
RESEARCH
Obtaining Functional Proteomics Insights From
Thermal Proteome Profiling Through Optimized Melt
Shift Calculation and Statistical Analysis With
InflectSSP
Authors
Neil A. McCracken, Hao Liu, Avery M. Runnebohm, H. R. Sagara Wijeratne, Aruna B. Wijeratne,
Kirk A. Staschke, and Amber L. Mosley
Correspondence Graphical Abstract
2023, Mol Cell Proteomics 22(9), 100
© 2023 THE AUTHORS. Published b
Molecular Biology. This is an open a
creativecommons.org/licenses/by-nc
https://doi.org/10.1016/j.mcpro.2023
almosley@iu.edu

In Brief
In this work, we describe our
computational workflow for
statistical analysis of thermal
proteome profiling data known
as InflectSSP. InflectSSP has
been optimized for sensitive and
reproducible detection and
prioritization of protein melt shift
changes in biological thermal
proteome profiling datasets.
Analysis of induction of the
unfolded protein response with
the small molecule inhibitor
thapsigargin using InflectSSP
revealed significant melt shift
changes that shed new light on
the potential mechanisms of
action of inhibition of the ER
calcium channel SERCA2.
Highlights
• InflectSSP for computational and statistical analysis of thermal proteome profiling.• Novel integrative replicate analyses for calculation of p-values for melt shifts.• Melt shift coefficient provides new metric for TPP hit prioritization.• InflectSSP provides highly reproducible detection of temporal target engagement.• Identification of candidate downstream effectors of the inhibitor thapsigargin.
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RESEARCH
Obtaining Functional Proteomics Insights From
Thermal Proteome Profiling Through Optimized
Melt Shift Calculation and Statistical Analysis
With InflectSSP
Neil A. McCracken1 , Hao Liu2,3 , Avery M. Runnebohm1 , H. R. Sagara Wijeratne1 ,
Aruna B. Wijeratne1, Kirk A. Staschke1, and Amber L. Mosley1,4,*
Thermal proteome profiling (TPP) is an invaluable tool for
functional proteomics studies that has been shown to
discover changes associated with protein–ligand, protein–
protein, and protein–RNA interaction dynamics along with
changes in protein stability resulting from cellular
signaling. The increasing number of reports employing
this assay has not been met concomitantly with new ap-
proaches leading to advancements in the quality and
sensitivity of the corresponding data analysis. The gap
between data acquisition and data analysis tools is
important to fill as TPP findings have reported subtle melt
shift changes related to signaling events such as protein
posttranslational modifications. In this study, we have
improved the Inflect data analysis pipeline (now referred
to as InflectSSP, available at https://CRAN.R-project.org/
package=InflectSSP) to increase the sensitivity of detec-
tion for both large and subtle changes in the proteome as
measured by TPP. Specifically, InflectSSP now has inte-
grated statistical and bioinformatic functions to improve
objective functional proteomics findings from the quanti-
tative results obtained from TPP studies through
increasing both the sensitivity and specificity of the data
analysis pipeline. InflectSSP incorporates calculation of a
“melt coefficient” into the pipeline with production of
average melt curves for biological replicate studies to aid
in identification of proteins with significant melts. To
benchmark InflectSSP, we have reanalyzed two previously
reported datasets to demonstrate the performance of our
publicly available R-based program for TPP data analysis.
We report new findings following temporal treatment of
human cells with the small molecule thapsigargin that in-
duces the unfolded protein response as a consequence of
inhibition of sarcoplasmic/endoplasmic reticulum calcium
ATPase 2A. InflectSSP analysis of our unfolded protein
response study revealed highly reproducible and
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statistically significant target engagement over a time
course of treatment while simultaneously providing new
insights into the possible mechanisms of action of the
small molecule thapsigargin.

The biophysical based cellular thermal shift assay and
thermal proteome profiling (TPP) have been used for nearly a
decade to study biochemical phenomena in the cellular
context (1, 2). Since the initial TPP report (1), research groups
have leveraged this workflow to identify targets of small
molecules and have offered an approach for target and/or off-
target identification for drug discovery. Additionally, it has
been clearly shown that TPP studies can be used to under-
stand the functional proteome of different cellular states.
Recent studies have used TPP to observe protein stability
differences across: cell cycle (3, 4), protein complex stability
(5), thermal stability of proteins across evolution (6), RNA–
protein interactions (7), viral infection (8), and post-
translational modifications (9–12). Altogether, these studies
illustrate the far-reaching potential for TPP to acquire func-
tional proteomics data giving insights into biochemical and
biophysical changes that occur in cells and tissues under
different experimental conditions. Investigation of protein
stability in its native environment has the potential to gain
deeper understanding of signaling, protein modifications, and
relationships within the cell that have not been observed with
other methods.
Data analysis in a TPP experiment is a multistep process

that can be automated through calculation algorithms. Algo-
rithms that have been reported by the scientific community
include TPP-TR, Inflect, MSstatsTMT, and Rtpca (13–16).
MSstatsTMT is a more general workflow for protein
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Optimized Melt Shift Calculation for TPP
quantification of proteins with TMT labeling, while Rtpca is
used in thermal proximity coaggregation analysis of TPP
datasets. TPP-TR and Inflect are used for analysis of melt
curve data generated from TPP and related experiments.
TPP-TR (17) uses input data from any number of experi-

ments with filters such as peptide spectrum matches (i.e.
PSMs) to calculate melt temperatures (called at 50% of max
abundance) and melt shifts individually for each replicate
experiment (control versus condition). While the original iter-
ation of the TPP-TR program did not report use of significance
calculation (18), the output of the current version in bio-
conductor includes p-value calculation for each protein and
experiment (condition versus control). The related Inflect pro-
gram calculates melts much like “TPP” but uses the inflection
point in the melt curve to determine the melt temperature. Melt
curve fitting in Inflect uses four parameter log fit (4PL) which
we have shown improves curve fitting and inflection point
calculation as reported in our prior study (13). The use of in-
flection point rather than 50% of max abundance of protein
signal also provides more accurate melt temperature calcu-
lations for various protein populations including heat resistant
proteins and other proteins with unique melt curve charac-
teristics (13).
In the work described herein, we have added multiple im-

provements to the Inflect program to optimize computational
analysis and maximize relevant biological insights obtained
from TPP datasets. A primary goal of this work was the
addition of functionality for calculation of single melt curves for
all biological replicates in an experiment. Incorporation of this
functionality allows for assessment of experiment variability
such as biological replicate dynamics to be accounted for in
the melt shift calculation. This is an important aspect of TPP
analysis that has yet to be reported in other programs. Sec-
ond, we wanted to not only add filters and p-value–based
outputs but also provide key information to the user on how
the filters impact the melt shifts and how they are calculated.
To improve the sensitivity and selectivity of the computational
workflow for biologically relevant proteins, we have incorpo-
rated a z-score and p-value–based assessment. We have also
included an output with calculation of a new melt coefficient
score to aid in prioritization of hits from TPP experiments.
Finally, we wanted to add bioinformatic outputs and quality
indicators for the user to improve ease of use of InflectSSP.
The output of a TPP experiment can consist of many proteins
with unknown relationships, and relative importance of pro-
teins melts can be unclear. A bioinformatic plug-in to the
InflectSSP workflow allows for the user to make hypotheses
and design follow-up experiments in a manner guided by
functional annotations.
In this work, our new program InflectSSP was developed to

address these gaps in TPP data analysis while building upon
TPP analysis improvements made in our prior work (13). We
used InflectSSP to reanalyze two publicly available data sets
from Kalxdorf et al. (19) and Sridharan et al. (20) and validate
2 Mol Cell Proteomics (2023) 22(9) 100630
its utility and performance relative to these prior studies.
Additionally, we designed a temporal experiment through cell
treatment with a small molecule inhibitor of the endoplasmic
reticulum (ER) calcium pump (SERCA2A) and inducer of the
unfolded protein response (UPR) that we reasoned should
cause multiple types of simultaneous changes in protein ho-
meostasis. This dataset from our group was used to develop
an additional novel functionality of our program; the calcula-
tion of a “melt coefficient” that can be used to rank melt shifts
based on quality of the respective melts. Overall, our findings
show that InflectSSP has increased sensitivity and selectivity
for identification of likely changes in the functional proteome
while providing multiple statistical metrics including p-value
with and without post hoc correction that can be used for
cutoff-based analysis of any individual dataset.
EXPERIMENTAL PROCEDURES

Data Analysis

TPP experiments were analyzed using InflectSSP as described in
the main text. LC-MS/MS data was analyzed using Proteome
Discoverer. Bioinformatics analysis was done using annotations from
STRING and DAVID databases (21, 22). For DAVID analysis, a back-
ground set of proteins was used that consisted of the list of proteins
observed in the respective mass spectrometry experiments.

Publicly Available Data Sets

Two independent data sets were used in our case study. Data from
Sridharan et al. (20) and Kalxdorf et al. (19) consist of normalized
abundance values at each temperature in the thermal gradients along
with search outputs including number of peptide spectrum matches
(PSMs) and unique peptides (UPs). In the case of the dataset from
Kalxdorf et al., data was collected in an experiment where K562 cells
were treated with 1 mM dasatinib (protein tyrosine kinase inhibitor) for
60 min with the goal of identifying cell surface proteins. Three replicate
data sets were used for this analysis. In the case of the Sridharan
experiment, the data sets from Jurkat cell crude lysates were treated
with 2 mM Na-ATP for 10 min. Two replicate experiments were used
for this analysis from the Sridharan data set. The data from the source
publication including abundance for each protein along with their PSM
and UP attributes were used for analysis. In the case of each data set,
the qupm columns were used to indicate the number of UPs while the
qusm column was used for the number of spectral matches. Details
regarding the file fields used for data are summarized in supplemental
Table S1.

Statistical DOE Analysis

In silico experiment design and data analysis were conducted using
JMP version 16 (SAS Institute). The JMP design of experiment (DOE)
design tool was used to select the combination of PSM, UP, R2, and
p-value limits for the in silico experiment that would provide a full
understanding of “main effects” and “interactions”. Data from the
Kalxdorf and Sridharan data sets were each analyzed in series in an
automated fashion using the various combinations of filter settings
specified in the DOE. The results from the analysis (i.e. number of
proteins of interest) were analyzed with respect to each of the inputs
using the Fit Model tool in the JMP program. Scaled estimates for
each term were calculated by the JMP program and compared to each
other to understand the relative impact of each term (i.e. PSM) on the
output (i.e. number of proteins).
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R Analysis

InflectSSP was coded in R programming language and uses the
following functions: readxl, data.table, plotrix, tidyr, ggplot2, xlsx, httr,
jsonlite, GGally, network, stats, RColorBrewer, svglite.

Cell Culture and Treatment

HEK293A cells (Invitrogen) transduced with a lentivirus encoding an
ATF4-firefly luciferase transcriptional reporter gene were used for the
thapsigargin treatment experiments. Cells were cultured at 37 ◦C with
CO2 at 5% and water for humidification. Medium consisted of Corning
Dulbecco’s Modified Eagle Medium (10-013CV) supplemented with
10% fetal bovine serum. Cells were grown adherently using 10 cm and
15 cm diameter tissue culture plates. Cultures were passaged every
few days to maintain viability and were also periodically checked for
absence of mycoplasma contamination. Treatment experiments con-
sisted of removing growth medium and replacement with fresh media
supplemented with thapsigargin or dimethyl sulfoxide (DMSO).
Thapsigargin experiments used a 1 mM stock of the drug (Sigma
T9033-1 MG) dissolved in DMSO. Post treatment for 1 h, the media
was aspirated from the plates and cells were washed with 1X PBS
prior to either lysis or removal from the plates. Lysis was used for
Western blot experiments, while removal of cells from the plates with
rubber scraper was used for TPP experiments; details are described in
respective sections.

TPP Experiments–Prior to execution of the TPP workflow, cell
pellets were removed from the freezer and resuspended in lysis buffer
(40 mM Hepes pH 7.5, 200 mM NaCl, 5 mM beta glycerophosphate
(anhydrous basis), 0.1 mM sodium orthovanadate, 2 mM TCEP,
10 mM MgCl2, 0.4% NP40, Roche EDTA free mini complete protease
inhibitor). Cells were lysed in 1.5 ml micro tubes (Diagenode) by
sonication using a Bioruptor sonication system (Diagenode) with cy-
cles of 30 s/30 s off for 60 min. Total protein concentration of each
sample was determined by a protein assay with lysates diluted to a
protein concentration of ~5 mg/ml for subsequent temperature treat-
ment. Note samples in the same experiment replicate were adjusted to
the same concentration. Aliquots of the adjusted supernatants (50 μl)
were transferred to PCR tubes after which the samples were heated
and cooled using a gradient procedure. The heat treatment consisted
of 2 min at 25 ◦C, 3 min at given temperature per gradient, 2 min at 25
◦C, followed by 4 ◦C. Gradient temperatures for TPP experiments
consisted of 25.0, 35.0, 39.3, 50.1, 55.2, 60.7, 74.9, and 90.0 ◦C. In the
case of the single replicate experiment, the gradient consisted of 25.0,
35.0, 40.9, 51.2, 55.2, 60.7, 74.9, and 90.0 ◦C. Heat-treated samples
were centrifuged to pellet insoluble protein, while the supernatant was
reserved and precipitated in 20% TCA.

Sample Preparation for LC-MS/MS and Mass Spectrometry–Dried
pellets were resuspended in 8M urea in 100 mM Tris pH 8.5. Samples
were reduced with TCEP and alkylated with chloroacetamide as pre-
viously reported (23). Reduced and alkylated samples were digested
with LysC/trypsin (Promega) followed by quenching with formic acid.
Quenched samples were desalted with Waters C18 columns and then
isobarically labeled with Thermo Scientific TMTPro labels as previ-
ously reported (24). The labeling scheme for the first two biological
replicates is shown in supplemental Fig. S1. The labeling scheme for
the third biological replicate is shown in supplemental Fig. S2. Sam-
ples were fractionated into eight fractions using Waters C18 columns
and then analyzed on the LC-MS instruments.

Search Parameters and Acceptance Criteria (MS/MS and/or
Peptide Mass Fingerprint data)

In the case of the first two biological replicate experiments, there
were two total technical replicates of the thapsigargin datasets using
two different LC-MS instruments. In the case of one technical repli-
cate, Nano-LC-MS/MS analyses were performed on an Exploris 480
mass spectrometer (Thermo Fisher Scientific) coupled to an EASY-
nLC HPLC system (Thermo Fisher Scientific). The peptides were
eluted using a mobile phase gradient for 180 min at 400 nl/min to
ensure elution of all peptides. The heated capillary temperature was
kept at 275 ◦C and ion spray voltage was kept at 2.5 kV using a FAIMS
source with a compensation voltage of −50 V. During peptide elution,
the mass spectrometer method was operated in positive ion mode,
programmed to select the most intense ions from the full MS scan
using a top speed method. Exploris MS1 parameters include the
following: microscans 1; MS1 resolution 60 k; automatic gain control
(AGC) target 3E6; and scan range 375 to 1600 m/z. Exploris data-
dependent MS/MS parameters include the following: microscans 1;
resolution 45 k; AGC target 2E5; maximum IT 87 ms; isolation window
0.7 m/z; fixed first mass 110 m/z; and HCD normalized collision energy
35. The respective data-dependent settings were set with parameters:
apex trigger as “-”; charge exclusion as “1,7,8, >8“; multiple Charge.
States as “all”; peptide match as “preferred”; exclude isotopes as
“on”; dynamic exclusion of 30 s; if idle “pick others” using Xcalibur
software (available from Thermo Fisher Scientific).

A technical replicate analysis of the first two biological replicate
samples was also performed on a Lumos mass spectrometer (Thermo
Fisher Scientific) coupled to an EASY-nLC HPLC system (Thermo
Fisher Scientific) for 180 min. The mass spectrometer method was
operated in positive ion mode during a 170 min gradient, programmed
to select the most intense ions from the full MS scan using a top
speed method. Lumos MS1 parameters include the following: micro-
scans 1; MS1 resolution 120 k; standard AGC; and scan range 400 to
1600 m/z. Lumos data-dependent MS/MS parameters include the
following: microscans 1; resolution 50 k; normalized AGC target of
250%; isolation window 0.7 m/z; fixed first mass 100 m/z; and HCD
normalized collision energy 34. The respective data-dependent set-
tings were set with parameters: exclude isotopes as “on”; dynamic
exclusion of 60 s using Xcalibur software (Thermo Fisher Scientific).

In the case of the third biological replicate, samples were analyzed
twice (technical replicates) on an Exploris 480 mass spectrometer
(Thermo Fisher Scientific) coupled to an EASY-nLC HPLC system
(Thermo Fisher Scientific). The peptides were eluted using a mobile
phase gradient for 175 min at 300 nl/min. During peptide elution, the
mass spectrometer method was used as above. Exploris MS1 pa-
rameters include the following: one microscans; MS1 resolution 120 k;
custom AGC; and scan range 400 to 1750 m/z. Exploris data-
dependent MS/MS parameters include the following: one micro-
scans; resolution 45 k; normalized AGC target of 200%; isolation
window 0.7 m/z; fixed first mass 100 m/z; and HCD normalized
collision energy 32.0. The respective data-dependent settings were
set with parameters: exclude isotopes as “on”; dynamic exclusion of
30.0 s. The data were recorded using Xcalibur software (Thermo
Fisher Scientific).

The resulting RAW files from the time course experiments were
subjected to protein FASTA database search using Proteome
Discoverer 2.4.0.305 (Thermo Fisher Scientific). The SEQUEST HT
search engine was used to search against a human protein database
from the UniProt repository containing 20,350 human proteins (2019)
and common contaminant sequences such as proteolytic enzymes
(FASTA file used available on MassIVE under MSV000090867 and in
ProteomeXchange under PXD038752). Specific search parameters
used were trypsin as the full proteolytic enzyme, peptides with a max
of two missed cleavages, precursor mass tolerance of 20 ppm, and a
fragment mass tolerance of 0.5 Da. Minimum and maximum peptide
length were set to 6 and 144, respectively, with max number of pep-
tides reported at 10. Spectrum matching parameters in the search
were set to True for “Use Neutral Loss” for all ions, and weight of b
Mol Cell Proteomics (2023) 22(9) 100630 3
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and y ions were set to 1 with all others at 0. Max equal and dynamic
modifications per peptide were set to 3 and 4, respectively. Static
modifications were TMTPro label on lysine (K) and the N termini of
peptides (+304.207 Da). Percolator false discovery rate (FDR) cutoff
filtering was set to a strict setting of 0.01 (1% FDR). Total ion abun-
dance values at the protein level were summed from UPs and used for
quantification for melt shift calculation at the protein level. The output
from this database search is included as supplemental Table S2.

The resulting RAW files from 1 h experiment (three replicates) were
subjected to protein FASTA database search using Proteome
Discoverer 2.5.0.400 (Thermo Fisher Scientific). The SEQUEST HT
search engine was used to search against a human protein database
from the UniProt repository containing 20,290 human proteins and
common contaminant sequences such as proteolytic enzymes
(FASTA file used available on MassIVE under MSV000090867 and in
ProteomeXchange under PXD038752). Specific search parameters
used were trypsin as the full proteolytic enzyme, peptides with a max
of two missed cleavages, precursor mass tolerance of 10 ppm, and a
fragment mass tolerance of 0.02 Da. Minimum and maximum peptide
length were set to 6 and 144, respectively, with max number of pep-
tides reported at 10. Spectrum matching parameters in the search
were set to True for “Use Neutral Loss” for all ions, and weight of b
and y ions were set to 1 with all others at 0. Max equal and dynamic
modifications per peptide were set to 3 and 4, respectively. Static
modifications were TMTPro label on lysine (K) and the N termini of
peptides (+304.207 Da) and carbamidomethyl (+57.021 Da). Dynamic
Modifications included acetyl (+42.011), Met-loss (−131.040), and
Met-loss+Acetyl (−89.030). Percolator FDR cutoff filtering was set to a
strict setting of 0.01 (1% FDR). Total ion abundance values at the
protein level were summed from UPs and used for quantification for
melt shift calculation at the protein level. The output from this data-
base search is included as supplemental Table S3.

The mass spectrometry proteomic data (including .pdResult,
.mzTab, .mzML, and .raw files) have been deposited to the Proteo-
meXchange Consortium via the MassIVE partner repository with the
data set identifier and doi:10.25345/C5VM4325J. A combined search
was also completed on all of the 1-h experiment data (including the
third biological replicate). RAW files and search results from this
analysis can be found in MassIVE repository: MSV000090932, ftp://
massive.ucsd.edu/MSV000090932/.

InflectSSP Analysis

Settings used in melt shift analysis for main figures in this manu-
script are described in supplemental Table S4.

TPP Analysis

TPP program version 3.22.1 was used for comparative analysis of
the thapsigargin datasets. User-specified filters for the program were
set to maximum range. Filtering was only done on the output of the
program by selecting proteins with p-values that were <0.05 across all
replicates.

Experimental Design and Statistical Rationale

The Sridharan experiment analysis used two publicly available
biological replicate data sets, while the Kalxdorf experiment analysis
used three publicly available biological replicate data sets (total
number available from each respective source). The thapsigargin data
sets from our group consisted of two biological replicates, and this
number of experiments was chosen based on the number of tem-
peratures that could be successfully multiplexed using available TMT
labels. Each of the three data set used both a condition (treatment)
and control (vehicle) to calculate melt shifts. In silico experiment
design and statistical data analysis were conducted using JMP
4 Mol Cell Proteomics (2023) 22(9) 100630
version 16 (SAS Institute). TPP experiments were analyzed using
InflectSSP version 1.5 (described herein). The InflectSSP program has
an optional FDR adjustment which can be used by users to increase
the specificity of the data set being analyzed. To account for potential
biological and workflow variability in data sets analyzed, an FDR
calculation was not used in the analysis described herein. The
z-score–based p-value calculated by the InflectSSP program was
deemed acceptable for the sigmoidal data analysis that was being
analyzed. Traditional coefficient of determination (R2) is also available
for use in the InflectSSP program as it is used in the field for describing
the adequacy of sigmoidal fit.
RESULTS

Initial Assessment of InflectSSP Workflow

Inflect was developed as an R package for the analysis of
TPP experiments. A goal of our ongoing development of the
Inflect workflow was to increase the sensitivity and selectivity
for changes in protein thermal stability when analyzing TPP
(and similar assay) results. Using the output from a TPP
experiment, normalized ion abundance values at different
temperature treatments are used as input for the melt curve
analysis in Inflect to determine the inflection point of the
curve as the melt temperature (Tm) of the protein of interest.
For the development of InflectSSP, additional parameters
were developed to consider their respective impact on the
output of the melt shift calculation workflow. The InflectSSP
data analysis workflow that was used for our assessment is
described pictorially in Figure 1. Step A in the workflow im-
ports data from the source directory. The current version of
InflectSSP allows for the import of multiple experiments
which can consist of an unbalanced number of experiment
files for condition and control. The normalization step divides
each abundance value by the abundance observed at the
lowest temperature so that results from separate experi-
ments can be analyzed together. This data normalization is
completed at the “protein level” for each protein and for each
experiment factor (vehicle or drug). If for instance there is a
vehicle treatment and a drug treatment (2 factors) in the 8-
temperature heat treatment experiment and a total of 5000
proteins have been identified, there will be 80,000 abun-
dance values at the end of this “Normalization” step. Step B
in the algorithm converts the normalized abundance data
from the protein level to proteome level. Specifically, the
median abundance is measured at each temperature across
all factors. In our example, if there are 80,000 abundance
values at the end of step A with eight heat treatments, this
“Quantitation” will yield eight total values. Step C or “Curve
Fit 1” determines the three or four parameter log fit co-
efficients that best describe the variability observed in step
B. The purpose of steps B and C are to describe how well
the heat treatment step compared to ideal melt behavior. If,
for example, there is a subtle increase or decrease for one
temperature in the heat gradient (e.g. in the heating block),
the curve would depart from sigmoidal shape. A 4PL is used
to describe the curve but changes to a three-parameter log
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FIG. 1. Graphical overview of the computational steps in InflectSSP. A, abundance data from each protein normalized by dividing each
abundance value at each temperature by the abundance at the lowest temperature. B, median of all abundance values across proteome at each
temperature and for each condition and control across all replicates. C, curve fitting of proteome data sets. D, correction of individual normalized
abundance values for each protein based on difference between actual and predicted in previous step. E, curve fitting for each protein melt curve
based on corrected normalized abundance values. R2 for curve fits are also calculated. F, calculation of melt temperature for each condition and
control across all proteins. G, calculation of melt shift along with melt shift p-value. H, result reporting that describes the melt shifts calculated in
the experiment with outputs in various formats (plots and tables). Potential locations in the data analysis workflow where quality of the data
analysis can be evaluated. The red box indicates the number of peptide spectrum matches (PSMs) and number of unique peptides (UPs) that are
reported with the protein/abundance data from the MS experiment and proteomic search. The blue box represents where the coefficient of
determination (R2) is calculated based on the fit of the melt curves. The green box represents where the melt shift p-values are calculated in the
workflow with the melt shifts.

Optimized Melt Shift Calculation for TPP
fit (3PL) if there are challenges with curve fit convergence by
the program. The equations that are used for the log fits are
shown in supplemental Fig. S3. Step D is the “Correction”
step that adjusts the normalized abundance value at each
temperature for each protein based on how well actual
values meet predicted values in step C (“Curve Fit 1”). While
step C is done at the proteome level, step D is done at the
protein level. In this step, a correction factor is first calcu-
lated for each temperature based on how much the actual
values depart from predicted values in step C. The correction
factor at each temperature is then used for each protein in
the experiment. For example, if the actual values are 1%
greater than those predicted at 35 ◦C, the normalized
abundance values for each individual protein at 35 ◦C are
decreased by 1% percent to allow for normalized abundance
values to fit with ideal melt behavior. If there are 5000 pro-
teins going into step B and there are 100 proteins excluded
due to low PSM or UP, there would be a total of 4900
Mol Cell Proteomics (2023) 22(9) 100630 5
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proteins going into step D and therefore 78,400 normalized
abundance values being corrected. “Curve Fit 2” in step E is
executed for each individual protein in the experiment at the
protein level. In our example, 4900 proteins across two
factors would be used to fit 9800 curves.
Like “Curve Fit 1” in step C, a 4PL is first used before using

a 3PL fitting. If neither set of equations converges in the
program, the protein is excluded from further analysis. The
melt temperature for each protein is calculated in step E using
the inflection point of the melt curves. The inflection point is
defined as the temperature where the second derivative of the
fit equation equals 0. In the process of generating the curve
fits and the associated inflection point, it is possible that the
curve fitting algorithm can converge on a set of optimal pa-
rameters. The fit curve, however, may not represent what
would be biologically likely. To address this challenge, the 3PL
fit is used if a calculated melt temperature is less than or
greater than the temperature range used during the heat
treatment. An example of how this operation allows for more
biologically representative results is shown in supplemental
Fig. S4. In this example where a 4PL fit was initially used,
the melt is calculated to be 71.3 ◦C, but when the 3PL fit was
used (to better reflect biological conditions), a more realistic
melt of 57.0 ◦C is observed. Step F or “Melt Calculation” is
completed using the fit curves for each protein. Specifically,
the melt temperature for each protein is calculated as the in-
flection point in the sigmoidal curves that are calculated in the
previous step. This process is also linked with the previous
“Curve Fit 2.” If the calculated melt temperature is less than
the lowest temperature or greater than the highest tempera-
ture in the heat treatment, a 3PL will be used. This process has
been implemented in InflectSSP to avoid artificially large melt
shifts that result from melt curve shapes that are not antici-
pated to reflect biological conditions. The “Melt Calculation” is
completed in step G where the control melt temperature is
subtracted from the condition melt temperature to determine
the magnitude of shifts for each protein in the experiment. In
our example to this point, the output of this step would be
4900 melt shifts. Step H consists of generating summary
outputs from the program. These outputs include a rank order
or waterfall plot that describes the melt shifts of each rank-
ordered protein in the experiment, tables that summarize all
melt shifts from the experiment along with their calculated
“melt coefficient”, STRING-based network diagrams, and ta-
bles that summarize nodes of interest in the STRING diagram.
A plot is also generated that summarizes the “Melt Shift Co-
efficient” across p-value ranges for the analysis.
The workflow used to analyze data from the Kalxdorf et al.

and Sridharan et al. data sets is described in the Experimental
Procedures section of this report. In the case of the dataset
from Kalxdorf et al., data was collected in an experiment
† Proteome Discoverer is a product of Thermo Fisher Scientific.
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where K562 cells were treated with 1 mM dasatinib (protein
tyrosine kinase inhibitor) for 60 min. Three replicate data sets
were used for this analysis. In the case of the Sridharan
experiment, the data sets from Jurkat cell crude lysates were
treated with 2 mM Na-ATP for 10 min. Two replicate experi-
ments were used for this analysis from the Sridharan data set.
The rank order plots of the calculated melt shifts for each
protein in these data sets are shown in Figure 2, A and B, and
these panels reflect the wide range of melt shifts in each set.
While 10 to 20% of the protein melt shifts are greater than 2 ◦C
and around 4% of the proteins are greater than 5 ◦C (Fig. 2, C
and D), it is not easily discernible from melt shifts alone which
proteins have a significant melt shift and which are within the
variability of the experiment. One possible method for deter-
mining significance would be to report proteins with melt shifts
that are greater than an absolute limit based on the mean and
SD. At the same time, this approach may not allow for se-
lection of proteins with subtle changes. This fact guided our
work to provide objective quality control criteria based on
statistical metrics to apply cutoffs for selecting proteins of
interest in these data sets.
The absolute magnitude of melt shifts in a TPP experiment

may not be sufficient for determining which proteins are
significantly stabilized or destabilized for functional prote-
omics interrogation. The reason for this limitation is that the
calculated melts may not account for experimental variability.
The melt curve inflection point or melt temperature may be
distinct, but the variability of the abundance values around the
calculated melt from the curve fit may be large enough that the
melt temperatures between condition and control are not
significantly different from each other. Selection of a protein
based on the magnitude of the shift alone would potentially
cause the investigator to focus on proteins and pathways that
are not actually affected by the experimental conditions. To
address this deficiency in the calculation pipeline, we have
updated our existing version of Inflect to allow for analysis of
biological replicate experiments to determine statistical sig-
nificance of melt shifts between conditions. Other filters or
quality control steps were also added to the analysis pipeline
to remove proteins that increase the “noise” of the calculated
melt shift (i.e. outliers). Three steps in the described analysis
workflow (Fig. 1) were identified as possible opportunities for
inserting control criteria. The mass spectrometry and prote-
omics search (designated by the red box in Fig. 1) is one place
where criteria can be set. The number of UPs for each protein
is one output that is reported by proteomic search algorithms
such as Proteome Discoverer.† This value indicates the
number of reported peptide fragments that are unique to a
protein in the source proteomics database. Since the
sequence of peptides determined from a “bottom-up” mass
spectrometry experiment is based on experimental spectra,



FIG. 2. InflectSSP outputs from reanalysis of public datasets.Melt shift rank order plots for (A) Sridharan and (B) Kalxdorf data sets. Pareto
chart for absolute melt shifts for (C) Sridharan and (D) Kalxdorf data sets. X-axis max for (C) and (D) have been set at 10 ◦C for ease of viewing. E,
formula describing the derivation of the melt shift p-value. F, melt shifts for proteins with melt shift p-values <0.050 in each of the two data sets.
G, melt shift versus melt shift p-value for Sridharan data set. H, melt shift versus melt shift p-value for Kalxdorf data set.

Optimized Melt Shift Calculation for TPP
the number of PSMs are also reported by Proteome Discov-
erer.† The PSM are the number of spectra from the experiment
that match with spectra from the search database within the
set cutoff criteria. These two variables offer quality control
criteria for screening the performance of the mass spec-
trometry and associated data search experiment. In our
analysis, we used the UP and PSM reported in step A (Fig. 1)
to conduct the exclusion of proteins at step D after the pro-
teome curve fit is conducted. These filters allow for exclusion
of proteins with low numbers of total identifications indepen-
dent of their summed ion abundance value. These two filters
were inserted prior to the curve fitting steps in step E since a
low UP or PSM value could result in lower confidence in the
identity of the protein associated with the peptide(s). The
exclusion was set after the overall proteome curve fitting (step
C) to ensure that the abundance values of the peptides still
affect the total proteome abundance. The distribution of PSM
and UP across the two data sets is shown in supplemental
Fig. S5, A and B. Both sets of distributions for both data
sets are skewed to low number of total PSMs and UPs as is
commonly observed for data dependent acquisition-based
bottom-up proteomics experiments. Considering that the
multiplexing allowed for by TMT-based isobaric labeling fa-
cilitates high-dimensional TPP dataset generation with multi-
ple temperature datapoints, this challenge cannot be fully
addressed using alternative acquisition strategies such as
data-independent acquisition. However, recent work has
reported acquisition strategies for performing TPP using
data-independent acquisition (25). Normalized melt curves
generated from such an approach would also be compatible
with Inflect-SSP.
A second step in the analysis workflow where filtering was

identified is step E where the curve fitting is conducted (blue
box in Fig. 1). One statistical tool that can be used to describe
the quality of fit for the melt curve is the coefficient of deter-
mination (R2). While the coefficient of determination is not
necessarily a strong measure of nonlinear fit (26, 27), it is a
widely used parameter in the scientific community with prac-
tical utility. This step in the process was identified as a point
where variability in the cell culture, heat treatment, and MS
portions of the experiment could be characterized. This was
also a way of incorporating variability from replicate experi-
ments. The distributions of R2 for each of the two data sets are
shown in supplemental Fig. S5C and reflect the fact that the
quality of fit is tends towards high-quality values of 1.
A third point in the overall workflow where possible data

filtering was identified is step G where the melt shifts are
calculated (green box in Fig. 1). The difference in melt tem-
perature between condition (i.e. treatment) and control (i.e.
vehicle) in an experiment is defined as the melt shift. A positive
shift is generally interpreted as a protein with increased ther-
mal stability, while a negative shift is a decrease in protein
thermal stability from experiment conditions. The magnitude
and direction of each shift do not provide sufficient informa-
tion to determine whether a shift is significantly greater than
experimental variability. Experiment variability can be
captured through the execution of biological and technical
replicates that are input into the InflectSSP workflow. The melt
curves are fit for each protein in step D (Fig. 1) using either 4PL
or 3PL, respectively, depending on the success with analysis
convergence. To quantify the signal-to-noise ratio in these
melt shifts, we have established a z-score accompanied by a
p-value calculation. The equation in Figure 2E is used by the
current version of InflectSSP to calculate a p-value for each
protein melt shift. The calculation is based on the difference in
melt temperature normalized by the standard error calculated
Mol Cell Proteomics (2023) 22(9) 100630 7
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by the “nls” function (R “stats” package). Our z-score uses a 1
SD criteria for the evaluation of the p-value. The definition of
this p-value is the likelihood that you would reject the null
hypothesis (no difference in melt temperature) when the null
hypothesis is true. supplemental Fig. S5D shows melt shift p-
value distributions for each of the two data sets and indicates
that while the Sridharan data set has more statistically sig-
nificant melts (lower p-value), the Kalxdorf data set has a more
even distribution of melt p-values with less statistically sig-
nificant shifts. Figure 2F shows the distribution of melt shifts
that have p-values less than 0.05 and reinforces the fact that
melt shifts that meet the p-value of <0.05 are not necessarily
large in magnitude, clearly showing the utility of a statistical
method that considers the reproducibility of biological repli-
cates. The plots in Figure 2, G and H show the relationship
between the calculated melt shift p-value and the melt shifts
across both data sets. These results indicate that the magni-
tude of the melt shift is not necessarily correlated with melt
shift p-value. These results suggest that the magnitude of the
melt shift is insufficient for determining the significance of the
shift as many of the proteins with low p-values also have very
small shifts.
The p-value calculated by our workflow describes the

confidence that the melt shift is greater than or less than 0 ◦C.
Multiple correction testing is also included in InflectSSP,
incorporated as an optional FDR correction into p-value
calculation. The FDR calculation is done using the p.adjust
function in R along using “fdr”. We used noncorrected p-value
in the assessments described herein but both options are
available to users of the InflectSSP package to fit user needs.

Impact of Quality Control Criteria on Program Performance

Once we identified potential quality control criteria, we
wanted to understand the relative impact of each filter on the
final output from the workflow. To evaluate the relative impact
of these criteria on the performance of the algorithm, we
established an objective approach using numeric outputs
along with associated limits. “Significant Proteins” were
defined as those that met all specified criteria (protein PSM,
protein UP, curve R2, and melt shift p-value), while “Biologi-
cally Relevant” proteins were those relevant to the experiment.
In the case of the Sridharan et al. data set, “ATP Binding”
Gene Ontology (GO) Molecular Function (MF) term was used
to identify the number of proteins that have previously been
described and annotated as likely to be biologically relevant
following treatment with 2 mM Na-ATP. In the case of the
Kalxdorf et al. data set, “Kinase Activity” GO MF term was
used to determine those proteins that have previously been
described and annotated as likely to be relevant to this dataset
which uses treatment with 1 mM of dasatinib, a kinase in-
hibitor. The first output calculated for the evaluation was the
“percent of biologically relevant” proteins. This value was
determined by dividing the number of “significant” proteins
that were biologically relevant (as defined by the criteria
8 Mol Cell Proteomics (2023) 22(9) 100630
above) by the total number of biologically relevant proteins
(given the defined criteria) in the overall data set and multi-
plying by 100. The number of “significant” proteins that were
not “biologically relevant” were also calculated for each of
these data sets to give insights into the sensitivity and spec-
ificity of the InflectSSP analysis.
Our in silico experiment was designed using JMP with the

goal of understanding main effects (i.e., limit on PSM alone)
and interactions (i.e., limit on PSM being affected by the
number of UPs) on the two outputs. supplemental Table S5
shows the ranges for each quality control variable that were
used in our assessment. The InflectSSP program was run
serially using each of the settings in the experiment design.
Outputs from the in silico experiment (i.e., percentage of
biologically relevant proteins) were further analyzed using JMP
statistical program version 16. Specifically, the results were
modeled using the inputs of the experiment using nonlinear
systems. The results from this statistical analysis are shown in
supplemental Fig. S6. As shown in supplemental Fig. S6, A
and B, the models developed in the program described 97 to
98% of the variability in the outputs. The scaled estimates for
each term in the models are shown in supplemental Fig. S6, C
and D and quantify the relative leverage that each term has on
the output of the model (i.e., percent of biologically relevant
proteins). These results indicate that the melt shift p-value has
the largest impact of all quality control parameters examined.
The number of PSMs, number of UPs, and the curve R2 each
have a relative impact that is 5 to 15% that of the melt shift p-
value term. To graphically illustrate the relative impact of these
variables, the percent of biologically relevant and nonbiologi-
cally relevant proteins was plotted versus R2 (Fig. 3, A and D)
and melt shift p-value (Fig. 3, B and E). The impact of the p-
value coupled with the number of UPs are shown in Figure 3,
C and F and reflect how the melt shift p-value has a larger
impact on the percent of relevant and nonrelevant proteins in
comparison to the other four quality control inputs. The wide
separation of proteins that are annotated as “ATP binding” or
“Kinase Activity” versus all other proteins in Figure 3, B and E
indicates that the use of p-value–based cutoffs for TPP
dataset analysis will have a large impact on the specificity and
selectivity of the findings. The benefits of p-value–based
selectivity in the datasets were observed with p-value cutoffs
≤0.5, but the largest separation in proteins for each term
group was observed at cutoffs ≤0.1.
As a result of the multivariate analysis, the melt shift p-value

alone was used to further reanalyze these two data sets for
additional comparative analyses with PSM and UP set to
0 and R2 set to 1. The proteins found to have “significant”melt
shifts (p < 0.05) were 15 of 448 for the Kalxdorf data set
(Fig. 4A) and 1025 of 3253 for the Sridharan data set (Fig. 4B).
The large difference in the number of proteins filtered by the p-
value reflects the variability in the values from each data set.
This result also reflects the ability of the quality control limit to
decrease the large number of protein thermal stability
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FIG. 3. Analysis of 2 mM Na-ATP treatment data from Sridharan et al. using design of experiment (DOE). (A), percent of total “All Others”
and ATP-binding proteins as a function of the R2 used as criteria for selection of proteins of interest. B, percent of total “All Others” and ATP-
binding proteins as a function of melt shift p-value criteria with inset showing 0 to 0.05. C, percent of total “All Others” and ATP-binding proteins
as a function of melt shift p-value and the number of unique peptides. Analysis of 1 mM dasatinib treatment data from Kalxdorf et.al. D, percent
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nonkinase and kinase activity proteins as a function of melt shift p-value criteria with inset showing 0 to 0.05. F, percent of total nonkinase and
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changes. Proteins that met these criteria for each of the two
data sets were then further analyzed from a biological
perspective using MF GO terms for the proteins identified in
the data sets. Since the Kalxdorf experiment treated cells with
1 mM dasatinib (a kinase inhibitor), proteins with “Kinase
Activity” or “ATP Binding” terms were identified. Targets that
have been reported for dasatinib (28) were also used to group
melt shifts. The InflectSSP workflow identified approximately
10 to 50% of the proteins from each of these biological cat-
egories (“Kinase Activity”, “ATP Binding”, “Dasatinib Target”).
This same analysis was used for the Sridharan data set which
was collected where cells were treated with 2 mM Na-ATP.
MF terms used to classify sets of proteins in the original
Sridharan report were used in this assessment (Fig. 4B)
including “ATP Binding”, “GTP Binding”, “NAD Binding”, “FAD
Binding”, “RNA Binding,” and “DNA Binding.” As shown in
Figure 4B, 40 to 50% of proteins from each of these terms
also had melt shift p-values <0.05. The number of proteins
that fit these criteria in our analysis were then compared with
the number of proteins that were reported in the Sridharan set
as significantly changed in stability by ATP addition. Note that
Sridharan et. al used a 2D-TPP dataset with multiple con-
centrations of ATP, whereas we analyzed changes at a single
concentration point. Count of proteins with significant stability
changes in categories annotated for ATP Binding, GTP
Binding, NAD/FAD Binding, and RNA/DNA Binding were 285/
315, 40/55, 8/28, 390/82 proteins, respectively, between our
report and by Sridharan et al (20). Generally, these results
indicate that the melt shift p-value of 0.05 provides a good
filter for identifying proteins of interest from a biological
perspective with similar findings in the ATP Binding category
being of particular interest from this study (again 285 detected
as significant in our report compared to 315 in Sridharan et.
al). Of note, InflectSSP had increased sensitivity in the cate-
gories of “RNA/DNA Binding” with 390 proteins with melt shift
p-values <0.05 relative to 82 significant changes in Sridharan
et. al. Since ATP is a nucleotide component of both RNA and
DNA, some proteins which interact with those macromole-
cules can make contacts with free nucleotide as well. Indeed,
ATP has been shown to function as a hydrotrope to maintain
solubility of RNA-binding proteins such as FUS by preventing
fibrillization, which for FUS is associated with a cytotoxic form
of the protein found in amyotrophic lateral sclerosis (29).
Therefore, the increased sensitivity provided by InflectSSP
could be important for identifying additional RNA/DNA-
binding proteins whose stability is altered because of ATP or
other nucleotide-binding events.
To better understand the result of the data filtering process,

individual melt curves were examined further. The rank order
plot of melt shifts from the Kalxdorf data set (from InflectSSP
analysis) is shown in Figure 5A. Proteins with various magni-
tude and significance of melt shifts are highlighted in Figure 5,
B–D. Figure 5B shows the example where the melt shift
magnitude is large coupled with a significant p-value. Yes1, a
SRC family kinase, has been investigated in dasatinib therapy
(30). Figure 5C, melt curves for Siglec7, shows an example of
Mol Cell Proteomics (2023) 22(9) 100630 9
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FIG. 4. Melt shift distribution of quantitated proteins from reanalysis of public datasets. Melt shifts shown are calculated from Kalxdorf
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Optimized Melt Shift Calculation for TPP
a large magnitude shift with a p-value that does not meet
criteria of 0.05. This example in Figure 5C shows why proteins
with large melt shifts (that would normally be considered as
significant) are removed from consideration as a program
output. Finally in the case of Figure 5D, the magnitude of shift
for Ephrin type-B receptor 4 is small, while the p-value crite-
rium is met. This result in Figure 5D, is even more relevant
when it is considered that this protein has ATP binding and
kinase MF according to Uniprot (31). This receptor has also
been reported to be a secondary target of dasatinib (32) and
thus, further provides biological relevance of the findings and
validation of the workflow. Overall, these curves show how the
p-value can assist in the differentiation of melt shifts based on
the associated experiment variability.

Bioinformatic Reporting: STRING Analysis

Since TPP experiments could have 5000 to 10,000 melt
shifts depending on biological system, it may be advanta-
geous in early studies to analyze data sets using bioinformatic
approaches. One bioinformatic tool that has been integrated
into the InflectSSP program is STRING (33). STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) is an on-
line database supported by the STRING Consortium (Swiss
Institute of Bioinformatics, EMBL and others) that reports
protein relationships and interactions that have been reported
or assumed based on other homologous proteins (22). In-
teractions between queried proteins are reported using
network diagrams where the connections between nodes are
determined based on confidence specified by the user. The
confidence in the interactions is based on the number and
type of reports where an interaction is reported. The STRING
database is accessed through InflectSSP using an application
10 Mol Cell Proteomics (2023) 22(9) 100630
program interface and integrates the melt shifts for significant
proteins using a network. An example of the network gener-
ated from the Sridharan et al. data is shown in Figure 6.
Protein nodes for all significant proteins in the results along
with associated interactions and relationships reported
through STRING are shown. Colors of the nodes vary
depending on the melt shift for each protein where deep red
and dark blue are the destabilized and stabilized melt shifts
(respectively) as shown in the legend to the right of Figure 6.
ATP-binding proteins in this figure are shown by the orange
squares and further demonstrate the biological relevance of
the workflow output. This output also suggests that one
possible explanation for some of the melt shifts is an inter-
action between some of the proteins. In the case of MAP2K1,
MAP2K2, and BRAF, the three are all stabilized and have all
been reported to interact with each other based on docu-
mentation in STRING.

Analysis of a Novel Dataset Using InflectSSP

Once we confirmed the suitability of the InflectSSP program
in analyzing publicly available data sets, we applied InflectSSP
to a complex temporal TPP study with ± small molecule in-
hibitor (SMI) treatment. The use of a temporal dataset allows
us to assess reproducibility of SMI target identification over a
larger number of biological replicate conditions while allowing
for identification of temporal changes that occur directly/
indirectly because of SMI response. Our novel TPP dataset
interrogates cellular response to 1 μM thapsigargin, a SER-
CA2A inhibitor (34) and inducer of the UPR (35). The UPR is
one of the mechanisms by which eukaryotic cells can address
the presence of unfolded protein(s) in the ER through slowing
of global translation, increasing abundance of select proteins
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and if necessary, driving apoptosis (36). The goal of this
experiment was to induce the UPR with an SMI and quantify
changes in protein stability over time. In this experiment,
adherent cultures were treated with 1μM thapsigargin (in
DMSO) over 1, 3, or 6 h along with a DMSO control. The
treatments were conducted in biological duplicate after which
the cells were harvested, lysed, and supernatant heat treated
over an eight temperature gradient. The post heat treatment
samples were processed through reduction, alkylation, and
LysC digestion followed by multiplexing using TMTPro within
a 16-plex and analysis by LC-MS/MS. Protein abundance
across the treatments and melt temperatures are summarized
in supplemental Fig. S7. Following database search and
calculation of total ion abundances, normalized abundance
values from our experiment were then processed through the
InflectSSP pipeline. The DMSO 1 h dataset (n = 2) was used as
the control in the pipeline with each of the three time point
datasets obtained following thapsigargin treatment. The melt
shifts at each time point for the thapsigargin target, SERCA2A,
are shown in Figure 7, A–C. Each set of melt curves for this
protein show reproducible increased stability relative to
DMSO. Rank order plots from InflectSSP for the 1-h and 6-h
data sets are shown in Figure 7, D and E. These plots show
the change in melt shift of significant proteins from the 1 to 6-h
time frame. One explanation for this observation is that post
treatment, cellular proteins are initially engaged by either
chaperones or degradation receptors during the initial
stressed state following 1 μM thapsigargin treatment. Over the
6-h period, the UPR allows proteins to be either degraded or
folded resulting in a change in overall protein stability across
the proteome. An upset plot with the number of overlapping
proteins over the 1-, 3-, and 6-h experiments is shown in
Figure 7F. The large number of overlapping stabilized proteins
common to the three time points (222, ~10% of all stabilized
proteins) reflect a set of proteins with a consistent response to
the treatment over the 6-h time period. Also of note, 44% of all
Mol Cell Proteomics (2023) 22(9) 100630 11
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stabilized proteins were reproducibly detected in the one- and
3-h time points. These data suggest that some of the intial
protein-level responses to 1 μM thapsigargin treatment is
resolved by 6 h (Fig. 7F). This resolution or change in levels of
stress induction are reinforced by results from another lab
where HEK293 cells were treated with thapsigargin over a time
course of 0 to 30 h with intervals of ~4 h (37). In Lin et al., there
was reduced activation of UPR sensor (ATF6) with prolonged
ER stress and reduced abundance of other downstream UPR
targets such as CHOP, BiP, and ATF4. STRING networks were
also generated using InflectSSP (Fig. 7, G–I) for proteins with
melt shifts >3.5 C along with reported or predicted interactions
that were also changing (using interaction score cutoff in
STRING of 0.99). As expected, based on the rank order plots,
the number of nodes in these diagrams decreases over the 6-
h period. It can also be seen that there are some nodes that
consistently appear in all three outputs. One group of proteins
that is present in the 1-, 3-, and 6-h reports are FAF2, UBAC2,
and AMFR (highlighted in the orange squares). FAF2 (or
UBXD8) has been reported to play an important role in the ER-
associated degradation process (ERAD) (38). FAF2 also has
12 Mol Cell Proteomics (2023) 22(9) 100630
been reported to interact with UBAC2 to affect trafficking of
FAF2 from the ER (39). The E3-ligase AMFR has then also
been shown to interact with UBAC2 in the degradation of
particular targets (40). Altogether, the consistent trend to-
wards stabilization of proteins in our data set and the reso-
lution of cellular responses over the time course likely reflects
the biological responses to the SMI including reduction of
translation and degradative type responses that occur during
treatment with the UPR inducer Tg (37, 41). Overall, the
thapsigargin TPP time course experiments clearly illustrate the
utility and reproducibility of the InflectSSP workflow in
detecting protein stability changes in a complex temporal
dataset following SMI treatment.

FDR Correction

In the work described herein, we employed FDR correction
in the calculation of melt shift p-values but did not always use
adjusted p-values for target prioritization or designation of a
data filtering cutoff. As has been discussed by others, the use
of multiple correction testing is not always an easy choice in
proteomic experiments as it can greatly affect the sensitivity of



FIG. 7. InflectSSP output from analysis of TPP time course experiments where HEK293A cells were treated with thapsigargin for 1, 3,
or 6 h or DMSO for 1 h. A–C, melt curves for SERCA2A at (G) 1 h, (H) 3 h, and (I) 6 h relative to DMSO at 1 h. D and E, rank order plots for all
protein melt shifts in the time course experiments where proteins with melt shift p-value <0.05, melt shifts >3.5 ◦C or <−3.5 ◦C are highlighted in
red. Plots are of melt shifts calculated between (D) DMSO at 1 h versus thapsigargin at 1 h, (E) DMSO at 1 h versus thapsigargin at 6 h. F, upset
plot describing overlap of stabilized and destabilized proteins in the three time points in the thapsigargin time course experiment. G–I, STRING
interaction diagrams for proteins with reported interactions, melt shifts >3.5 ◦C or <−3.5 ◦C, and STRING confidence score = 0.99. Diagrams are
for (G) DMSO at 1 h versus thapsigargin at 1 h, (H) DMSO at 1 h versus thapsigargin at 3 h, (I) DMSO at 1 h versus thapsigargin at 6 h. Orange
boxes in all three interaction diagrams highlight ERAD protein interactions that are present in all three data sets. ERAD, ER-associated
degradation process; TPP, thermal proteome profiling.
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analysis (42). The FDR correction is also useful when simul-
taneously conducting a large number of hypothesis tests (i.e
GWAS experiments) (43). In our hypothesis testing, we are
only comparing the melt shift of single proteins between two
conditions (and not relative shifts between all proteins in the
dataset). Consequently, we were confident in our choice to
limit use of FDR in p-value correction. To further explore the
utility of FDR in our studies, we investigated the type of pro-
teins that were observed as significant with and without FDR
correction. We used proteins of interest along with STRING to
determine the impact of correction. This analysis is summa-
rized in supplemental Fig. S8A. When FDR correction was
used, we observed that DNA-binding protein RFXANK had a
statistically significant melt shift (supplemental Fig. S8B).
While this protein has no reports of directly being associated
with thapsigargin treatment, the gene has been reported to be
a predicted target of the well-characterized UPR transcription
factor ATF4 (44). When the FDR correction was then turned off
for our analysis, however, we were able to observe several
other proteins that have reported interactions with RFXANK
including SLC35E1 (supplemental Fig. S8C) and MEF2BNB
(supplemental Fig. S8D). In the case of MEF2BNB, this protein
has been associated with the UPR sensor Ire1 (45). SLC35E1
is a transporter that aids in nucleotide-sugar movement
across the ER during glycoprotein formation (46). Observation
FIG. 8. Comparison of InflectSSP outputs with “TPP” program and
(n = 3). A, number of significant proteins identified through InflectSSP and
(B). C, melt coefficient formula that incorporates attributes of melt shift to
for proteins with p-value <0.05 and ≥ 0.05. E, melt coefficient distribution
F, melt curves for protein of interest, MNK1, identified in (E). TPP, therm
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of these melt shifts both with and without FDR correction
helped to confirm that we were able to observe biologically
relevant proteins both with and without FDR correction. Users
are able to use these cutoffs within InflectSSP in a customized
manner to provide a high degree of flexibility for analysis of
TPP datasets.

Comparison of InflectSSP with TPP Analysis Program and
Calculation of Melt Coefficient

We were next interested in comparing the results from
InflectSSP with those that are reported using the previously
reported open-source R package, “TPP” (18). We analyzed
our 1-h data set using both InflectSSP along with TPP version
3.22.1. To increase the number of replicates for analysis, we
generated an additional biological replicate for the 1 μM
thapsigargin treatment at the 1 h time point (n = 3). Since the
“TPP” program uses multiple correction testing in its calcu-
lation of melt shift p-values, we also used the FDR optional
function in execution of InflectSSP to keep the comparison
equivalent. As shown in Figure 8A, the number of proteins
identified as significant (adjusted p-value <0.05) was 1 for the
“TPP” workflow, while InflectSSP observed a total of 11 sig-
nificant proteins with no overlap in significantly changing
protein melt shifts observed between the computational
workflows. One of the proteins observed to be significantly
integration of “melt coefficient”. 1 h thapsigargin experiment used
“TPP”. Melt curves for SERCA2A (target of thapsigargin) by InflectSSP
quantify significance of a melt shift. D, distribution of melt coefficients
with associated relevant GO terms for proteins with melt p-value <0.05.
al proteome profiling.
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stabilized by InflectSSP (no significance in “TPP”) was the
well-described target of thapsigargin, SERCA2A. The melt
curves for this protein are shown in Figure 8B (with full output
in supplemental Fig. S9). The melt curves generated by the
“TPP” program for SERCA2A are shown in supplemental
Fig. S10 and demonstrate that change in stability of this
protein is not observed when using the “TPP” program. One
potential reason for the disparity in results (at least for SER-
CA2A) is that each workflow determines the melt temperature
differently. In the case of InflectSSP, the melt temperature is
the inflection point in the curve while in the case of TPP, it is
temperature at 0.5 abundance. As we have described in pre-
vious work (13), the definition of melt can contribute signifi-
cantly to the identification of proteins in a TPP experiment and
thereby alter the determination of melt shift significance.
The 1-h thapsigargin dataset was also analyzed without

FDR correction to reduce the potential for loss of biologically
significant changes (i.e., false negatives). When this analysis
was done, there were a significant number of proteins of in-
terest, and we wanted to determine whether we could rank
order the proteins based on the “quality” of their melts. To
answer this question, we incorporated a melt coefficient
calculation into the InflectSSP program (calculation shown as
Fig. 8C) that accounts for mass spec data quality consider-
ations, melt shift magnitude, curve correlation, and melt shift
p-value. We used the calculated coefficient from InflectSSP to
distinguish which shifts had the strongest data supporting
statistical significance. A comparison of the “melt coefficients”
for proteins with melt shift p-values <0.05 and ≥ 0.05 (non-
adjusted) is shown in Figure 8D. As shown in this panel, the
average melt coefficient for the melts with p-value <0.05 are
indeed higher than proteins with nonsignificant melts as ex-
pected. We also observed that the protein with the highest
melt coefficient was SERCA2A, the target of thapsigargin.
Since 1 μM thapsigargin treatment affects calcium through
impact on an ATP binder in the ER, we were curious whether
related GO terms could be observed in the proteins with p <
0.05. As seen in Figure 8E, many proteins with high melt co-
efficients and GO terms associated with “Calcium”, “ATP
Binding,” and “Endoplasmic Reticulum” were observed
consistent with the known function of the thapsigargin target
SERCA2. One of the proteins with a high coefficient in both
the “Calcium” and “ATP Binding” categories was MNK1,
Figure 8F (with full output in supplemental Fig. S11). MNK1 is
a MAP kinase that plays a role in protein translation through its
interaction with cap-binding protein eIF4E (47). This finding
affords a biological linkage with both calcium and the UPR
through a drug that affects both by its inhibition of SERCA2.
MNK1 has been implicated in Ca++ signaling and translational
control including phosphorylation of mRNA cap-binding pro-
tein, EIF4E (48). It has been previously reported that MNK1
phosphorylation levels increase following thapsigargin treat-
ment (49). Phosphorylation can impact protein stability in
some cases (9), but changes in MNK1 phosphorylation have
not previously been associated with a change in its thermal
stability. Our findings using InflectSSP provide new insights
into SMI mechanism of action with MNK1 showing biophysical
state changes as a consequence of thapsigargin treatment.
These results helped to support the utility of the melt coeffi-
cient in designating proteins of interest through prioritization
of the InflectSSP output.
DISCUSSION

TPP experiments and their associated results offer great
potential for identification of intracellular changes to proteins
and complexes; however, the data remains challenging to
analyze and interpret because of the large number of potential
variables that could have an impact on the final list of signif-
icant hits. In this work, we have sought to focus our analysis
on the cutoff metrics that show clear impact on the sensitivity
and selectivity of likely functional hits within the proteome. Our
InflectSSP workflow is one methodology that can be used to
calculate melt shifts from an experiment and then determine
which shifts are significant from a statistical perspective. Our
use of z-score with associated p-value calculation for bio-
logical replicate analysis provides an objective method for
ascertaining the significance of a melt shift. This p-value is a
valuable quality control criteria that we have shown improves
the selectivity of the data analysis pipeline. We have also
added peptide, PSM, and curve fit correlation limits to our
workflow so that a user can vary the quality control filters in
the analysis of experiments if desired. Unique bioinformatic
tools have also been integrated into our workflow that allow
for potential groups of targets and/or downstream effectors
from TPP and related experiments to be rapidly identified.
Finally, a “melt coefficient” calculation as incorporated into our
program to further aid in identification of proteins of interest
based on the quality of their melts. Three data sets have been
used in our assessment of this R-based program, and results
using these data sets help to validate the approach as an
essential tool for TPP data analysis. Our results show changes
in stability of proteins that are biologically relevant to the
respective data set experiments. In the case of the novel
thapsigargin dataset from our group, we have shown benefits
of our analysis workflow as compared to the publicly available
“TPP” program. Specifically, we observe the stabilization of
MNK1 in the thapsigargin experiment. The melt coefficient
calculations developed for InflectSSP show remarkable
specificity for identification of this small molecule target
SERCA2 in our UPR studies. Additional changes were also
detected using the melt coefficient calculation and an FDR
adjusted p-value cutoff that includes MNK1. MNK1 has not
been previously implicated in SERCA2-dependent signaling or
in the mechanism of action for thapsigargin. However,
knockout of MNK1 has been shown to upregulate SERCA2
Mol Cell Proteomics (2023) 22(9) 100630 15
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mRNA levels in adipose tissue (50), suggesting that they may
have a functional connection. MNK1 is also the primary kinase
responsible for eIF4E phosphorylation at Ser209 (51). Thap-
sigargin is known to induce the UPR through alteration of
Ca++ homeostasis in the ER; however, our findings could
suggest that MNK1 is a downstream effector of thapsigargin.
This is intriguing since MNK1-dependent phosphorylation of
eIF4E Ser209 has been shown to be required for preferential
translation of ATF4 (52), a transcription factor that is canoni-
cally translated during the UPR.
Future work that could improve on this existing data pro-

gram would include incorporation of multiple treatments in the
analysis. The current version of InflectSSP allows for com-
parison of a single treatment with a single vehicle condition.
The use of multiple treatments is a common strategy in TPP
experiments and would therefore be a useful feature of an
analysis pipeline. Incorporation of other melt determination
strategies (i.e. nonparametric) would also be valuable for the
InflectSSP pipeline.
InflectSSP is available at https://CRAN.R-project.org/

package=InflectSSP with instructions on how to use the
program in supplemental Fig. S12. Example outputs for the
program are highlighted in supplemental Fig. S13.
DATA AVAILABILITY

RAW files, proteomics analysis results along with
supplemental LC-MS/MS experiment information from the
Thapsigargin data set (including .pdResult, .mzTab, .mzML,
and .raw files) have been deposited into the MassIVE archive
under accession number MSV000090867, doi:10.25345/C5
VM4325J and in ProteomeXchange under PXD038752. The
abundance values for this dataset are also included as
Supplement_PDResults_Timecourse.xlsx.
A searchwasalsocompletedonall of the1-hexperiment data

(including the third biological replicate). RAW files and search
results from this analysis can be found in MassIVE repository:
MSV000090932, ftp://massive.ucsd.edu/MSV000090932/.
The abundance values for this dataset are also included as
Supplement_PDResults_1Hr.xlsx.
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