in each cardiac segment end up being in the fit. 

Our other efforts 
We wish to also point out that we explored more than 10 other regression methods, including different types
of regression trees, support vector machine (SVM) regressors, etc., as well as several classification
techniques (bagging, SVM, K-nearest neighbor, etc.) to find a significant prediction model, but our
investigation did not return any significant results from these techniques. Yet, we do not exclude the
possibility that with further tuning, those algorithms can potentially return significant results.

The significance of the study
In the current study, after many feature elimination steps discussed in the feature selection section, and
significantly reducing the feature space by a factor of 70, univariate analysis was not able to find any
potential correlation with the outcome. On the other hand, our multivariate analysis carefully designed to
mitigate the impact of dataset bias on the outcome prediction was able to successfully predict all segments
of the heart. Our statistical analysis in the above section showed that just around 60% of the patients had a
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non-zero CAC score and one-third of them had a CAC score 100 that is shown to progressively increase the
chance of myocardial ischemia. As a result, our multivariate analysis has the potential to make a prediction
of CAC which is the most prevalent type of atherosclerosis, showing promise for this study. 

Conclusions
This study investigated the hypothesis that heterogeneity in MPSS images can possibly convey information
regarding calcification in coronary arteries. Many community settings are incapable of providing a CAC CT
scan for patients. It is not reimbursed by the CMS and requires sophisticated software. We employed our in-
house-developed standardized package, SERA, which was proven to evaluate 487 radiomic features
according to IBSI's guidelines. We segmented MPSS images into LAD, RCA, and LCX with two methods, in
addition to the whole myocardium, to evaluate radiomic features for all seven segments. We also explored
eight GLs to find the most appropriate setting for our study that yields higher reproducibility, robustness,
and less redundancy. Our dataset consists of 428 patients with normal (non-ischemic) MPSS images that
were verified to be free from artifact or spillover and their detailed CAC scores acquired from CT and other
clinical parameters. We focused on patients with normal stress scans since the possible prediction of CAC in
those images would have been of clinical significance.

Through a multi-step blind-to-outcome unsupervised feature selection phase, we significantly reduced the
feature space 70-fold from 487×8 to 56 features. We also performed the entire operation 50 times to
randomly divide our dataset into “training + dev” and “test” sets to mitigate any bias to a specific set of test
data. Our univariate analysis using the Spearman rank correlation between each feature of the cardiac
segment with the corresponding CAC score of that segment was not significant. Our multivariate analysis,
however, was able to significantly predict the CAC score of all cardiac segments when combining radiomic
features with clinical features. Our method has the potential to identify such cases with high CAC that can be
prompted for more appropriate care, suggesting that radiomics analysis adds diagnostic and prognostic value
to standard MPS for wide clinical usage.

Appendices
Additional statistics on patients in this study
Figure 14 shows additional patient statistics, including distributions of patients' age, weight, height, and
their body mass index (BMI).

FIGURE 14: Distribution of A) age, B) weight, C) height, and D) body
mass index (BMI) at the time of scan grouped into male (orange) and
female (blue)

Figure 15 shows the distribution of patients' left ventricle ejection fraction (LVEF) in our cohort. 
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FIGURE 15: Distribution of left ventricle ejection fraction (LVEF) in
patients of our dataset

Standardized environment for radiomics analysis (SERA)
Introduction

The SERA is a MatLab®-based framework developed at Johns Hopkins University that calculates radiomic
features based on guidelines from the Image Biomarker Standardization Initiative (IBSI)
(https://arxiv.org/pdf/1612.07003.pdf). SERA is capable of processing images from various clinical imaging
modalities such as CT, MRI, PET, and SPECT. Radiomic features calculated with SERA are standardized and
in compliance with IBSI, which ensures their reproducibility. The standardized definition of radiomics
terms, features, and feature classes have been well elaborated in [28].

Radiomic Features 

SERA calculates 487 IBSI-standardized features (as outlined in Table 4). These include 79 first-order features
(morphology, statistical, histogram, and intensity-histogram features), 272 higher-order 2D features, and
136 3D features. Different subsets of features can be selected, such as the default of 215 features (first-order
+ higher-order 3D). 
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Feature family Subtypes Number of features

Morphology - 29

Local intensity - 2

Intensity-based statistics - 18

Intensity histogram - 23

Intensity-volume histogram - 7

Gray level co-occurrence matrix (GLCM) 2D Averaged 25

Gray level co-occurrence matrix (GLCM) 2D Slice-merged 25

Gray level co-occurrence matrix (GLCM) 2.5D Direction merged 25

Gray level co-occurrence matrix (GLCM) 2.5D All merged 25

Gray level co-occurrence matrix (GLCM) 3D Averaged 25

Gray level co-occurrence matrix (GLCM) 3D Merged 25

Gray level run length matrix (GLRLM) 2D Averaged 16

Gray level run length matrix (GLRLM) 2D Slice-merged 16

Gray level run length matrix (GLRLM) 2.5D Direction merged 16

Gray level run length matrix (GLRLM) 2.5D All merged 16

Gray level run length matrix (GLRLM) 3D Averaged 16

Gray level run length matrix (GLRLM) 3D Merged 16

Gray level size zone matrix (GLZSM) 2D 16

Gray level size zone matrix (GLZSM) 2.5D 16

Gray level size zone matrix (GLZSM) 3D 16

Gray level distance zone matrix (GLDZM) 2D 16

Gray level distance zone matrix (GLDZM) 2.5D 16

Gray level distance zone matrix (GLDZM) 3D 16

Neighborhood gray tone difference matrix (NGTDM) 2D 5

Neighborhood gray tone difference matrix (NGTDM) 2.5D 5

Neighborhood gray tone difference matrix (NGTDM) 3D 5

Neighboring gray level dependence matrix (NGLDM) 2D 17

Neighboring gray level dependence matrix (NGLDM) 2.5D 17

Neighboring gray level dependence matrix (NGLDM) 3D 17

Total  487

TABLE 4: Radiomic features SERA calculates in each feature family. Different 2D, 2.5D, and 3D
configurations are explained in detail in the IBSI guideline. Users can set to return only a selected
subset of these features.
Standardized Environment for Radiomics Analysis (SERA) is our standardized in-house-developed radiomics framework.

Feature Evaluation Settings

SERA has options to set and modify all parameters defined or used in the IBSI guideline. The following
parameters can be set up in the image preparation setting of SERA (for detailed information please refer to
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IBSI documentation [1]):

Resampling and interpolation: resample to 2D and 3D isotropic voxel sizes; interpolation algorithm used in
resampling image and ROI (nearest/linear/cubic); partial volume threshold (mostly used for CT HU).

Discretization: bin size, discretization type (fixed bin size/fixed bin numbers), discretization algorithm
(uniform/Lloyd).

Other: gray-level rounding, image re-segmentation (range re-segmentation, outliers’ re-segmentation). 

Radiomic Feature Values for IBSI Benchmark Datasets as Calculated by SERA

IBSI shared two phantoms between all participating institutions in two phases' ROIs to facilitate the process
of establishing reference values for features. In phase I, it was a small 80-voxel three-dimensional digital
phantom with a 74-voxel ROI mask to facilitate the process of establishing reference values for features,
without involving image processing. In phase II, a publicly available CT image of a patient with lung cancer
with an accompanying gross tumor volume as the ROI [1,2]. We have included a supplemental spreadsheet
containing the features calculated by SERA on the IBSI benchmark CT phantom in the Appendix. Table 5
contains the values of each feature computed by SERA in comparison to the IBSI-reported benchmark values
for Configuration D of the CT phantom as indicated in the IBSI guideline [1], which is the closest
configuration to the setup in the current study. The results in this spreadsheet demonstrate the compliance
of SERA with IBSI radiomics guidelines. 

Family Image_Biomarker
Benchmark
Value

Tolerance
SERA
Result

Diff Check

Morphology Volume (mesh-based) 367000 6000 367453.66 0 match

Morphology Volume (counting) 368000 6000 367880 0 match

Morphology Surface area 34300 400 34306.254 0 match

Morphology Surface to volume ratio 0.0934 0.0007 0.093 0 match

Morphology Compactness 1 0.0326 0.0002 0.033 0 match

Morphology Compactness 2 0.378 0.004 0.378 0 match

Morphology Spherical disproportion 1.38 0.01 1.383 0 match

Morphology Sphericity 0.723 0.003 0.723 0 match

Morphology Asphericity 0.383 0.004 0.383 0 match

Morphology Centre of mass shift 64.9 2.8 64.926 0 match

Morphology Maximum 3D diameter 125 1 125.06 0 match

Morphology Major axis length 93.3 0.5 93.27 0 match

Morphology Minor axis length 82 0.5 82.005 0 match

Morphology Least axis length 70.9 0.4 70.902 0 match

Morphology Elongation 0.879 0.001 0.879 0 match

Morphology Flatness 0.76 0.001 0.76 0 match

Morphology Volume density (AABB) 0.478 0.003 0.478 0 match

Morphology Area density (AABB) 0.678 0.003 0.678 0 match

Morphology Volume density (OMBB) N. A. N. A. 0.526  N. A.

Morphology Area density (OMBB) N. A. N. A. 0.723  N. A.

Morphology Volume density (AEE) 1.29 0.01 1.294 0 match

Morphology Area density (AEE) 1.62 0.01 1.605 0.01 match

Morphology Volume density (MVEE) N. A. N. A. 0.615  N. A.

Morphology Area density (MVEE) N. A. N. A. 1.121  N. A.
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Morphology Volume density (convex hull) 0.834 0.002 0.834 0 match

Morphology Area density (convex hull) 1.13 0.01 1.13 0 match

Morphology Integrated intensity -8640000 1560000 -8641752 0 match

Morphology Moran's I index 0.0622 0.0013 0.062 0 match

Morphology Geary's C measure 0.851 0.001 0.851 0 match

Local intensity Local intensity peak 201 10 200.821 0 match

Local intensity Global intensity peak N. A. N. A. 200.821  N. A.

Statistics Mean -23.5 3.9 -23.518 0 match

Statistics Variance 32800 2100 32786.871 0 match

Statistics Skewness -2.28 0.06 -2.28 0 match

Statistics (Excess) kurtosis 4.35 0.32 4.351 0 match

Statistics Median 42 0.4 42 0 match

Statistics Minimum -724 12 -724 0 match

Statistics 10th percentile -304 20 -304 0 match

Statistics 90th percentile 86 0.1 86 0 match

Statistics Maximum 521 22 521 0 match

Statistics Interquartile range 57 4.1 57 0 match

Statistics Range 1240 40 1245 0 match

Statistics Mean absolute deviation 123 6 122.543 0 match

Statistics Robust mean absolute deviation 46.8 3.6 46.827 0 match

Statistics Median absolute deviation 94.7 3.8 94.73 0 match

Statistics Coefficient of variation -7.7 1.01 -7.699 0 match

Statistics Quartile coefficient of dispersion 0.74 0.011 0.74 0 match

Statistics Energy 1.48e9 1.4e9 1.48e9 0 match

Statistics Root mean square 183 7 182.592 0 match

Intensity histogram Mean 18.5 0.5 18.503 0 match

Intensity histogram Variance 21.7 0.4 21.69 0 match

Intensity histogram Skewness -2.27 0.06 -2.268 0 match

Intensity histogram Kurtosis 4.31 0.32 4.308 0 match

Intensity histogram Median 20 0.5 20 0 match

Intensity histogram Minimum 1 0 1 0 match

Intensity histogram 10th percentile 11 0.7 11 0 match

Intensity histogram 90th percentile 21 0.5 21 0 match

Intensity histogram Maximum 32 0 32 0 match

Intensity histogram Mode 20 0.4 20 0 match

Intensity histogram Interquartile range 2 0.06 2 0 match

Intensity histogram Range 31 0 31 0 match

Intensity histogram Mean absolute deviation 3.15 0.05 3.151 0 match

Intensity histogram Robust mean absolute deviation 1.33 0.06 1.328 0 match

Intensity histogram Median absolute deviation 2.41 0.04 2.407 0 match
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Intensity histogram Coefficient of variation 0.252 0.006 0.252 0 match

Intensity histogram Quartile coefficient of dispersion 0.05 0.0021 0.05 0 match

Intensity histogram Entropy 2.94 0.01 2.94 0 match

Intensity histogram Uniformity 0.229 0.003 0.229 0 match

Intensity histogram Maximum histogram gradient 7260 200 7263 0 match

Intensity histogram Maximum gradient gray level 19 0.4 19 0 match

Intensity histogram Minimum histogram gradient -6670 230 -6674 0 match

Intensity histogram Minimum gradient gray level 22 0.4 22 0 match

Intensity vol
histogram

Volume fraction at 10% intensity 0.972 0.003 0.972 0 match

Intensity vol
histogram

Volume fraction at 90% intensity 0.00009 0.000415 0 0 match

Intensity vol
histogram

Intensity at 10% volume 87 0.1 87 0 match

Intensity vol
histogram

Intensity at 90% volume -303 20 -303 0 match

Intensity vol
histogram

Volume fraction diff between 10% and 90%
intensity

0.971 0.001 0.971 0 match

Intensity vol
histogram

Intensity difference between 10% and 90%
volume

390 20 390 0 match

Intensity vol
histogram

Area under the IVH curve 0.563 0.012 0.563 0 match

GLCM (3D,
averaged)

Joint maximum 0.232 0.007 0.232 0 match

GLCM (3D,
averaged)

Joint average 18.9 0.5 18.852 0 match

GLCM (3D,
averaged)

Joint variance 17.6 0.4 17.628 0 match

GLCM (3D,
averaged)

Joint entropy 4.95 0.03 4.947 0 match

GLCM (3D,
averaged)

Difference average 1.29 0.01 1.293 0 match

GLCM (3D,
averaged)

Difference variance 5.37 0.11 5.369 0 match

GLCM (3D,
averaged)

Difference entropy 2.13 0.01 2.134 0 match

GLCM (3D,
averaged)

Sum average 37.7 0.8 37.705 0 match

GLCM (3D,
averaged)

Sum variance 63.4 1.3 63.441 0 match

GLCM (3D,
averaged)

Sum entropy 3.68 0.02 3.676 0 match

GLCM (3D,
averaged)

Angular second moment 0.11 0.003 0.11 0 match

GLCM (3D,
averaged)

Contrast 7.07 0.13 7.071 0 match

GLCM (3D,
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averaged) Dissimilarity 1.29 0.01 1.293 0 match

GLCM (3D,
averaged)

Inverse difference 0.682 0.003 0.682 0 match

GLCM (3D,
averaged)

Inverse difference normalized 0.965 0.001 0.965 0 match

GLCM (3D,
averaged)

Inverse difference moment 0.656 0.003 0.656 0 match

GLCM (3D,
averaged)

Inverse difference moment normalized 0.994 0.001 0.994 0 match

GLCM (3D,
averaged)

Inverse variance 0.341 0.005 0.341 0 match

GLCM (3D,
averaged)

Correlation 0.798 0.005 0.798 0 match

GLCM (3D,
averaged)

Autocorrelation 370 16 369.511 0 match

GLCM (3D,
averaged)

Cluster tendency 63.4 1.3 63.441 0 match

GLCM (3D,
averaged)

Cluster shade -1270 40 -1272.93 0 match

GLCM (3D,
averaged)

Cluster prominence 35700 1400 35664.719 0 match

GLCM (3D,
averaged)

Information correlation 1 -0.231 0.003 -0.231 0 match

GLCM (3D,
averaged)

Information correlation 2 0.845 0.003 0.845 0 match

GLCM (3D, merged) Joint maximum 0.232 0.007 0.232 0 match

GLCM (3D, merged) Joint average 18.9 0.5 18.852 0 match

GLCM (3D, merged) Joint variance 17.6 0.4 17.638 0 match

GLCM (3D, merged) Joint entropy 4.96 0.03 4.965 0 match

GLCM (3D, merged) Difference average 1.29 0.01 1.29 0 match

GLCM (3D, merged) Difference variance 5.38 0.11 5.381 0 match

GLCM (3D, merged) Difference entropy 2.14 0.01 2.139 0 match

GLCM (3D, merged) Sum average 37.7 0.8 37.703 0 match

GLCM (3D, merged) Sum variance 63.5 1.3 63.506 0 match

GLCM (3D, merged) Sum entropy 3.68 0.02 3.679 0 match

GLCM (3D, merged) Angular second moment 0.109 0.003 0.109 0 match

GLCM (3D, merged) Contrast 7.05 0.13 7.045 0 match

GLCM (3D, merged) Dissimilarity 1.29 0.01 1.29 0 match

GLCM (3D, merged) Inverse difference 0.682 0.003 0.682 0 match

GLCM (3D, merged) Inverse difference normalized 0.965 0.001 0.965 0 match

GLCM (3D, merged) Inverse difference moment 0.657 0.003 0.657 0 match

GLCM (3D, merged) Inverse difference moment normalized 0.994 0.001 0.994 0 match

GLCM (3D, merged) Inverse variance 0.34 0.005 0.34 0 match

GLCM (3D, merged) Correlation 0.8 0.005 0.8 0 match

GLCM (3D, merged) Autocorrelation 370 16 369.503 0 match

2023 Ashrafinia et al. Cureus 15(8): e43343. DOI 10.7759/cureus.43343 27 of 33



GLCM (3D, merged) Cluster tendency 63.5 1.3 63.506 0 match

GLCM (3D, merged) Cluster shade -1280 40 -1275.262 0 match

GLCM (3D, merged) Cluster prominence 35700 1500 35742.844 0 match

GLCM (3D, merged) Information correlation 1 -0.225 0.003 -0.225 0 match

GLCM (3D, merged) Information correlation 2 0.846 0.003 0.846 0 match

GLRLM (3D,
averaged)

Short runs emphasis 0.734 0.001 0.734 0 match

GLRLM (3D,
averaged)

Long runs emphasis 6.66 0.18 6.657 0 match

GLRLM (3D,
averaged)

Low GL run emphasis 0.0257 0.0012 0.026 0 match

GLRLM (3D,
averaged)

High GL run emphasis 326 17 325.741 0 match

GLRLM (3D,
averaged)

Short run low GL emphasis 0.0232 0.001 0.023 0 match

GLRLM (3D,
averaged)

Short run high GL emphasis 219 13 218.622 0 match

GLRLM (3D,
averaged)

Long run low GL emphasis 0.0484 0.0031 0.048 0 match

GLRLM (3D,
averaged)

Long run high GL emphasis 2670 30 2667.075 0 match

GLRLM (3D,
averaged)

GL non-uniformity 3290 10 3293.649 0 match

GLRLM (3D,
averaged)

GL non-uniformity normalized 0.133 0.002 0.133 0 match

GLRLM (3D,
averaged)

Run length non-uniformity 12400 200 12351.102 0 match

GLRLM (3D,
averaged)

Run length non-uniformity normalized 0.5 0.001 0.5 0 match

GLRLM (3D,
averaged)

Run percentage 0.554 0.005 0.554 0 match

GLRLM (3D,
averaged)

GL variance 31.5 0.4 31.453 0 match

GLRLM (3D,
averaged)

Run length variance 3.35 0.14 3.348 0 match

GLRLM (3D,
averaged)

Run entropy 5.08 0.02 5.081 0 match

GLRLM (3D, merged) Short runs emphasis 0.736 0.001 0.736 0 match

GLRLM (3D, merged) Long runs emphasis 6.56 0.18 6.556 0 match

GLRLM (3D, merged) Low GL run emphasis 0.0257 0.0012 0.026 0 match

GLRLM (3D, merged) High GL run emphasis 326 17 326.073 0 match

GLRLM (3D, merged) Short run low GL emphasis 0.0232 0.001 0.023 0 match

GLRLM (3D, merged) Short run high GL emphasis 219 13 219.402 0 match

GLRLM (3D, merged) Long run low GL emphasis 0.0478 0.0031 0.048 0 match

GLRLM (3D, merged) Long run high GL emphasis 2630 30 2625.593 0 match

GLRLM (3D, merged) GL non-uniformity 42800 200 42767.969 0 match
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GLRLM (3D, merged) GL non-uniformity normalized 0.134 0.002 0.134 0 match

GLRLM (3D, merged) Run length non-uniformity 160000 3000 160418.5 0 match

GLRLM (3D, merged) Run length non-uniformity normalized 0.501 0.001 0.501 0 match

GLRLM (3D, merged) Run percentage 0.554 0.005 7.199 6.66
no
match

GLRLM (3D, merged) GL variance 31.4 0.4 31.425 0 match

GLRLM (3D, merged) Run length variance 3.29 0.13 3.295 0 match

GLRLM (3D, merged) Run entropy 5.08 0.02 5.083 0 match

GLZSM(3D) Small zone emphasis 0.637 0.005 0.637 0 match

GLZSM(3D) Large zone emphasis 99100 2800 99078.516 0 match

GLZSM(3D) Low GL emphasis 0.0409 0.0005 0.041 0 match

GLZSM(3D) High GL emphasis 188 10 188.183 0 match

GLZSM(3D) Small zone low GL emphasis 0.0248 0.0004 0.025 0 match

GLZSM(3D) Small zone high GL emphasis 117 7 116.553 0 match

GLZSM(3D) Large zone low GL emphasis 241 14 240.778 0 match

GLZSM(3D) Large zone high GL emphasis 41400000 300000 41404348 0 match

GLZSM(3D) GL non-uniformity 212 6 212.134 0 match

GLZSM(3D) GL non uniformity normalized 0.0491 0.0008 0.049 0 match

GLZSM(3D) Zone size non-uniformity 1630 10 1629.113 0 match

GLZSM(3D) Zone size non-uniformity normalized 0.377 0.006 0.377 0 match

GLZSM(3D) Zone percentage 0.0972 0.0007 0.097 0 match

GLZSM(3D) GL variance 32.7 1.6 32.718 0 match

GLZSM(3D) Zone size variance 99000 2800 98972.773 0 match

GLZSM(3D) Zone size entropy 6.52 0.01 6.515 0 match

GLDZM(3D) Small distance emphasis 0.579 0.004 0.579 0 match

GLDZM(3D) Large distance emphasis 10.3 0.1 10.258 0 match

GLDZM(3D) Low GL emphasis 0.0409 0.0005 0.041 0 match

GLDZM(3D) High GL emphasis 188 10 188.183 0 match

GLDZM(3D) Small distance low GL emphasis 0.0302 0.0006 0.03 0 match

GLDZM(3D) Small distance high GL emphasis 99.3 5.1 99.3 0 match

GLDZM(3D) Large distance low GL emphasis 0.183 0.004 0.183 0 match

GLDZM(3D) Large distance high GL emphasis 2620 110 2619.168 0 match

GLDZM(3D) GL non-uniformity 212 6 212.134 0 match

GLDZM(3D) GL non-uniformity normalized 0.0491 0.0008 0.049 0 match

GLDZM(3D) Zone distance non-uniformity 1370 20 1369.445 0 match

GLDZM(3D) Zone distance non-uniformity normalized 0.317 0.004 0.317 0 match

GLDZM(3D) Zone percentage 0.0972 0.0007 0.097 0 match

GLDZM(3D) GL variance 32.7 1.6 32.718 0 match

GLDZM(3D) Zone distance variance 4.61 0.04 4.614 0 match

GLDZM(3D) Zone distance entropy 6.61 0.03 6.614 0 match
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NGTDM (3D) Coarseness 0.000208 0.000004 0 0 match

NGTDM (3D) Contrast 0.046 0.0005 0.046 0 match

NGTDM (3D) Busyness 5.14 0.14 5.144 0 match

NGTDM (3D) Complexity 400 5 399.694 0 match

NGTDM (3D) Strength 0.162 0.008 0.162 0 match

NGLDM(3D) Low dependence emphasis 0.0912 0.0007 0.091 0 match

NGLDM(3D) High dependence emphasis 223 5 222.748 0 match

NGLDM(3D) Low GL count emphasis 0.0168 0.0009 0.017 0 match

NGLDM(3D) High GL count emphasis 364 16 364.049 0 match

NGLDM(3D) Low dependence low GL emphasis 0.00357 0.00004 0.004 0 match

NGLDM(3D) Low dependence high GL emphasis 18.9 1.1 18.945 0 match

NGLDM(3D) High dependence low GL emphasis 0.798 0.072 0.798 0 match

NGLDM(3D) High dependence high GL emphasis 92800 1300 92761.625 0 match

NGLDM(3D) GL non-uniformity 10200 300 10172.049 0 match

NGLDM(3D) GL non-uniformity normalized 0.229 0.003 0.229 0 match

NGLDM(3D) Dependence count non-uniformity 1840 30 1836.865 0 match

NGLDM(3D) Dependence count non-uniformity normalized 0.0413 0.0003 0.041 0 match

NGLDM(3D) Dependence count percentage 1 0 1 0 match

NGLDM(3D) GL variance 21.7 0.4 21.69 0 match

NGLDM(3D) Dependence count variance 63.9 1.3 63.923 0 match

NGLDM(3D) Dependence count entropy 6.98 0.01 6.981 0 match

NGLDM(3D) Dependence count energy 0.0113 0.0002 0.011 0 match

TABLE 5: List of radiomics features calculated by SERA for Configuration D of IBSI CT phantom.
SERA shows great compliance with IBSI with 99.8% match in calculated results.
Refer to [28] for the standardized definitions of radiomic features and acronyms based on the Image Biomarker Standardization Initiative (IBSI)
guidelines. Standardized Environment for Radiomics Analysis (SERA) is our standardized in-house-developed radiomics framework.

Radiomics quality factors
Table 6 contains a cross-check list of radiomics quality factors, including details on how our study has
implemented every factor [3,53]. 
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 Radiomics quality factor Considered Comment 

Imaging
Standardized imaging
protocols

Yes
A standardized protocol was in place across all Johns Hopkins Hospital
SPECT scanners

 Imaging quality insurance Yes
Scanners were well maintained and calibrated to produce high-quality clinical
images

 Calibration Yes Image post-processing and standardized radiomics calculation with SERA

Experimental
setup

Multi-institutional/external
datasets

No Left for future studies…

 Prospective study No Left for future studies…

Feature
selection

Feature robustness Yes
Feature robustness was studied against segmentation variations,
discretization schemes, etc. It was performed independent of the outcome. 

 Feature complementarity Yes Extensively implemented, reducing 487 to 56 features.

Model
assessment

False-discovery correction Yes
Implementing Benjamini-Hochberg for univariate, AIC, and Fisher’s methods
for multivariate.

 
Estimation of model
performance

Yes The training model was further optimized on the validation set.

 Independent testing Yes
The independent test set was blind to training/validation. Feature selection
was blind to outcome. 

 
Performance results
consistency

Yes
The consistency of results was demonstrated via 50 times randomly shuffling
the {training-validation}/test sets.

 
Comparison to conventional
metrics

Yes Radiomics results were compared against conventional (clinical) metrics.

 
Multivariable analysis with
non-radiomic variables

Yes Multivariate analysis of combined radiomics + clinical features were provided.

Clinical
implications

Biological correlate Yes
We provide intuition explaining why specific radiomics features (e.g. GLSZM-
small zone large GL emphasis) appear in the multivariate model fit.

 Potential clinical application Yes
Potential clinical application is to predict/stratify patients’ CAC score based on
the radiomics of MPSS.

Material
availability

Open data No Not available 

 Open code Yes Provided in the Appendix section 

 Open models Yes
The result of our independent-to-outcome feature selection process has been
provided for future studies in the radiomics of MPSS.

TABLE 6: Radiomics quality factor implemented in the current study
AIC is Akaike Information Criterion. MPSS is Myocardial Perfusion Stress SPECT. Refer to [28] for the standardized definitions of radiomic features and
acronyms based on the Image Biomarker Standardization Initiative (IBSI) guidelines. Standardized Environment for Radiomics Analysis (SERA) is our
standardized in-house-developed radiomics framework.
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