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Abstract

The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite 

recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of 

bipolar disorder has been corroborated by several studies involving postmortem brain analysis, 

neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests 

that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune 

dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial 

dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate 

excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal 

gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper 

aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to 

explore mitochondria as a potential target for novel therapeutic agents.
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1. Introduction

Bipolar disorder (BD) is a chronic and debilitating psychiatric illness characterized by 

episodes of mania or hypomania, depression, and mixed states, often accompanied by 

psychotic features and functional impairment (Cotrena et al., 2016; Grande et al., 2016; 

Zarate et al., 2000). Despite the advances in neurobiological research, comprehension 

of the pathophysiology of BD remains modest. Several studies have suggested that the 

pathophysiology of BD is orchestrated by several mechanisms synergistically involving 

complex interactions between genetic predisposition and exposure to different environmental 

risk factors and psychosocial stressors (Manji et al., 2011). Numerous research findings have 

proposed diverse mechanisms in the pathophysiology of BD, including neurotrophic factors, 

epigenetic mechanisms, mitochondrial dysfunction, oxidative stress, inflammation, circadian 

rhythm abnormalities, and biological aging acceleration (Scaini et al., 2020).

In the past few years, BD has been suggested to be a progressive condition, characterized 

by cognitive impairment and functional decline (Knezevic and Nedic, 2013; Leboyer and 

Kupfer, 2010; Muneer, 2016). Neuroprogression in BD may be considered pathological 

rewiring of the brain that occurs in parallel with the functional and clinical deterioration 

over the course of the disorder (Berk, 2009; Berk et al., 2014, 2011b; Fries et al., 2012; 

Gama et al., 2013; Schneider et al., 2012). Evidence from the literature demonstrates that 

structural brain changes and cognitive deficits are not consistently observed at early stages 

of BD, appearing to become more evident with chronicity and number of episodes (El-Badri 

et al., 2001; Lyoo et al., 2006; Robinson and Ferrier, 2006; Strakowski et al., 2002). In 

this context, neuroprogression seems to be related to the cumulative effects of immune 

dysfunction, enhanced oxidative stress, neurotrophic support breakdown, mitochondrial 

dysfunction, and impairment of cellular resilience (Berk et al., 2011b; Fries et al., 2012; 

Kapczinski et al., 2008; Post et al., 2012). Staging models of BD have suggested that 

multiple episodes may lead to permanent alterations, including significant systemic toxicity, 

cognitive and functional impairment, and biological changes, which may be transduced to 

greater liability to relapse and poorer treatment response (Gama et al., 2013; Kapczinski et 

al., 2010; Post et al., 2012). However, such a progressive feature does not seem to be present 

across all patients, with some not experiencing as much cognitive or functional impairment 

as others (Passos et al., 2016), suggesting the existence of subgroups within BD.

Mitochondria are unique intracellular organelles that contain their own DNA (mtDNA) 

and are composed of inner and outer membranes with an intermembrane space and an 

intracellular matrix (Velot and Srere, 2000). Mitochondria are classically described as the 

powerhouse of the cell, as they are the source of adenosine triphosphate (ATP) through 

the process of oxidative phosphorylation via the electron transport chain (ETC) (Briere et 

al., 2004; Fang et al., 2016). The ETC is composed of five multimeric protein complexes 

(I-IV and ATP-synthase or complex V) that are responsible for ATP production through 

oxidative phosphorylation. Complex I (NADH: ubiquinone oxidoreductase) and complex II 

(succinate dehydrogenase) begin the process of oxidative phosphorylation by catalyzing the 

transfer of electrons from NADH and FADH2, respectively, to coenzyme Q (or ubiquinone). 

The transfer of electrons is serially conducted through complex III (ubiquinol: cytochrome 
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c oxidoreductase), cytochrome c, and complex IV (cytochrome c oxidase), to the terminal 

acceptor, generating an electrochemical proton gradient that enhances ATP production in 

complex V via oxidative phosphorylation (Lenaz and Genova, 2010; Velot and Srere, 2000).

In addition to ATP generation, mitochondria play an important role in other cellular 

functions, including reactive oxygen species (ROS) production, cell death pathways 

(apoptosis), and calcium (Ca2+) homeostasis (Budd and Nicholls, 1998; Chakrabarty et 

al., 2018; Kadenbach et al., 2010). Mitochondria also modulate some of the effects of brain-

derived neurotrophic factor (BDNF) in neurons and, therefore, exert an essential function 

regarding synaptic plasticity (Burkhalter et al., 2003). Multiple signaling pathways stimulate 

mitochondrial biogenesis, motility, shape, fusion and fission, and energy metabolism due to 

activation of neurotransmitters and growth factor receptors, which are ultimately related to 

memory and learning processes (Cheng et al., 2010; Ly and Verstreken, 2006). Moreover, 

mtDNA is associated with higher rates of damage compared to nuclear DNA due to 

exposure to ROS and insufficient repair mechanisms (Cuperfain et al., 2018).

Given the role of this organelle, it is not surprising that mitochondrial dysfunction has been 

implicated in a variety of neurological and psychiatric disorders, including BD (Cuperfain 

et al., 2018; Kim et al., 2019; Panchal and Tiwari, 2019; Pei and Wallace, 2018; Streck 

et al., 2014). The mitochondrial dysfunction hypothesis suggests that BD is triggered, 

in part, via mitochondria dysfunction, which is intimately linked to a wide range of 

processes associated with treatment outcomes and disease progression or severity, including 

inflammation, oxidative stress, stress response systems, and accelerated aging. Interestingly, 

studies in primary mitochondrial diseases have shown a high prevalence of self-reported 

affective syndromes, particularly BD (Colasanti et al., 2020; Koene et al., 2009; Morava et 

al., 2010). However, it remains unclear whether abnormal mitochondrial function is a cause 

or consequence (or even both) of BD. This paper aims to review and discuss, in more detail, 

the implications of mitochondrial dysfunction in the pathophysiology of BD and to explore 

the mitochondria as a potential target for novel therapeutic agents, providing an overview of 

recent findings on the mechanisms of mitochondrial dysfunction in BD (Fig. 1).

2. Changes in mitochondrial bioenergetics and morphology in bipolar 

disorder

Mitochondria are the primary source of ATP synthesis and the major intracellular source 

of vital energy production in the brain. As a direct by-product of this ATP production, 

mitochondria also produce reactive oxygen species (ROS) that play an important role in 

cell signaling and regulation (Rhee, 1999; Thannickal and Fanburg, 2000). However, under 

pathological conditions, when cellular production of ROS overwhelms antioxidant capacity, 

oxidative stress occurs, causing damage to lipids, proteins, and DNA (Rhoads et al., 2006).

Over the past several decades, researchers have highlighted the role of this organelle in 

the pathophysiology of BD. A series of magnetic resonance spectroscopy (MRS) and 

phosphorus-31 MRS (31P-MRS) studies, Kato and colleagues have shown that patients 

with BD exhibited alterations in neurometabolites, including high-energy compounds, all of 

which are hallmarks of a decrease in mitochondrial energy production (Kato, 2005; Kato 
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et al., 1998, 1992, 1994). In summary, patients with mood disorders present with lower 

levels of phosphocreatine (PCr), N-acetyl-aspartate (NAA), adenosine diphosphate (ADP), 

and ATP (Kato et al., 1992; Scaini et al., 2016). Moreover, studies have noted that negative 

correlations exist between NAA/Creatine + PCr or NAA levels and illness duration in 

BD (Chang et al., 2003; Deicken et al., 2003; Winsberg et al., 2000). Furthermore, some 

investigators have suggested that patients with BD exhibit an abnormality in enzymatic 

reaction rate in the creatine kinase (CK) system. These studies have shown a decrease in the 

forward rate constant of the CK enzyme without alterations in ATP or PCr levels, as well 

as downregulation of CK in postmortem brains of BD patients (Du et al., 2018; MacDonald 

et al., 2006). These findings are in line with a study indicating that individuals with BD 

maintain average brain concentrations of high-energy compounds at rest. However, when 

energy demand is increased, BD patients exhibited significant reductions in ATP but not in 

PCr, suggesting a failure to replenish ATP from PCr through CK enzyme catalysis during 

tissue activation (Yuksel et al., 2015).

Based on findings showing that BD patients present high lactate levels, a product of 

increased glycolysis, and reduced intracellular pH in the brain, studies have also suggested 

that in BD, during mitochondrial dysfunction, cells shift primarily to glycolytic metabolism 

to generate ATP (Dager et al., 2004; Dogan et al., 2018; Kato et al., 1998, 1992, 

1994; Kuang et al., 2018). Supporting this hypothesis, several studies have reported 

mitochondrial-specific changes regarding the Krebs cycle and oxidative phosphorylation 

in BD. A metabolomics study showed that BD patients had higher serum levels of pyruvate, 

N-acetylglutamic acid, α-ketoglutarate, and arginine, whereas levels of β-alanine and 

serine were significantly lower (Yoshimi et al., 2016b). The same research group found 

evidence for abnormalities in the metabolism of isocitrate in cerebrospinal fluid (CSF) 

and postmortem brain tissue of BD patients. In line with these findings, Zverova et al. 

(2019) reported a significant decrease in citrate synthase (CS), complex II, and complex IV 

activities in platelets from BD patients during a depressive episode. In contrast, complex 

I activity and complex I/CS ratio were increased in these patients. Along the same lines, 

Valvassori et al. (2018) revealed that depressed BD patients present decreased complex II 

activity in peripheral blood mononuclear cells (PBMCs). On the other hand, studies on 

postmortem frontal cortex from patients with BD showed a decrease in complex I activity 

(Andreazza et al., 2010; Kim et al., 2015). Contrary to these reports, studies have reported 

that activity of complexes I, II-III and IV were unaltered in PBMCs and platelets from BD 

patients (Ben-Shachar et al., 1999; Gubert et al., 2013). Moreover, a study in drug naïve 

BD patients reported no significant alterations in citrate synthase, malate dehydrogenase, or 

succinate dehydrogenase (de Sousa et al., 2015).

Microarray and real-time quantitative polymerase chain reaction (qPCR) data revealed 

decreased expression of many messenger RNAs (mRNAs) encoding subunits of ETC 

complexes I to V in BD patients (Table 1). Studies have shown significant differences 

in mRNA levels for complex I subunits NDUFV1, NDUFV2, NDUFS1, NDUFS7 and 

NDUFS8 in patients with BD, yet a follow up study described no difference (Akarsu et 

al., 2015; Andreazza et al., 2010, 2013; Iwamoto et al., 2004; Konradi et al., 2004; Sun et 

al., 2006). In a re-analysis of microarray studies in postmortem brains, Scola et al. (2013) 

showed that subunits containing iron-sulfur clusters within the hydrophilic arm (NDUFV2, 
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NDUFS8, and NDUFS7) were downregulated in BD patients, suggesting dysfunction of 

the electron transfer process. Subunits associated with complex III (UQCRC2), complex V 

(COX7A2, COX7B, COX5A, COX6C, and COX15), and complex IV (ATP5C1, ATP5G3, 

ATP5H, ATP5J, ATP5J2, and ATP5O) have also been reported as decreased in the prefrontal 

cortex and hippocampus, while in blood, increases in subunits of the ETC were observed 

(Beech et al., 2010; Iwamoto et al., 2004; Konradi et al., 2004; Sun et al., 2006). Moreover, 

Naydenov et al. (2007) showed that during glucose deprivation, genes associated with 

complex III and IV were downregulated in lymphocytes from patients with BD. However, 

a recent multivariate meta-analysis of mitochondrial complexes I and IV revealed that 

alterations in these complexes are not always consistent, suggesting brain region- and 

tissue-specific heterogeneity. In summary, they found moderate effects on complex I and 

small effects in complex IV (Holper et al., 2019). In addition to the alterations in genes 

of the ETC, Yoshimi et al. (2016a) showed downregulation of isocitrate dehydrogenase 

genes (IDH3A and IDH3B) in BD patients. Considering these findings, we hypothesized 

that besides downregulation in subunits of the ETC complexes, alterations in Krebs cycle 

enzymes cause a decrease in its velocity, limiting NADH production for complex I, which 

might cause maximal reduction of the rate and efficiency of electron transfer.

In addition to alterations in energy metabolism, recent attention has focused on the role of 

the mitochondrial quality control system in BD. This system is sustained through synthesis 

of new mitochondria, the processes of fusion and fission, and elimination of damaged 

mitochondria (Kornmann, 2014), which is responsible for the maintenance of a healthy 

mitochondrial population that is fundamental to cell health and viability (Boveris et al., 

1972; Fischer et al., 2012). Previous research findings into mitochondrial morphology 

have reported that postmortem prefrontal cortical neurons from patients with BD and their 

peripheral cells display morphological abnormalities (more mitochondria of smaller size). 

Moreover, the same authors showed an abnormal pattern of clumping and marginalization 

with respect to the intracellular distribution of mitochondria in peripheral cells and 

atypically shaped mitochondria (ring- or cup-shaped mitochondrial profiles), suggesting 

subtle changes in the critical network architecture of mitochondria in cells (Cataldo et al., 

2010). In an elegant study using a BD neuronal model based on iPSC technology, Mertens 

et al. (2015) corroborated previous findings showing that iPSC-derived fibroblasts from 

patients with BD exhibited smaller mitochondria than those from iPSC-derived fibroblasts of 

HCs.

Following these findings, Scaini et al. showed that BD patients present alterations in the 

levels of proteins governing mitochondrial fission and fusion, causing an imbalance in 

mitochondrial fission and fusion towards fission. The same group also showed impairment 

in the removal of damaged mitochondria via the mitophagy pathway, followed by 

apoptosis activation in BD patients (Scaini et al., 2019, 2017b). In summary, these studies 

revealed downregulation of the mitochondrial fusion-related proteins Mfn-2 and Opa-1 

and upregulation of the fission protein Fis-1 in PBMCs from BD patients, suggesting 

that the imbalance in mitochondrial dynamics might explain the abnormal mitochondrial 

morphology observed in patients with BD. Moreover, mRNA expression and protein levels 

of Parkin, p62, and LC3B, which are mitophagy-related proteins, were decreased in PBMCs 

from BD patients, followed by higher levels of activated caspase-3. Taken together, these 
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results suggest that in BD, the number of damaged mitochondria exceeds the capacity of 

mitophagy, causing apoptosis to become the dominant pathway to minimize tissue damage 

(Scaini et al., 2019, 2017b). The lack of mitophagy leads to a loss of mitochondrial 

quality control, resulting in a release of damage-associated molecular patterns (DAMPs) that 

induce sterile inflammation by interacting with Toll-like receptor 9 (TLR9) and promoting 

activation of NF-κB and the NLRP3 inflammasome (Nakahira et al., 2011; Pinti et al., 

2014; Wu et al., 2019; Yuzefovych et al., 2019). Not surprisingly, inflammation has been 

associated with BD by many studies and research groups (Fries et al., 2019b)

As mentioned above, defects in the ETC result in increased ROS production, culminating 

in oxidative stress and changes in energy production that lead to a vicious cycle of 

cellular dysfunction and death (Ott et al., 2007; Sanz et al., 2006). In fact, oxidative 

stress has been implicated in BD, being explored as an agent of accelerated aging in 

BD (Fries et al., 2020). Several markers of oxidative stress were found to be altered in 

patients with BD, including glutathione peroxidase, 8-oxo-2′-deoxyguanosine (8-oxodG), 

8-oxo-7,8-dihydroguanosine (8-oxoGuo), lipid peroxidation hydroperoxides, glutathione S-

transferase, glutathione reductase, 3-nitrotyrosine, protein carbonyl, and thiobarbituric acid 

reactive substances (Andreazza et al., 2013; Ceylan et al., 2018; de Sousa et al., 2014; 

Gubert et al., 2013; Raffa et al., 2012; Rosa et al., 2014). A meta-analysis of studies that 

measured oxidative stress markers in BD patients compared to healthy controls showed 

that lipid peroxidation, DNA/RNA damage, and nitric oxide were significantly increased 

in BD patients (Brown et al., 2014). Another study demonstrated a significant increase 

in GSH concentrations in the anterior cingulate cortex (ACC) of BD patients (Das et al., 

2019). Moreover, a recently published study focusing on cerebral spinal fluid revealed that 

8-oxoGuo is statistically significantly higher at baseline and follow-up in BD, suggesting 

that CSF oxidative stress may represent state and trait markers in BD and may reflect 

neurobiological correlates of illness progression and sensitization (Knorr et al., 2019).

3. Bipolar disorder and changes in calcium and apoptosis

As mentioned above, mitochondria are the primary source of cellular energy. However, they 

are also responsible for other crucial processes for cellular function and survival, such as 

apoptosis and Ca2+ homeostasis (Zavodnik, 2016). Mitochondria play a part in intracellular 

Ca2+ signaling as modulators, buffers and sensors (Rizzuto et al., 2012). Ca2+ influx and 

efflux through the outer mitochondrial membrane occurs by the voltage-dependent anion 

channel (VDAC), the principal metabolite transport system across the outer mitochondrial 

membrane. While mitochondrial Ca2+ uniporter (MCU), mitochondrial ryanodine receptor 

(mRyR), and rapid mode of Ca2+ uptake (RaM) are responsible for Ca2+ influx through 

the inner mitochondrial membrane (IMM) (Bravo-Sagua et al., 2017). Ca2+ uptake in the 

mitochondrion has essential roles such as spatially remodeling intracellular Ca2+ signaling, 

controlling the rate of energy production, being conducive to cellular death, and neuronal 

excitability (Belosludtsev et al., 2019; Giorgi et al., 2018; Gorlach et al., 2015). On the other 

hand, Ca2+ overload causes endoplasmic reticulum stress and Ca2+ leakage, which affects 

mitochondrial uptake, causing an excessive Ca2+ taken up into mitochondria, resulting in a 

collapse of the mitochondrial membrane potential, termination of oxidative phosphorylation 

processes, osmotic changes, mitochondrial swelling, and inner membrane remodeling, 
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mitochondrial permeability transition pore (mPTP) opening, cytochrome c release, activation 

of caspases and apoptosis, and subsequently cell death (Belosludtsev et al., 2019; Bravo-

Sagua et al., 2017; Giorgio et al., 2018; Marchi et al., 2018).

Altered intracellular Ca2+ levels are a consistent finding in BD patients, and many studies 

point to the role of mitochondrial dysfunction, indicating the possibility that mitochondrial 

Ca2+ dysregulation is involved in the pathophysiology of BD (Kato, 2008). Several studies 

have investigated intracellular Ca2+ dynamics and alterations in the pathophysiology of 

BD. Most of these studies consistently found elevated basal (Ca2+B) and agonist-stimulated 

(Ca2+S) intracellular Ca2+ levels in the platelets, lymphocytes, B lymphoblast cell lines 

(BLCLs) and olfactory neurons of BD patients compared with healthy subjects (Corson et 

al., 2001; Dubovsky et al., 2014; Emamghoreishi et al., 1997; Hahn et al., 2005; Hough et 

al., 1999; Perova et al., 2008). Moreover, postmortem brain studies have also found altered 

mRNA expression of inositol monophosphate type II (IMPase) and a transient receptor 

potential channel (TRPM2), proteins that are involved in the Ca2+ homeostasis (Yoon et al., 

2001a, 2001b). In fact, a recently systematic review and meta-analysis of studies of cellular 

calcium levels in BD found a robust, medium effect size elevation of basal and stimulated 

free intracellular Ca2+, suggesting altered Ca2+ functioning in the disorder (Harrison et al., 

2019). In line with this, studies have proposed that chronic lithium at therapeutic doses 

blocks the increase in Ca2+ concentration, attenuating agonist-stimulated intracellular Ca2+ 

responses (Gould and Manji, 2005; Gurvich and Klein, 2002; Hashimoto et al., 2002; Li 

et al., 2002). Wasserman et al. (2004) showed that lithium exerts significant modulatory 

effects on intracellular Ca2+ dynamics in BLCLs from BD-I patients through the attenuation 

of receptor-G-protein coupled agonist (lysophosphatidic acid (LPA)) stimulation of Ca2+ 

mobilization (a G-protein-coupled receptor activated signaling pathway), and TG-evoked 

store-depletion-induced Ca2+ influx (a measure of SOCE).

More recently, Mertens et al. (2015) demonstrated that young hippocampal dentate gyrus-

like neurons derived from iPSCs of patients with BD had smaller mitochondria than 

controls, as well as changes on the gene expression of pathways involving Ca2+ signaling, 

neuroactive ligand-receptor interaction, and protein kinase PKA/PKC signaling, in addition 

to changes in the action potential firing system. Moreover, using neuronal hyperactivity and 

lithium responsiveness as two indices, the same authors detected correlated changes in the 

PKA/PKC/AP and mitochondria genes in the BD neurons, indicating that these pathways 

might be related to neuronal hyperexcitability. Indeed, excess Ca2+ affects both neuronal 

excitability and signaling cascades regulating gene expression, leading to perturbation 

of multiple neuronal processes, such as dendrite development, synaptic plasticity, and 

excitatory/inhibitory balance (Greer and Greenberg, 2008). Therefore, these changes in Ca2+ 

dynamics described in patients with BD might be related to disturbances in homeostatic 

cellular physiology control.

Another fascinating aspect of Ca2 + signaling is its capacity to regulate cell death. One 

of the most well-studied Ca2+-induced cell death pathways is the cross-talk between 

the endoplasmic reticulum and mitochondria. As described above, mitochondrial Ca2 

+ overload induces several changes that culminate by mitochondrial outer membrane 

permeabilization (MOMP) and the release of cytochrome c, which is an inducer of apoptosis 
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and modulator of other proapoptotic factors, such as Smac/DIABLO, HtrA2/Omi, AIF and 

EndoG. Moreover, it is proposed that VDAC1, play crucial role in apoptosis activation 

mediated by cytochrome c release through transfers of apoptotic Ca2 + signals from the 

endoplasmic reticulum to mitochondria, as well as by the interaction with the Bcl-2 family 

of proteins (Shimizu et al., 2000b, 2001; Tsujimoto and Shimizu, 2000; Azoulay-Zohar et 

al., 2004).

The widely described presence of apoptosis in cells from BD patients occurs through 

several mechanisms, including Ca2+-mediated excitotoxicity, as mentioned above, increased 

oxidative stress parameters, and profound changes in mitochondrial structure and function 

(Giorgi et al., 2008). A postmortem brain study in BD patients revealed a significant 

decrease in levels of Bcl-2 and brain-derived neurotrophic factor (BDNF), whereas Bax, 

Bad and caspase-3 and −9 levels were significantly increased (Kim et al., 2010). The 

changes observed in postmortem brain studies parallel changes observed in peripheral 

cells of patients with BD. Bei et al. (2009) observed decreased cytosolic Bax, suggesting 

an increase in Bax activation and translocation to mitochondria to activate apoptosis, as 

well as decreased expression of HSP70, an antiapoptotic factor. In agreement with these 

findings, Moutsatsou et al. (2014) showed an increase in the BAX/Bcl2 ratio, cytochrome 

c release, and caspase-3 activity in manic and depressed patients compared to healthy 

controls. Likewise, higher levels of antiapoptotic proteins, Bcl-xL, survivin, and the Bcl-

xL/Bak dimer, were significantly decreased in PBMCs from patients with BD, while active 

caspase-3 levels were significantly increased (Scaini et al., 2017a). The same authors 

showed that BD patients present higher levels of VDAC1 and TSPO (Scaini et al., 2019). 

Another study showed that in depressed patients, S100B levels correlated with cytochrome 

c release (Paraskevi et al., 2014). Furthermore, the percentage of cells in early apoptosis 

was higher in PMBCs from BD patients compared to controls (Fries et al., 2014). Taken 

together, could be hypothesized that in patients with BD, the selective placement of VDAC 

channels at ER/mitochondria contact sites facilitates mitochondrial Ca2 + accumulation 

leading to cell death. However, further experimental investigations are needed to estimate the 

functional relevance of the crosstalk between VDAC, mitochondrial Ca2 + dynamics, and 

ROS metabolism to the apoptosis activation in BD patients.

4. Mitochondria, redox system and circadian rhythmicity in bipolar 

Disorder. How do these Interrelate?

Several studies have demonstrate that, at the cellular level, mitochondrial oxidative 

phosphorylation and redox states are regulated in a circadian manner, and also signal back to 

the core clock, suggesting a regulation loop exists between clock machinery and metabolism 

(de Goede et al., 2018; Peek et al., 2013; Schmitt et al., 2018). Several studies have shown 

that suprachiasmatic nucleus neurons and astrocytes exhibit daily rhythms in cytochrome c 

oxidase activity, mitochondrial membrane potential and calcium release from mitochondria 

(Burkeen et al., 2011; Isobe et al., 2011; Marpegan et al., 2011). In fact, studies have 

described that metabolic byproducts (e.g.: NAD+, ATP) display 24 h oscillation and can 

in turn regulate the clock. The rhythms of these byproducts are believed to be dependent 

on the molecular clockwork because the activity of the rate-limiting enzyme nicotinamide 

Scaini et al. Page 8

Mitochondrion. Author manuscript; available in PMC 2023 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phosphorribosyltransferase (NAMPT) is controlled by CLOCK–BMAL1 activator complex 

in conjunction with NAD + -dependent deacetylase sirtuin 3 (SIRT3) (Nakahata et al., 2009; 

Ramsey et al., 2009; Sahar et al., 2011). Moreover, it was shown that the transcriptional 

coactivator PGC-1α, which is the master regulator of mitochondrial biogenesis and energy 

metabolism, is an essential component of the circadian clock in the liver and muscle (Liu 

et al., 2007). In the same line, studies have also suggest that the activation of AMPK 

(adenosine monophosphate-dependent protein kinase), can directly modulate the core clock 

machinery by phosphorylation of the clock repressor proteins CRY and PER, targeting 

them for proteasomal (Jordan and Lamia, 2013). Of the note, evidence has also shown 

that alterations in mitochondrial morphology (i.e., fusion and fission) and mitochondrial 

abundance are under circadian clock control (Jacobi et al., 2015; Schmitt et al., 2018). 

These cycles of fission and fusion and, consequently, the rhythms of energy production 

are regulated by phosphorylation and activity of dynamin-related protein 1 (DRP1), which 

occurs in a circadian manner to drive mitochondrial network fragmentation (Schmitt et al., 

2018).

So given the intimate connection between the circadian system and redox sensing, it seems 

reasonable to suspect that a disruption in metabolic/clock cross talk might lead to poor 

cellular health. At this point to be remember that mitochondrial dysfunction is a key element 

in the pathophysiology of BD. Moreover, the role of SIRT3 and PGC-1α in the context 

of BD phenotypes and treatments has been suggested but not studied in depth. A study 

using PGC-1α null mice showed that the lack of PGC-1α in GABAergic neurons causes 

an increase in the activity across tests that might be related to a mania-like phenotype. 

Geoffroy et al. (2016) performed a pharmacogenetic study and found an association 

between PGC-1α and lithium response in BD patients, but this association did not survive 

Bonferroni correction, requiring additional studies to provide more functional/biological 

data supporting these preliminary finding. Of the first consideration, BD are associated with 

major disruptions in circadian rhythms. Studies have demonstrate that genes such as Clock, 

Bmal1, and Per, which are intimately involved in the generation and regulation of circadian 

rhythms, have been linked to BD, as well as illness severity (Geoffroy, 2018; Maciukiewicz 

et al., 2014; McCarthy et al., 2012, 2013; Milhiet et al., 2014; Shi et al., 2008; Yang et al., 

2009)

Taking together the evidence of the correlation between mitochondrial and circadian clock 

dysfunction, and the fact the cross-sectional research design of most studies precludes 

establishing a cause/effect relationship between mitochondrial dysfunction, circadian 

disruption, and BD, it remains undetermined what comes first. Of note, given that 

mitochondrial metabolism is connected, on the one hand, with circadian rhythms and, on 

the other hand with the pathogenesis of BD, it would be a thrilling challenge to highlight 

the impending interplay between mitochondrial network, the circadian rhythm in both 

physiological systems.

5. Genetic evidence for mitochondrial dysfunction in bipolar disorder

As mentioned above, mitochondria are organelles that contain their own DNA, which is 

responsible for encoding genes that include proteins involved in oxidative phosphorylation, 
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as well as some unique transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) (Calvo et al., 

2016; Taanman, 1999). Although mitochondria have their own DNA, cellular metabolism 

and mitochondrial function require a combination of proteins that are also encoded in the 

nucleus (Cuperfain et al., 2018). Thus, both nuclear DNA (nDNA) and mtDNA must be 

analyzed in a genetic investigation of mitochondrial dysfunction.

Several studies suggest that BD possesses an important genetic component, with twin 

studies showing heritability rates as high as 70–80% (Edvardsen et al., 2008; McGuffin 

et al., 2003). The high genetic component is also shown by the increased risk of BD in 

first-degree relatives of patients (Gottesman et al., 2010). Accordingly, children of parents 

diagnosed with BD have been shown to have a significantly increased risk to develop the 

disorder compared to offspring of control parents (Duffy et al., 2019; Rasic et al., 2014) and 

often present signs and symptoms that may accompany familial risk in the absence of a BD 

diagnosis (Axelson et al., 2015; Diler et al., 2017; Dong et al., 2019; Levenson et al., 2015; 

Manelis et al., 2016).

Recent studies have investigated specific mutations related to mitochondrial function in 

mtDNA and nDNA, such as single nucleotide polymorphisms (SNPs), deletions, copy 

number variations, as well as epigenetics and haplogroups, which may be correlated with 

the pathophysiology of psychiatric disorders, including BD (Cuperfain et al., 2018; Kasahara 

and Kato, 2018; Schulmann et al., 2019). Munakata et al. (2004) suggested that the 3644C 

mutation is associated with increased risk for BD, by decreasing mitochondrial membrane 

potential and complex I activity, due to a 3644 T → C that causes a V113A amino acid 

substitution in NADH-ubiquinone dehydrogenase subunit I (ND1). It was also identified that 

in postmortem brains of BD patients, there was increased gene expression of mitochondrial 

leucyl-tRNA synthetase, which is related to the accumulation of 3243A → G in mtDNA 

(Munakata et al., 2005). Moreover, different amino acid substitutions in specific candidate 

genes and haplogroups in BD patients have been reported (Kato and Kato, 2000; Kato et al., 

2001; Kazuno et al., 2009).

Genome-wide association studies (GWAS) have showed that genes encoding ankyrin 3 

(ANK3) and the α-calcium channel subunit (CAC-NA1C) are considerable genetic risk 

factors for the development of BD (Fiorentino et al., 2014). In line with this, Michels et al., 

2018 showed that downregulation of CACNA1C expression protected cells from oxidative 

stress by inhibiting excessive mitochondrial ROS generation and Ca2+ influx in mouse 

hippocampal cells. Recently, a trio-based WES study for BD published by Kataoka et al. 

(2016) identified potential roles of de novo protein-altering mutations and calcium-related 

genes in the disease etiology most of which create non-functioning proteins, predominantly 

in genes for calcium-binding proteins. The same authors described that earlier age at onset in 

carriers of protein-altering de novo mutations, and the rate of de novo mutations was higher 

in BD-I, suggesting a role for these mutations in BD (Kataoka et al., 2016). Schulmann 

et al. (2019) demonstrated that the odds ratios for BD risk decreased from 1.1 to 0.38 by 

adding a mtSNP minor allele compared to the mtSNP major allele for the nuclear gene 

AK5, a brain-specific gene involved in the synthesis of ADP and the cytochrome B oxidase 

gene (CYTB), suggesting. These findings suggest that both genomes jointly determine the 
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cellular energy production requirements, impairment of which is associated with risk for BD 

(Schulmann et al., 2019).

Recently Fries et al. (2017) showed that BD patients may display accelerated epigenetic 

aging, most likely due to high mtDNA copy number (mtDNAcn), although no association 

with telomere shortening was observed (Fries et al., 2017). The same group also 

demonstrated a reduction in mtDNA copy number and an epigenetic aging acceleration 

in postmortem hippocampus from BD patients compared to controls among older subjects 

(Fries et al., 2019a). However, a meta-analysis identified no significant differences between 

mtDNA copy numbers in BD patients. Another meta-analysis, including a low level of 

heterogeneity, revealed significantly lower mtDNAcn in patients (Yamaki et al., 2018). 

Recent studies have also described a downregulation of DNA polymerase gamma (POLG) 

and 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme, in patients with BD, 

suggesting that this may be one of the mechanisms responsible for reduced mtDNA copy 

number (Ceylan et al., 2018; Munkholm et al., 2015).

6. Effects of mood stabilizers on mitochondria

Multiple drugs, such as lithium, some anticonvulsants and antipsychotics, have been shown 

to be effective in treating or preventing manic and depressive episodes; however, full 

comprehension of their precise mechanisms of action in BD remains unknown with little 

progress being made in developing novel medications. It has been postulated that mood 

stabilizers likely enhance energy metabolism by changing intracellular signaling pathways 

(Hroudova and Fisar, 2011), and there are several explanations for their neuroprotective 

properties. Among mood stabilizers, lithium seems to be the most investigated compound.

In vitro studies showed that lithium might stabilize mitochondrial membrane potential and 

reduce DNA damaging effects. Lithium may also delay Ca + 2-induced apoptosis by 

antagonizing the mPTP, as demonstrated in isolated rat mitochondria (Shalbuyeva et al., 

2007). Findings of increased grey matter in BD subjects following lithium treatment is 

congruent with its antiapoptotic properties (Moore et al., 2000). Lithium also decreased 

levels of DNA methylation in BD patients (Huzayyin et al., 2014), increased levels of 

glutathione transferase (Clay et al., 2011; Cui et al., 2007; Shao et al., 2005), reduced 

apoptosis and enhanced catalase activity (Machado-Vieira et al., 2007).

Impairment of complex I function is related to increased generation of ROS (Sharma et al., 

2011), and lithium stimulates the activity of this complex in the prefrontal cortex (Valvassori 

et al., 2010). Another study by Scola et al. (2014) demonstrated that lithium attenuated 

complex I dysfunction on DNA methylation and hydroxymethylation induced by rotenone 

in rat primary cortical neurons. In addition to complex I, lithium has also been observed to 

increase the activity of mitochondrial chain enzyme complexes II and III in human frontal 

cortex (Maurer et al., 2009). In addition to the numerous benefits related to lithium use, 

this medication is also associated with several side effects, and some studies have reported 

negative outcomes involving lithium and mitochondrial function. For example, one study 

reported reduced synthesis of antioxidants and decreased mitochondrial membrane potential 

in rat hepatocytes (Eskandari et al., 2012). The cardiotoxic adverse effects of lithium may be 
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partially explained by inhibition of complex II activity and ATP formation, enhanced ROS 

generation and increased activity of proapoptotic caspase-3 (Salimi et al., 2017).

Valproate and lithium seem to increase the expression of the antiapoptotic Bcl-2, which 

leads to the inhibition of proapoptotic enzymes, such as caspase 3 (Chen et al., 1999). 

In addition, both drugs are related to inhibition of glycogen synthase kinase-3 (GSK-3) 

enzyme activity, which is responsible for modulating gene expression of proteins involved 

in apoptosis, synaptic plasticity and cellular resilience (Bachmann et al., 2009; Kato, 

2011; Kazuno et al., 2008; Zarate et al., 2006). Lithium and valproate were found to 

increase production of BDNF, decrease glutamate-induced excitotoxicity and inhibit NMDA 

receptor-mediated Ca2 + influx (Hashimoto et al., 2002; Nonaka et al., 1998). Valproate 

also seems to influence mitochondrial epigenetics due to its potent inhibition of histone 

deacetylase (Chen et al., 2012).

Platelets and lymphocytes from BD subjects have been associated with increased levels of 

intracellular Ca2 +. In this context, valproate and carbamazepine seem to contribute to the 

regulation of intracellular Ca2 + levels by enhancing expression of ER stress proteins, 

which potentiates neuronal resistance to lethal fluctuations in intracellular Ca2 + and 

cytotoxic insults (Cikankova et al., 2019, 2017). Other studies have demonstrated that 

pretreatment with valproate prevented amphetamine-induced citrate synthase and succinate 

dehydrogenase inhibition in the brain of rats (Correa et al., 2007; Feier et al., 2013). 

Another study reported that valproate reversed metabolic alterations induced by ouabain 

administration in a model of mania (Lopes-Borges et al., 2015).

Some researchers suggest that mitochondria may also play a role in the side effects related 

to the use of mood stabilizers. The toxicity of valproate can be partially explained by 

several different mechanisms. An investigation of the effects of valproate on isolated rat 

mitochondria demonstrated that it might induce oxidative stress as a result of decreased 

mitochondrial respiratory chain complex II. Additionally, valproate induces the opening of 

mitochondrial ion channels and membrane pores, with consequent release of cytochrome 

c and induction of apoptosis (Jafarian et al., 2013). A recent study involving isolated pig 

brain mitochondria showed that complex I activity was significantly inhibited in response to 

lithium and carbamazepine, while activity of complex IV was decreased after exposure 

to carbamazepine. The activities of complex II and III were unaffected by any tested 

drug (Cikankova et al., 2019). Furthermore, carbamazepine may reduce mitochondrial ATP 

production and inhibit Ca2 + -induced cellular swelling in rat liver cells (Finsterer and 

Scorza, 2017). Moreover, lamotrigine seems to prevent opening of the mPTP and increase 

levels of glutathione (Kim et al., 2007).

7. Mitochondria as a therapeutic target in BD

In addition to the impact of mood stabilizers on cellular metabolism, the mitochondrial 

dysfunction hypothesis of BD has been contributing to recent clinical trials involving 

mitochondrial modulators. However, there are some limitations for the use of mitochondrial 

modulators in the clinical practice. Most of the clinical trials, as described in Table 2, 

recruited an insufficient number of participants. Therefore, the questionable power of these 
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studies could partially explain some of the intriguing results about the effectiveness of 

mitochondrial agents. Another hypothesis for the limited use of mitochondrial modulators 

is that mitochondrial dysfunction may be only present in a fraction of BD patients, 

which corresponds to a mitochondrial endophenotype subgroup of the illness. This may 

explain the insufficient effectiveness of therapeutic agents when used in a broader patient 

population. In addition, it remains unclear if mitochondrial dysfunction is a consequence 

of bipolar disorder, instead of its cause, which could theoretically explain the fair effect of 

mitochondrial agents described in clinical trials. Ultimately, it is possible that mitochondrial 

modulators interact with different psychotropic drugs, such as mood stabilizers and 

antipsychotics, with a consequent insufficient bioavailability of mitochondrial agents in the 

central nervous system.

As described below, several metabolic antioxidants have been tested as potential add-on 

treatments in BD, including N-acetylcysteine (NAC), acetyl-L-carnitine (ALCAR), alpha-

lipoic acid (ALA), creatine monohydrate, omega-3 fatty acids, and ketogenic diet.

7.1. N-Acetylcysteine

NAC is known for its beneficial properties, such as participation in glutathione production, 

anti-inflammatory effects, neurogenesis enhancement, as well as modulation of apoptosis 

and glutamate pathways (Samuni et al., 2013). According to Fernandes et al. (2016), 

adjuvant NAC treatment seems beneficial for bipolar depression. It was also found that a 

24-week administration of NAC, as an adjuvant treatment, decreased depressive symptoms 

in BD patients, with more pronounced effects after 20 weeks of administration, suggesting 

long-term NAC treatment (Berk et al., 2008). An open label study investigating the efficacy 

of maintenance treatment with NAC in BD patients with depressive episodes reported a 

statistically significant reduction in the severity of depressive symptoms at the end of 

the 8-week treatment (Berk et al., 2011a). The same authors conducted a double-blind 

randomized placebo trial investigating the efficacy of adjuvant NAC in the maintenance 

treatment of bipolar depression and found no significant differences in recurrence or 

symptomatic outcomes during the maintenance phase of the trial (Berk et al., 2012). In 

contrast, Magalhaes et al. (2011) reported that NAC resulted in significant improvement in 

symptom severity, function and quality of life, and depressive symptoms after 24 weeks 

of treatment in patients with type-II BD in a randomized placebo-controlled trial. Another 

placebo-controlled, randomized clinical trial concluded that administration of NAC for 24 

weeks resulted in attenuated manic symptoms in the NAC group and worsening depressive 

symptoms in the placebo group at endpoint (Magalhaes et al., 2013). On the other hand, 

there are recent negative trials showing no significant differences between groups with 

respect to primary outcomes (Berk et al., 2012, 2019; Ellegaard et al., 2019).

7.2. Acetyl-L-Carnitine and Alpha-Lipoic acid

ALCAR and ALA are compounds that play critical roles in modulating the cellular stress 

response by improving mitochondrial function and reducing mitochondrial free-radical 

production and inflammation, exhibiting antioxidant and anti-inflammatory properties (Liu, 

2008; Liu et al., 1993; Scafidi et al., 2010a, 2010b). Overall, ALCAR and ALA are 

promising agents for the treatment and/or prevention of neurodegenerative disorders (Dos 
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Santos et al., 2019; Hager et al., 2007; Molz and Schroder, 2017; Palacios et al., 2011; 

Soczynska et al., 2008).

In BD, several early clinical trials suggest the ALCAR has significantly greater efficacy 

than placebo as an augmentation treatment for depressive disorders (Pettegrew et al., 

2002; Zanardi and Smeraldi, 2006), while a randomized placebo-controlled trial using 

ALCAR and ALA concluded that there was no statistically significant difference between 

ALCAR/ALA compared to placebo groups with respect to changes in the Montgomery-

Asberg Depression Rating Scale (MADRS) scores (Brennan et al., 2013).

7.3. Creatine

It has been proposed that oral intake of creatine may provide substrate to produce ATP 

by increasing brain concentrations of creatine and PCr (Lyoo et al., 2003). Creatine also 

attenuates decreases in N-acetylaspartate (NAA), a marker of impaired mitochondrial 

function, and inhibits activation of the mitochondrial permeability transition, suggesting 

neuroprotective effects (Ferrante et al., 2000; Hemmer and Wallimann, 1993; O’Gorman 

et al., 1996). Despite limited evidence in mood disorders, Roitman et al. (2007) showed 

that creatine supplementation was associated with a significant reduction in depressive 

symptoms in unipolar depression, but in two bipolar depression patients, its supplementation 

precipitated manic episodes. Similarly, a randomized, double-blind, placebo-controlled trial 

demonstrated significant superiority of creatine add-on vs. placebo on the rates of remission 

in the completers and of partial response and remission, but two patients transitioned 

to hypomania/mania early during the trial. Thus, the authors suggested that creatine 

supplementation may have a role in treatment of the depressive phase of the illness (Toniolo 

et al., 2018). However, further investigation with larger sample sizes should be conducted 

to verify the efficacy of creatine add-on to standard pharmacotherapy and to determine in 

which mood state and dosage it might ideally exert its neuroprotective effects.

7.4. Omega-3 fatty acids

Evidence suggests that erythrocytes from BD patients exhibit decreased levels of omega-3 

fatty acids, such as docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-

linolenic acid compared to healthy controls (Balanza-Martinez et al., 2011). Moreover, 

Sobczak et al. (2004) showed a trend towards lower levels of omega-3 fatty acids in 

first-degree relatives of BD patients. A double-blind randomized trial using supplementation 

with omega-3 fatty acids also reported longer remission and improvements of depressive 

symptoms, bipolar symptoms and global functioning compared to the placebo group (Stoll 

et al., 1999). Furthermore, a 12-week, double-blind study reported that ethyl-EPA is an 

effective adjuvant treatment in bipolar depression (Frangou et al., 2006). More recently, 

however, Murphy et al. (2012) reported that omega-3 fatty acids did not mediate a 

significant improvement in mood symptoms over an extended period of treatment.

A systematic review on clinical trials assessing nutraceuticals confirmed that omega-3 fatty 

acids may be useful in the treatment of depressive symptoms of BD (Fusar-Poli et al., 

2019). However, sample sizes were small, reducing the chance of positive results (Sarris 

et al., 2011). Previous evidence suggests that supplementation or increased consumption 
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of omega-3 fatty acids may be beneficial in mood disorders, but additional studies are 

necessary to more accurately define their clinical efficacy.

7.5. Ketogenic diet

The ketogenic diet is known for its low carbohydrate and high-fat components, which 

forces the body to use fatty acids as the primary source of energy (DeVivo et al., 1978). 

Alternatively, the administration of ketone supplements, such as ketone salts or ketone 

esters, generates rapid and sustained nutritional ketosis (Kovacs et al., 2019). The effects of 

ketogenic diet or supplements on CNS diseases have not been thoroughly investigated, but 

ketosis seems to modulate different pathways implicated in psychiatric disorders, including 

BD (Bostock et al., 2017; Kovacs et al., 2019).

As previously discussed, BD seems to be related to an impaired ability to utilize pyruvate in 

the oxidative phosphorylation and the Krebs cycle, which results in high levels of pyruvate, 

derived from glycolysis (Yoshimi et al., 2016b). The increased plasma levels of ketones 

play an essential role as an alternative energy source by providing acetyl coenzyme A 

(acetyl-CoA) to the Krebs cycle, and therefore, bypasses the traditional pathway through 

glycolysis, which seems to be related to its mood stabilization properties (Campbell and 

Campbell, 2019). Newell et al. (2016) demonstrated that higher levels of ketone bodies, such 

as beta-hydroxybutyrate, increased the number of mitochondria and the electron transport 

chain proteins in this organelle, with consequently increased ATP synthesis. Marosi et 

al. (2016) showed that ketone 3-hydroxybutyrate metabolism increases mitochondrial 

respiration which drives changes in expression of brain-derived neurotrophic factor (BDNF) 

in cultured cerebral cortical neurons.

Moreover, ketosis seems to have anti-inflammatory properties and optimizes the cellular 

antioxidant system by activating nuclear factor erythroid-derived 2-related factor 2 (Nrf2) 

(Pinto et al., 2018). Furthermore, it has been postulated that the ketogenic diet may 

regulate neurotransmitters’ function, such as monoamine modulation and enhancement 

of GABAergic transmission, with consequent anxiolytic effects (Brietzke et al., 2018; 

Kashiwaya et al., 2013; Rogawski et al., 2016). In addition, some ketone bodies seem to 

inhibit the vesicular glutamate transporters (Danial et al., 2013), which can act as a buffer 

under conditions of excess of glutamate, such as acute mood episodes (Jaso et al., 2017). 

Although ketosis may be a promising treatment for BD, the availability of studies involving 

the ketogenic diet and BD is limited, and to date, there are no randomized controlled trials 

published.

8. Conclusion and future directions

Several studies in rodent models and humans suggest and reinforce the mitochondrial 

dysfunction hypothesis in BD. Mitochondria may present altered morphology and dynamics, 

as well as decreased metabolism and oxidative stress. Moreover, altered Ca2+ homeostasis 

and glutamate excitotoxicity likely play a crucial role in apoptosis. Taking together the 

findings reviewed above it is tempting to suggest that mitochondrial dysfunction is a critical 

pathological factor in BD that can be intimately linked to a wide range of processes 

associated with treatment outcomes and disease progression or severity (Fig. 1). The 
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pathophysiology of BD is quite complex and involves several factors, besides mitochondrial 

dysfunction. Nevertheless, it is worth noting that the mitochondrial hypothesis must be 

interpreted in light of some limitations since the majority of studies are cross-sectional, 

which can identify associations but not causal relationships or longitudinal patterns of 

development, leading to a significant gap in the understanding of the specific role played by 

mitochondria in the etiology of BD, and whether an abnormal mitochondrial function is a 

cause or consequence (or even both) of BD subtypes. Furthermore, it is not yet completely 

understood which mitochondrial mechanism was altered first in addition to the chance that 

more than one mechanism occurs concurrently during the development of the disease.

9. Literature search strategy

A systematic literature search was performed using databases of Scopus, Embase, PubMed, 

Cochrane Library, and ISI web of Science from inception to September 2020. Moreover, a 

hand search was performed on three pre-print databases (medRxiv, bioRxiv, PsyArXiv) in 

order to find additional articles. Searches were restricted to English language. Results from 

the databases were merged using EndNote to facilitate the removal of duplicates. Reference 

lists of studies, review articles and systematic reviews were manually reviewed to identify 

any additional studies. Key words were grouped using the following Boolean expression and 

adjusted according to each database: “(bipolar disorder OR bipolar depression OR mood 

disorders OR mania OR depression) AND (mitochondria OR mitochondrial dysfunction OR 

energy homeostasis OR cerebral bioenergetics OR mitochondrial DNA OR oxidative stress 

OR calcium OR redox signaling OR mood stabilizers OR lithium OR mitochondrial agents 

OR complimentary therapies)”.
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Fig. 1. Schematic representation of mitochondrial dysfunction in bipolar disorder.
Several mitochondrial pathways, not all of which are shown here, interact simultaneously 

to cause cellular damage. Mitochondrial dysfunction in the pathophysiology of BD is based 

on oxidative phosphorylation impairment, a decrease in energy production, ROS production, 

mtDNA damage, Ca+2 imbalance, cytochrome c release, and mitochondrial dynamics and 

mitophagy impairment. Thus, mitochondrial dysfunction could initiate a vicious cycle where 

numerous systems and mechanisms intensify and accelerate cellular damage, that with 

time exacerbates the disease process, and could independently determine the course of the 

disease, progression, functional outcomes and premature aging.
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