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Abstract
Aims: Complex cellular communications between glial cells and neurons are critical 
for brain normal function and disorders, and single-cell level RNA-sequencing data-
sets display more advantages for analyzing cell communications. Therefore, it is nec-
essary to systematically explore brain cell communications when considering factors 
such as sex and brain region.
Methods: We extracted a total of 1,039,459 cells derived from 28 brain single-cell 
RNA-sequencing (scRNA-seq) or single-nucleus RNA-sequencing (snRNA-seq) data-
sets from the GEO database, including 12 human and 16 mouse datasets. These 
datasets were further divided into 71 new sub-datasets when considering disease, 
sex, and region conditions. In the meanwhile, we integrated four methods to evaluate 
ligand–receptor interaction score among six major brain cell types (microglia, neuron, 
astrocyte, oligodendrocyte, OPC, and endothelial cell).
Results: For Alzheimer's disease (AD), disease-specific ligand–receptor pairs when 
compared with normal sub-datasets, such as SEMA4A-NRP1, were identified. 
Furthermore, we explored the sex- and region-specific cell communications and iden-
tified that WNT5A-ROR1 among microglia cells displayed close communications in 
male, and SPP1-ITGAV displayed close communications in the meninges region from 
microglia to neurons. Furthermore, based on the AD-specific cell communications, 
we constructed a model for AD early prediction and confirmed the predictive perfor-
mance using multiple independent datasets. Finally, we developed an online platform 
for researchers to explore brain condition-specific cell communications.
Conclusion: This research provided a comprehensive study to explore brain cell com-
munications, which could reveal novel biological mechanisms involved in normal brain 
function and neurodegenerative diseases such as AD.
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1  |  INTRODUCTION

Neurodegenerative diseases are a broad group of central nervous 
system disorders with pathological features including brain atrophy, 
plaques, neurofibrillary tangles, and aggregates.1–3 It has been re-
ported that atrophy in the human brain is mainly in the temporal and 
frontal lobes, with strong regional heterogeneity.4 In the meanwhile, 
there exists sex tendentiousness among different types of neurode-
generative diseases. For example, Alzheimer's disease (AD) is more 
common in women than in men5; and women are 2–3 times more 
likely to have major depressive disorder (MDD) than men6; while 
Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) pre-
dominantly affect men7,8; also spinal and bulbar muscular atrophy 
(SBMA) affects only males.9 Therefore, it is necessary to consider 
sex dimorphism and regional heterogeneity in brain when exploring 
the biological mechanism involved in neurodegenerative diseases.

Multicellular life depends on the coordination of cellular activ-
ity, which in turn depends on cell–cell communications between 
different types of cells.10–12 Cellular communications coordinate the 
development, homeostasis, and single-cell function of organisms.13 
It is now widely accepted that cell–cell interactions exist across 
the majority of cell types in the brain immune microenvironment. 
Single-cell RNA sequencing (scRNA-seq), which examined the tran-
scriptomic profile of single cell with next-generation sequencing 
technologies, provided a better understanding of the function of 
an individual cell in the context of its microenvironment.14 For fro-
zen brain samples, single-nucleus RNA sequencing (snRNA-seq) is 
also an important strategy, which can address these samples that 
cannot be readily dissociated into a single-cell suspension and min-
imizes the issues caused by the dissociation procedure. ScRNA-seq 
and snRNA-seq data provided us with a more precise resource for 
understanding the cellular heterogeneity of the brain and how cells 
interact within their microenvironment.14–16 Utilizing the scRNA-seq 
data, Jiang et al. performed the cell–cell interaction analyses in can-
cers to explore the mechanisms underlying response or resistance to 
anti-PD-1 therapy and investigated the relative difference of inter-
action changes.17 In the meanwhile, a cluster of T cells that exhibited 
an expression pattern of ligand/receptor were identified, and these 
cells displayed increased expression of survival-related genes. These 
findings based on cell–cell interaction offered abundant clues for 
potential strategies to improve immunotherapy. The brain single-cell 
atlas paints a unique cellular-level view of transcriptome alterations 
associated with normal and disordered brains and significantly im-
proves our understanding of the pathogenesis of neurodegenerative 
diseases, such as AD.18

For dissecting the function/dysfunction of higher heteroge-
neous cells in the AD brain at the single-cell level, Jiang et al. ob-
tained 17 existing human and mouse AD scRNA-seq and snRNA-seq 
datasets from GEO and Synapse databases.19 Considering spe-
cies, gender, brain region, age stage, and disease conditions, sub-
datasets were formed. Based on each sub-dataset, the differentially 
expressed genes and cell-type-specific regulons were identified 
for in-depth analysis of heterogeneous regulatory mechanisms. 

Finally, these researchers developed an integrated database named 
scREAD for exploring brain tissues with AD and mouse models with 
AD pathology. However, scREAD only contained AD disease, and 
without consideration of other neurodegenerative diseases such as 
MS. Moreover, cell communications when considering AD gender 
and region conditions were not explored, and the dysregulation of 
ligand–receptor interactions between immune cells and neuron was 
biologically critical in brain immune function.

In recent years, many laboratories have developed kinds of al-
gorithms based on scRNA-seq or snRNA-seq datasets for cell com-
munication studies, such as CellChat, a method for generalized 
ligand–receptor models based on hash equations20; iCELLNET, a 
method for calculating the overall cell communication score by sum-
ming the product of all ligand–receptor pairs between two groups21: 
iTALK, which identifies cell communication scores between differ-
ent clusters by enumerating differentially expressed ligands and 
receptors22; and SingleCellSignalR, which uses regularized ligand–
receptor products to evaluate the degree of cell communications,23 
etc. There exist different differences between results from different 
algorithms, and it is necessary to perform the integration based on 
multiple methods.

In the current study, we explored the mechanisms of normal brain 
function and neurodegenerative diseases based on scRNA-seq data 
from normal and disordered brains. Our study mainly explored the 
biological mechanisms underlying brain immune from the perspec-
tive of ligand–receptor interactions among cells. We believe that the 
neurodegenerative diseases is affected by many factors, and among 
these, the effect of cell–cell communications has not been system-
ically explored thus far. Therefore, we integrated multiple scRNA-
seq and snRNA-seq datasets to examine the differences in brain cell 
communications, which was calculated by four common methods 
when considering different conditions such as disease, sex, and brain 
regions. Comprehensive analyses of brain cell communications iden-
tified novel ligand–receptor pairs involved in disease formation, sex 
difference in normal brain as well as regional heterogeneity. Take AD 
as an example, we explored the AD subtypes based on cell communi-
cations, which displayed abnormally in AD compared to normal con-
ditions. In the meanwhile, the model based on ligand–receptor pairs 
displayed predictive performance using multiple bulk transcriptome 
datasets. Finally, we developed a comprehensive bioinformatic plat-
form (http://bio-bigda​ta.hrbmu.edu.cn/Brain​Celnt), which aided 
in exploring ligand–receptor interactions in normal and disordered 
brains.

2  | MATERIALS AND METHODS

2.1  |  Brain dataset resource

By manually searching for keywords: ‘brain’, ‘scRNA-seq’, ‘snRNA-
seq’, ‘single-cell’, ‘RNA sequencing’ from Gene Expression Omnibus 
(GEO) database, we collected a total of 28 brain scRNA-seq and 
snRNA-seq datasets for both human and mouse (human: 12, mouse: 

http://bio-bigdata.hrbmu.edu.cn/BrainCelnt


    | 2777ZHANG et al.

16, see Tables  S1 and S2). For human datasets, 11 datasets were 
derived from normal samples, three datasets were derived from 
AD samples and two datasets were derived from MS samples; For 
mouse datasets, 16 datasets were derived from normal samples 
and 2 datasets were derived from AD samples. And, the sample 
clinical information such as brain regions and sex was also obtained 
from the original studies. For brain regions, a total of 12 regions 
were collected, including hippocampus, frontal lobe, parietal lobe, 
meninges and other extracerebral areas, temporal lobe, occipi-
tal lobe, diencephalon, cerebellum, cortex, cortex+diencephalon, 
cortex+brainstem, and brainstem.

To test the performance of predictive model based on AD-
specific ligand–receptor pairs, we furthermore obtained four 
bulk transcriptome datasets of AD samples from GEO database. 
GSE129724 contains hippocampal gene expression derived from 
9 controls and 22 samples with different severity of AD sam-
ples; GSE528125 contains gene expression in multiple regions 
from 74 controls and 87 AD samples; GSE2937826 contains hip-
pocampal gene expression from 32 controls and 31 AD samples; 
GSE11855327 contains 100 controls, 134 asymmetric AD subjects 
and 167 AD samples; GSE15969928 contained 18 controls and 
12 AD samples.

2.2  |  scRNA-­seq and snRNA-­seq dataset processing

All scRNA-seq and snRNA-seq datasets were processed using Seurat 
in R (v.4.0.3) and each dataset was analyzed separately. In detail, 
cells with mitochondrial gene over-expression were filtered out 
(percentage. mt >20%). NormalizeData() was used to log-normalize 
the data and scale it to 10,000 transcripts per cell using Scale(). 
The FindVariableFeatures() function was used to identify the first 
2000 variable genes. RunPCA() implemented Principal Component 
Analysis (PCA) for dimensionality reduction. ElbowPlot() determined 
the principal components, and FindClusters() function implemented 
the shared nearest neighbor (SNN) to identify clusters. Using the 
clustree package29 for each dataset to determine the optimal resolu-
tion, and it can visualize the relationship between clusters at multi-
ple resolutions.

2.3  |  Cell-­type annotation

Six major intracerebral cell types were annotated, namely astro-
cytes, endothelial cells, microglia, neurons, oligodendrocyte pro-
genitor cells (OPC), and oligodendrocytes, with the remaining cells 
being annotated as ‘other cells’. And, we used marker genes spe-
cific to each cell type as described in the CellMarker database.30 
Take the human as an example, these markers included but were 
not limited to, astrocytes: GFAP; endothelial cells: CLDN5; micro-
glia: CX3CR1 and CSF1R; neuronal cells: SLC17A7; oligodendrocyte 
progenitor cells: PDGFRA; oligodendrocytes: MAG and OLIG2. The 
detailed marker genes for all cell types are provided in Table  S3. 

Specifically, the marker genes for each cell cluster were found using 
the FindAllMarker() function in the Seurat package and compared 
against the cell type-specific marker genes.

2.4  |  Calculating integrated ligand–­receptor 
interaction score

For each scRNA-seq and snRNA-seq dataset, the original data-
set could be further divided into different sub-datasets when 
considering different clinical factors such as sex, brain region, 
and disease condition. Take the GSE118257 as an example, this 
dataset could be divided into two sub-datasets: GSE118257-MS 
and GSE118257-normal. When considering sample sex informa-
tion, the sub-dataset GSE118257-MS could further be divided 
into two sub-datasets: GSE118257-MS-Male and GSE118257-
MS-Female. The detailed sub-dataset information is shown in 
Table S4. For each sub-dataset, we utilized four different meth-
ods, CellChat,20 iTALK,22 iCELLNET,21 and SingleCellSignalR,23 to 
calculated the ligand–receptor score with the default parameter 
in each method. As iCELLNET and iTALK did not provide a data-
base of mouse ligands and receptors, we used the homologene 
package to homologate mouse genes to human genes. To obtain 
the consistent score, we defined the ligand–receptor pairs that 
existed in four methods higher score. In this study, the original 
ligand–receptor score was normalized to [0, 1] using scale() func-
tion for each method, and zero was assigned to the pair which 
was not existed in corresponding method. To improve the cell 
communications, the mean value of four methods was defined 
as ISIscore (Integration Standardized Interaction score) for each 
ligand–receptor pair. Higher ISIscore displayed stronger commu-
nications between ligand–receptor pairs in corresponding brain 
sub-dataset.

2.5  |  Evaluating cell communication differences

We evaluated the differences of ligand–receptor pairs between 
different sub-datasets when considering disease, sex, or brain re-
gion conditions. Take the AD (disease) condition as an example, the 
ISIscore was compared between AD and normal sub-datasets for 
each ligand–receptor pair. The ligand–receptor pairs with ISIscore 
equal to zero for all disease and normal sub-datasets were removed 
for the following analysis. And the difference in ISIscore was cal-
culated using Wilcoxon rank-sum test, and the results with p-value 
<0.05 were considered significant. Similarly, when considering dif-
ferent sub-datasets comparisons, we identified the disease-specific 
(AD or MS), sex-specific (AD-male, AD-female, normal-male, or 
normal-female), and region-specific cell communications. For two 
sub-datasets (GSE147528-AD and GSE126836-normal), the sig-
nificant ligand–receptor pairs with log ISIscore ratio between AD 
and normal more than three were considered as AD-specific cell 
communications.
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2.6  | AD sub-­groups classification framework

Gene interactions including ligand–receptor pairs are rarely 
disrupted in normal condition and are extensively disrupted in 
lesions.31,32 And there might exist cell communication hetero-
geneity between AD samples. Therefore, we utilized the edge 
perturbation-based approach developed by Chen33 to explore 
and identify novel subtypes using AD specific ligand–receptor 
pairs, which included three main steps: (i) Based on the AD bulk 
transcriptome dataset, we firstly conversed the ligand–receptor 
expression matrix into a gene expression rank matrix: expression 
value of each gene was converted to its rank for each sample. 
(ii) For each AD-specific ligand–receptor pair, the rank of the 
ligand was subtracted from the rank of the receptor to obtain 
final value of ligand–receptor pair. And then, a ligand–receptor 
edge matrix was constructed. (iii) For normal expression matrix, 
we ranked the genes by the mean gene expression value across 
all normal samples and formed edge rank matrix according to the 
step ii. (iv) Finally, we formed a ligand–receptor perturbation ma-
trix by subtracting normal matrix from AD matrix. Based on the 
perturbation matrix, consensus clustering was performed using 
ConcensusClusterPlus package to infer AD subtypes.34 The clus-
tering method was performed to select PAM with sample and 
gene ratio of 0.8 and 0.8, respectively, and this process was per-
formed 1000 times at random to obtain final clusters.

2.7  |  Bioinformatic platform construction

For displaying condition-specific brain cell communications for users, we 
developed a bioinformatic platform named BrainCelnt. BrainCelnt was 
developed using Struts2, Java Server Pages (JSP), and runs under RedHat 
6.4. The database has relatively strong compatibility and has been 
tested on major web browsers (e.g. Microsoft Edge, Firefox, Chrome, 
Safari). MySQLv5.6.25 is used for data storage and runs on Apache web 
server v6.0.44. Dynamic HTML pages are implemented using JSP and 
JavaScript and dataset tables are implemented using the JQuery plugin.

3  |  RESULTS

3.1  |  The workflow of this study

The overall workflow of this study is shown in Figure S1. First, a total 
of 28 sets of mouse and human scRNA-seq (and snRNA-seq) datasets 
were obtained from the GEO database. Each dataset was processed 
through a standard single-cell processing pipeline and cell annota-
tion. After quality control, 430,181 cells were obtained for human and 
609,278 cells were obtained for mouse. The detailed number of cell 
types and sample clinical information for each human and mouse data-
set are shown in Figure 1, Figure S2, and Table S4. Considering different 
conditions, these 28 datasets were further divided into 71 sub-datasets 

F IGURE  1 Human scRNA-seq and snRNA-seq dataset resource. The bar and pie charts in the top indicated the number of cells in each 
dataset and the proportion of cell types. The vertical coordinate indicated the number of cells, and the horizontal coordinate indicated 
datasets, where the color of the horizontal coordinate represented whether there existed gender information (male: blue, female: red). The 
lower part of the Sankey plot displayed the brain region information for all datasets.
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(see Table S5). For each sub-dataset, we integrated four methods to ex-
plore the cell communications and calculated the ISIscore (see Materials 
and Methods). Based on the ISIscore, the condition-specific (including 
disease-, sex-, and region-specific) ligand–receptor pairs were identi-
fied. For exploring novel biological mechanism involved in AD, we con-
structed a predictive model based on AD-specific cell communications 
and defined the sub-groups for AD samples.

3.2  | AD-­specific brain cell communications

Firstly, we chose two sub-datasets (GSE147528-AD and GSE126836-
normal) as an example to identify AD-specific ligand–receptor pairs. 
The number of ISIcore sums for all cell communications and the num-
ber of pairs in which communications occurred is shown in Figure 2A. 
It was observed that these cell pairs differed to some extent in both 
the intensity and number of communications. Notably, the number of 
ligand–receptor pairs was significantly higher in the AD sub-dataset 
than in the normal sub-dataset. Furthermore, we screened significant 
ligand–receptor pairs and displayed the sum of the ISIscore results for 
each cell communications in Figure  2B. More ligand–receptor com-
munications among neuron, microglia, astrocytes, and endothelial 
cells in the AD than normal suggested that these cells communicated 
with each other more closely in the AD condition. The log ISIscore 
ratio between AD and normal for all ligand–receptor pairs is shown in 
Table S6. By setting strict cutoff (3 or 1/3), we respectively identified 
the AD- and normal-specific ligand–receptor pairs for all cell commu-
nications (see Figure 2C). For example, the ligand INHBB and receptor 
ACVR1C+ACVR2A complex displayed more closely communications 
in AD when endothelial cells acted as senders, whereas the ligand  
FIGF and receptor NRP2 displayed close communications in normal 
when neurons acted as receivers (see Figure 2D).

Based on all AD and normal sub-datasets, we further identified 
the significant ligand–receptor pairs (Figure 2E). It was observed that 
ligand BMP7 and receptor BMPR1A+ACVR2A, BMPR1B+ACVR2A, 
and BMPR1B+BMPR2 displayed close communications in normal 
from astrocytes to OPC. Previous studies have revealed that BMP 
family was involved in neurogenesis, axon pathfinding, and den-
dritic branching.35,36 Additional evidence demonstrated that AD 
pathology involved reduced expression of BMP7.37 The ligand–
receptor SEMA4A_NRP1 displayed higher score in AD from multi-
ple cell communications, including neuron-astrocyte, neuron-OPC, 
oligodendrocyte-astrocyte, and oligodendrocyte-OPC. And it has 
been confirmed that NRP1 is involved in the inflammatory process 
in AD.38 Similarly, we also identified AD- and normal-specific ligand–
receptor pairs from the mouse datasets (Figure S3).

3.3  | AD prediction and subgroup analysis based 
on cell communications

As shown in Figure  2C, a total of 129 genes were obtained as 
AD specific (see Table  S7). To test the predictive performance of 

AD-specific markers, XGBoost model was used to test whether 
these genes could predict AD occurrence based on one bulk tran-
scriptome dataset (GSE118553). As shown in Figure 3A, these AD-
specific ligand–receptor displayed performance on AD prediction 
with area under the curve (AUC) values equal to 0.759, with random 
75% samples as training set and remaining 25% samples as testing 
set. In the meanwhile, the AD samples exhibited higher expression 
value of these genes than normal samples. Furthermore, to test the 
predictive robustness, we obtained more AD bulk transcriptome 
datasets (see Materials and Methods) and confirmed the perfor-
mance of this predictive model (see Figure S4).

Based on the AD- and normal-specific ligand–receptor pairs, we 
further performed subgroup analysis for exploring the AD hetero-
geneity (see Materials and Methods, Figure 2C and Table S7). The 
heatmap showed four clear clusters, and the delta area map also 
clearly no longer decreased at K = 4, suggesting that AD samples 
can be divided into four subgroups based on cell communications 
(Figure 3B,C). After excluding asymmetric patients, the 167 AD sam-
ples were divided into four subgroups, including 60 subgroup1, 40 
subgroup2, 53 subgroup3, and 14 subgroup4. By representative 
genes, the Gene Ontology (GO) enrichment analysis was performed. 
As shown in Figure 3D, most of the GO terms enriched in subgroup1 
were related to synapses, such as synaptic vesicle cycle, vesicle-
mediated transport in synapse, glutamatergic synapse. In addition, 
the regulation of exocytosis was also enriched. Some GO terms as-
sociated with glial cells were enriched in subgroup2, such as glial cell 
differentiation, gliogenesis, which may suggest that the pathological 
features of subgroup2 are associated with early glial cell formation, 
possibly in the formative stages of AD (see Table S8). In the mean-
while, the subgroup-specific ligand–receptor pairs were also iden-
tified, such as EFNA3_EPHA6, SST_SSTR2, and RSPO3_FZD8 in 
subgroup2 (see Figure S5).

3.4  |  Sex-­specific cell communications 
in normal brain

There exists sexual dimorphism in the biological mechanism of the 
brain, and there are also some sex differences in the interactions be-
tween brain cells.39 Therefore, we further explored the sex-specific 
ligand–receptor pairs using normal sub-datasets, which was similar 
to disease analysis. The ligand–receptor MLLT4_EPHB6 displayed 
higher score in female from multiple cell communications including 
astrocyte-oligodendrocytes and astrocytes-astrocytes (Figure 4A). 
Previous study has shown that females expressed higher levels of 
adrenergic receptor B6 (EphB6) in certain brain regions compared 
to males.40 In the meanwhile, NRP1 was also involved in signifi-
cant sex-specific ligand–receptor pairs. In the microglia commu-
nications, the ligand–receptor WNT5A_ROR1 displayed higher 
score in males (Figure 4B). And Wnt5a was confirmed to act as an 
important morphogenetic factor in sexual development.41 And for 
microglia-oligodendrocytes communications, C3_CD46 and NRG2_
ERBB3 displayed higher score in female (Figure  4B). Sex-specific 
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ligand–receptor pair C3_CD46 was also observed from neurons to 
astrocytes and OPC (Figure  4C). For oligodendrocytes-microglia 
communications, PDGFA_PDGFRA and SPTAN1_PTPRA were con-
sidered significantly different in sex condition. The ligand–receptor 
PDGFA_PDGFRA displayed close communications in males and 
SPTAN1_PTPRA displayed communications in females (Figure 4D). 
From OPC to multiple cell types (astrocytes, neurons, and OPC), 
there existed sex-specific ligand–receptor pairs CYR61_ITGAV 
and COL7A1_ITGB1, with stronger interaction scores in females 
(Figure 4E).

3.5  |  Brain region-­specific cell communications

Microglia exhibited strong region-dependent transcriptional prop-
erties,42 and we further analyzed the region-specific cell commu-
nications in which microglia were involved. For microglia–microglia 
communications, many ligand–receptor pairs displayed higher score 
in the meninges and other extracerebral regions (MO) than other 
brain regions (Figure 5A). In microglia–neuron communications, the 
ligand SEMA3A and receptor NRP1 + PLXNA1-4 complex displayed 
higher score in other regions than MO. In contrast, ligand–receptor 
TIMP3_ADAM17 displayed higher score in the MO region (Figure 5B). 
In particular, the ligand–receptor SPP1_ITGAV was regionally distinct 
not only from microglia to neurons but also from neurons to micro-
glia, where it displayed higher score MO region. And, ligand–receptor 
pairs CD36_TLR4, CNTN2_NRP1, and SEMA3C _NRP1 displayed 
lower score in MO for communications from neurons to microglia. 
Similarly, there existed regional heterogeneity in the communica-
tions between astrocytes and microglia, e.g. GAS6_MERTK, RELN_
ITGB1, etc (Figure 5C). We also performed the frontal lobe (FL) and 
other regions and identified region-specific ligand–receptor pairs for 
microglia-related cell communications (Figure 5D).

3.6  |  BrainCelnt platform interface

We provided a user-friendly resource named BrainCelnt, which al-
lowed users to browse and explore cellular communications in the 
human or mouse brain under different circumstances. BrainCelnt 
provided two main modules, ‘Browse’ and ‘Statistics’. The ‘Browse’ 
allowed users to search ligand–receptor pairs based on species, dis-
ease, sex, brain region, and cell type. Corresponding result provided 
the sub-dataset ID (BCI ID in BrainCelnt platform), GEO ID, cell type, 

clinical information, and ligand–receptor scores from four methods. 
Users can search for ligand–receptor pairs of interest in the search 
box at the top right, or download the whole table to obtain ligand–
receptor scores. In addition, the ‘Statistics’ section allowed users to 
view clinical statistics of all datasets, including cell type, disease, sex, 
and brain regions.

4  | DISCUSSION

In this research, we systematically explored the cell communications 
within the brain from a single-cell perspective, by integrating the re-
sults of multiple interaction evaluated methods. The integration of 
different interaction methods can to some extent eliminate their er-
rors and compensate for their shortcomings among them. At the same 
time, the multiple datasets comparison provided more robust results 
for cell communications. After comprehensive analysis, we identified 
many cell–cell interactions involved in normal and disordered brain, and 
these results provided in-depth insights into the mechanisms underly-
ing brain immune function and highlight promising genes that may be 
targeted in the therapy of neurodegenerative diseases.

For calculating the integrated interaction score, we utilized a 
total of four different methods, which were representative and 
effective verified by previous studies. For example, CellChat and 
SingleCellSignalR methods were shown to be more robust to the 
noise present in the data and ligand–receptor relationships43; 
and CellChat, ICELLNET, and SingleCellSignalR were considered 
the top three most stable methods.44 All these methods were de-
veloped to infer cellular interactions based on expression align-
ment. In addition, we included iTALK in our integration analysis 
as a way to balance the large differences in methods. It was a tool 
based on the differential assembly to infer interactions by collat-
ing significantly interacting ligand–receptor relationships. Also, 
it was considered as a stable method for ligand–receptor inter-
actions.44 There were also some methods such as CellPhoneDB, 
which was robust to noise, but we abandoned this method be-
cause of the similarity and inferiority of its ligand–receptor data-
base to CellChat. Another method was CellTalker, which differed 
from iTALK only in downstream analysis and has not been men-
tioned in previous evaluations, so we gave preference to iTALK. 
In addition, there were some web-based algorithms such as 
CCCExplorer,45 which were very demanding in terms of exper-
imental time, and we had to abandon their inclusion in the inte-
gration of the method due to a large amount of scRNA-seq and 

F IGURE  2 Human AD-specific cell communications. (A) The total number of ligand–receptor pairs and the sum of ISIscore in the AD 
sub-dataset (GSE147528-AD) and normal sub-dataset (GSE126836-normal). The size of the dot represented the number of ligand–receptor 
pairs, and the color of the dot represented the sum of ISIscore. (B) Significant ligand–receptor pairs with Wilcoxon rank-sum test and the 
ratio of ISIscore between AD and normal sub-dataset. The size of the dots indicated the number of significant ligand–receptor pairs for cell 
communications. (C) AD- and normal-specific ligand–receptor pairs with |log2(AD/normal)| > 3 and <−3. The horizontal coordinates indicated 
cell communications and the dots indicated ligand–receptor pairs. (D) The ratio of ISIscore of ligand–receptor pairs for cell communications 
between these two sub-datasets. (E) Significant AD- and normal-specific ligand–receptor pairs when considering all AD and normal sub-
datasets.
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snRNA-seq data and condition-specific sub-datasets. And, more 
methods considered in further study could provide the possibil-
ity to improve the reliability of ISIcore.

In this study, many condition-specific ligand–receptor pairs were 
identified. For example, BMP family-related interactions were found 
to be relatively weak in AD pathology, which was reflected by the 

F IGURE  3 AD subtype analysis based cell communications (GSE118553). (A) ROC curves of model using AD ligand–receptor pairs in 
Figure 2C. The lower right-hand corner showed the distribution of perturbation values for log2-transformed reciprocal pairs in the normal 
and AD samples. (B) Heatmap of the optimal consensus matrix based on AD ligand–receptor pairs. Rows and columns indicated AD samples. 
(C) The Delta area plot showed the relative change in area under the CDF curve. Area change slowed down when K = 4. (D) The top 5 Gene 
Ontology (GO) terms for the four subtypes identified above.
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F IGURE  4 Human sex-specific cell communications. Sex-specific ligand–receptor pairs for (A) astrocytes, (B) microglia, (C) neuron, (D) 
oligodendrocytes, and (E) oligodendrocyte progenitor cells as the sending cell. The colors of the boxes represented the different sex (male 
and female) and the colors of the dots represented the datasets. Red text indicated sending cells, and blue text indicated receiving cells.
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communication between astrocytes and OPCs. As stated in previous 
study, defects in the BMP pathway or its regulation were the basis for 
a variety of human diseases.46 Another example, the ligand–receptor 
SEMA4A_NRP1, which displayed higher score in AD, was mainly mani-
fested related to neurons. In addition to this, disease differences in cell 
communications were also observed in mouse datasets. Between mul-
tiple cell types, there was an enrichment in the strength of interactions 
between relationship pairs for AD or normal. Obviously, as in the case 
of FGF1_FGFR2, more potent cell communications were shown in the 
AD samples (Figure S3). Similarly, considering sex and region factors, 
we also identified many ligand–receptor pairs that interact differently. 
For example, SEMA3C_NRP1, which is involved in angiogenesis,47 has 
not been studied related to sex or region.

To explore data heterogeneity issues in the cell communica-
tion results, we further took one specific ligand–receptor pair, 
MLLT4_PVRL3, as an example. Two kinds of comparisons were 

performed, including two sub-datasets derived from the same data-
set (GSE138852-AD and GSE138852-normal), and two sub-datasets 
derived from different datasets (GSE138852-AD and GSE118257). 
Based on these two sub-datasets mentioned above, we first per-
formed the combat algorithm for removing the batch effect. Then, 
we further calculated the integrated ISIscore of this ligand–receptor 
for all cell communications based on the sub-datasets after combat 
analysis. Finally, the correlation analysis of two results from before 
and after combat was performed. As shown in Figure  S6, there 
existed strong positive correlation between these two results for 
MLLT4_PVRL3 pair, showing the reliability of previous analysis.

There also exist some limitations in the current study. This study 
is a hypothesis-driven study based on scRNA-seq or snRNA-seq 
data. Some key ligand–receptor pairs proposed in this study have 
already been uncovered in several previous studies. However, there 
has not yet been biological corroboration of the functions of key 

F IGURE  5 Human region-specific cell communications. (A) Region-specific ligand–receptor pairs for (A) microglia as sending and 
receiving cells. (B) Microglia as sending cells (C) microglia as receiving cells. (D) Significant ligand–receptor pairs associated with microglia 
between FL and other regions. The colors of the boxes represented the brain regions and the colors of the dots represented the datasets.
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ligand–receptor markers identified in this study. In addition, spatial 
transcriptomic and in situ sequencing have been recently used for 
exploring the cellular vulnerability and cell communications involved 
in AD.48 Thus, we will specifically add the brain spatial transcrip-
tomic and in situ sequencing data sets to enable more functional 
interpretation of ligand–receptor interactions. In the meantime, we 
plan to include additional high-quality scRNA-seq and snRNA-seq 
datasets and implement visualization capabilities. In current study, 
the BrainCelnt (http://bio-bigda​ta.hrbmu.edu.cn/Brain​Celnt) will be 
a valuable resource for exploring the mechanisms of brain cell com-
munications and neurodegenerative disease prediction.

5  |  CONCLUSION

We systematically explored the cell communications involved in 
brain by analyzing a total of 28 human and mouse scRNA-seq and 
snRNA-seq datasets. And all these datasets were divided into 71 
sub-datasets when further considering disease, sex and region in-
formation. In the meanwhile, we integrated four methods to infer 
ligand–receptor interaction score and the disease-specific ligand–
receptor was identified for Alzheimer's disease. Furthermore, we ex-
plored the sex- and region-specific cell communications, finding that 
WNT5A-ROR1 between microglia displayed higher score in males, 
and SPP1-ITGAV displayed higher score in the meninges from micro-
glia to neurons. And then, we applied the AD-specific cell communi-
cations for AD prediction model construction and disease subgroup 
analysis. Finally, a comprehensive platform named BrainCelnt was 
constructed for researchers to explore the disease-, sex-, or region-
specific cell communications in the brain at the single-cell level.
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