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Summary
Background The cause and symptoms of long COVID are poorly understood. It is challenging to predict whether a
given COVID-19 patient will develop long COVID in the future.

Methods We used electronic health record (EHR) data from the National COVID Cohort Collaborative to predict the
incidence of long COVID. We trained two machine learning (ML) models — logistic regression (LR) and random
forest (RF). Features used to train predictors included symptoms and drugs ordered during acute infection, measures
of COVID-19 treatment, pre-COVID comorbidities, and demographic information. We assigned the ‘long COVID’
label to patients diagnosed with the U09.9 ICD10-CM code. The cohorts included patients with (a) EHRs reported
from data partners using U09.9 ICD10-CM code and (b) at least one EHR in each feature category. We analysed
three cohorts: all patients (n = 2,190,579; diagnosed with long COVID = 17,036), inpatients (149,319; 3,295), and
outpatients (2,041,260; 13,741).

Findings LR and RF models yielded median AUROC of 0.76 and 0.75, respectively. Ablation study revealed that drugs
had the highest influence on the prediction task. The SHAP method identified age, gender, cough, fatigue, albuterol,
obesity, diabetes, and chronic lung disease as explanatory features. Models trained on data from one N3C partner and
tested on data from the other partners had average AUROC of 0.75.

Interpretation ML-based classification using EHR information from the acute infection period is effective in pre-
dicting long COVID. SHAP methods identified important features for prediction. Cross-site analysis demonstrated
the generalizability of the proposed methodology.
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Research in context

Evidence before this study
Studies in the literature estimate that 10–70% of Coronavirus
Disease 2019 (COVID-19) patients may go on to develop
post-acute sequelae of Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection (PASC or long
Coronavirus Disease (long COVID)) subsequent to their initial
infection. However, standard definitions of long COVID are
just beginning to emerge and are yet to be widely adopted in
studies or clinical guidelines. Hence the prognosis of long
COVID in COVID-19 patients is a challenging task. We
searched PubMed for studies published during or after 2020
that proposed data-driven computational methods for long
COVID prediction. There were two studies (PMID 33692530
and 35589549) that leveraged machine learning to identify
potential long COVID patients. However these studies defined
long COVID labels based on self-reported diagnoses or visits
to specialised long COVID clinics, both of which are unreliable
markers of the disease. Additionally, one of the studies
trained models with EHR data from up to a year after the
acute infection, which possibly contained signals relevant to
long COVID. We did not identify any existing publications that
used information only from the acute SARS-CoV-2 infection
phase or the reliable U09.9 ICD10-CM code to predict the

occurrence of long COVID in COVID-19 patients. Besides, there
were no studies that evaluated the impact of disparate data
sources on the performance of the prediction models.

Added value of this study
Unlike previous publications, we labelled patients diagnosed
with U09.9 ICD10-CM code as long COVID patients and used
only information from the acute SARS-CoV-2 infection to
define features. Logistic regression and random forest models
predicted the occurrence of long COVID in COVID-19 patients
with high area under receiver-operating characteristic. The
performance of models trained on data from one N3C partner
and tested on data from the other partners was on par with
the classifiers trained on data from all sources. This cross-site
analysis provides suggestive evidence for the generalizability
of the prognosis methodology proposed in this study.

Implications of all the available evidence
Machine learning models trained using information from the
electronic health records of COVID-19 patients during the
acute infection phase can effectively predict the future
occurrence of long COVID and highlight informative
predictors.
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Introduction
Acute Coronavirus Disease 2019 (COVID-19) is char-
acterised by upper respiratory and systemic symptoms,
and may be complicated by pneumonia, hyper-
inflammation, hypoxemic respiratory failure, a pro-
thrombotic state, cardiac dysfunction, and kidney
injury.1,2 Patients with COVID-19 have reported the
persistence of cardiovascular, respiratory, psychiatric,
and other heterogeneous symptoms including dyspnea,
cough, chest pain, muscle pain, joint pain, headache,
arthralgia, myalgia, fatigue, post-exertional malaise or
poor endurance, fever, “brain fog” or cognitive impair-
ment, paresthesia, insomnia, anosmia, dysgeusia, mood
alterations, palpitations or tachycardia (which may be
postural/orthostatic), lightheadedness, abdominal pain,
diarrhoea, menstrual irregularities, altered sense of
smell and/or taste, hair-loss, hoarse voice, and rash.3–5

Approximately 10–20% of COVID-19 patients may
experience these protracted symptoms.6 Some of these
symptoms persist for months or emerge after a delayed
onset of several weeks.7–9 The diagnostic labels that refer
to this long-term symptom pattern include “long Coro-
navirus Disease (COVID)” (used in this paper), “long-
haul COVID”, “post-acute sequelae of Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection (PASC)”, or “post COVID-19 condition” as
named by the World Health Organization (WHO).8–14

Currently there is no widely accepted standard defi-
nition of the long COVID condition in terms of the
symptoms that have developed or persisted, or the time
period during which they are manifested.5,7,8,12,13,15–18

Some patients with long COVID experienced only
mild symptoms or were asymptomatic during the acute
phase of infection. The diagnosis of long COVID is
convoluted due to the lack of clarity about it.14 Thus, the
definition of ground-truth labels and predicting whether
a given COVID-19 patient will go on to develop long
COVID in the future is a challenging task.7,17,19

There are several studies that analyse symptoms and
risk factors associated with long COVID.5,7,8,11,20 There
are two published prediction models that identify long
COVID patients in a cohort of COVID-19 patients.7,13

The model by Sudre et al.13 relied on data entered by
the users of a mobile application. Hence, its participants
were not a representative sample of the COVID-19 pa-
tient population. In addition, the data is self-reported by
the application users and may thus be prone to inac-
curacies and inconsistencies. Pfaff et al.7 identified long
COVID patients as those who sought care in specialised
long COVID clinics at health institutions. However,
there is no guarantee that these clinic visits may result
in a long COVID diagnosis. In contrast, we identified
long COVID patients using a more reliable marker —

the “U09.9 (Post COVID condition, unspecified)” code
introduced in 2022 into the widely accepted Interna-
tional Classification of Diseases, Tenth Revision, Clin-
ical Modification (ICD-10-CM).12,21 As stipulated by the
ICD-10-CM ontology, this code represents conditions
www.thelancet.com Vol 96 October, 2023
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related to COVID-19 such as chronic respiratory failure,
loss of smell, loss of taste, multisystem inflammatory
syndrome, pulmonary embolism, and pulmonary
fibrosis during the post-COVID-19 infection period.22

Pfaff and colleagues7 drew features from an extensive
time window — from a year before the index COVID-19
infection to a year after it. Thus, the patient data they
used in their predictive model may have contained sig-
nals of long COVID. In order to maximise the clinical
utility of prediction, it is imperative that a predictive
model designed to identify COVID-19 patients with a
high risk for long COVID, relies primarily on data
gathered during the acute SARS-CoV-2 infection.5,15

In this cohort study, we leveraged pooled harmon-
ised electronic health records (EHRs) from the Na-
tional COVID Cohort Collaborative (N3C).23 The
demographic information including age and gender of
the patient base cohorts (Fig. 1, Methods: Patient
Cohort Definition) is in Supplementary Table S1. We
collected features during the acute phase of the disease
(defined in our work as the 21-day period following the
Fig. 1: Definition of all patient, inpatient, and outpatient cohorts. The
patients. The dataset used for training and testing the prediction models co
at least one record in any of the five feature categories— comorbidities, dru
these COVID-19 positive patients, the number of long COVID patients, i.e.

www.thelancet.com Vol 96 October, 2023
initial COVID-19 infection). Features included symp-
toms experienced by the patients, drugs ordered for
them, measures of the treatment they received during
their COVID-19 hospitalisation period (if applicable),
patient demographics, and their comorbidities prior to
COVID-19 infection. We implemented and compared
the performance of logistic regression (LR) and
random forest (RF) classification models in long
COVID prognosis. These methods have been used
extensively in medical applications.24,25 While LR is a
simple, linear method, tree-based RF can capture
nonlinear relationships between input features and
target variables.

The principal contributions of this work are as fol-
lows— (i) We used the largest COVID-19 dataset to date
to define a patient cohort that was reliably characterised
and sufficiently large to support robust conclusions, and
(ii) rigorously defined long COVID diagnosis using only
the U09.9 code. (iii) While we trained machine learning
(ML) models using balanced datasets, we used imbal-
anced test data to accurately reflect the prevalence of
number of patients at each stage of the definition of the cohort of all
nsisted of 2,190,579 patients (data from 39 data partner sites) having
gs, symptoms, demographics, and measures of COVID-19 treatment. Of
, diagnosed with ICD-10-CM code U09.9, was 17,036.
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long COVID in patients and avoid incurring the bias
induced by artificially balanced test sets.26 (iv) We per-
formed a cross-site analysis to validate the general-
isability of our modelling framework across institutions.
(v) We pooled interpretations of ML explanation tech-
niques to explain the model predictions.
Methods
Data source
The N3C is an effort to collect, share, and analyse clin-
ical data on COVID-19 in a secure and standardised
manner.23 This EHR data comprises COVID-19 symp-
toms, health conditions, laboratory test results, medi-
cations, procedures administered to patients,
information on patient mortality, and other observations
and measurements such as blood pressure or oxygen
saturation in arterial blood. It also includes de-
mographic information such as age, sex, height and
weight, race, and ethnicity. This database contains the
largest cohort of COVID-19 cases in the United States1

including medical history dating back to January
2018.27 This data is hosted by the N3C Data Enclave and
made available for public access through the secure data
science platform Palantir Foundry.23 As of June 24,
2022, the N3C Data Enclave had records on 14.3 million
people (including 5.6 million COVID positive cases)
from 74 data partner sites.28 For this study, we used de-
identified data in which each patient’s dates of service
are algorithmically shifted up to six months earlier or
later than the true date, and ZIP codes are truncated to
the first three digits.29 All dates in the EHRs pertaining
to an individual are shifted consistently. Thus, the
shifting does not compromise the acute infection phase
defined in this study (Methods: Patient Cohort Defini-
tion, Symptoms during Acute COVID-19 Infection).

Patient Cohort Definition
We created patient cohorts and labelled long COVID
patients in a systematic manner from the N3C dataset as
of June 24, 2022. Our COVID-19 positive population
comprised patients who satisfied one or more of the
following criteria: (i) a positive SARS-CoV-2 reverse
transcription-polymerase chain reaction (RT-PCR) test,
(ii) a positive antigen test, or (iii) a positive COVID-19
diagnosis, i.e., patients with at least one record with
the ICD-10-CM code “U07.1 (COVID-19)”.30 This cohort
had 5,687,589 patients across 73 data partner sites.
However, only 39 data partner sites reported patients
diagnosed with the ICD-10-CM U09.9 code, which cor-
responds to long COVID. After restricting our study to
data reported by these 39 data partner sites, and
excluding patients whose death had been recorded in
the database (COVID-19 infection may not be the cause
of death), the base population consisted of 2,190,579
patients. We subdivided the base population into three
groups: (i) inpatients: patients who were hospitalised
during the period starting from a day prior to the
COVID-19 index date (the earliest date when that patient
tested positive for COVID-19) to 16 days following the
diagnosis date (n = 149,319), (ii) outpatients: all other
patients (n = 2,041,260), and (iii) all patients
(n = 2,190,579): the union of inpatient and outpatient
groups. The final cohorts consisted of patients with at
least one record in at least one of the five feature cate-
gories (Fig. 1, Supplementary Table S2 (Patient Counts);
Methods: Feature Categories, Feature Combinations).

Five N3C data partner sites supplied information
about patients visiting that site’s local long COVID
speciality clinic one or more times. However, a visit to
such a clinic could be related to symptoms ultimately
attributed to another medical condition that predated or
followed COVID-19 infection. Since the symptoms of
long COVID are highly non-specific, some long COVID
clinics accept “self-referrals” in the absence of a prior
medical assessment for long COVID, and long COVID
is a diagnosis of exclusion. Thus, we elected to restrict
the category label on which our algorithms were trained
to those patients with a confirmed U09.9 diagnosis code
(Yes = 1/No = 0) at institutions that had embraced the
use of this code. Since this code initially came into use
in October 2021, we acknowledge that our analysis has
likely missed patients with long COVID that had been
diagnosed prior to that time, but this bias was mitigated
by having confined our analysis to centres that adopted
use of this code. Therefore, we defined long COVID
patients (positive samples, n = 17,036) as those having
EHRs associated with the 2022 ICD-10-CM diagnosis
code U09.9.22 All other patients from the base popula-
tion were non-long COVID patients (negative samples,
n = 2,173,543).

Feature Categories
used a diverse set of features to train models to predict
the occurrence of long COVID. They belonged to the
following five categories: comorbidities, symptoms
during acute COVID-19 infection, drugs, de-
mographics, and measures of COVID-19 treatment
(Supplementary Table S2 (Feature Counts)). Unless
mentioned, every feature is categorical. Exceptions
include numerical features such as age at the time of
COVID-19 diagnosis and length of stay in hospital for
COVID-19 treatment.

Comorbidities
This set of features included the conditions listed in the
Charlson Comorbidity Index31 and the preexisting
medical conditions identified by the Centers for Disease
Control and Prevention (CDC) as making patients prone
to a severe SARS-CoV-2 infection.32 Each feature had a
value of 1 if the patient had a condition or observation
related to the comorbidity on or prior to the COVID-19
index date; otherwise, the value was 0 (Supplementary
Table S3 (Comorbidities)).
www.thelancet.com Vol 96 October, 2023
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Symptoms during acute COVID-19 infection
The second set of features we considered were symp-
toms experienced by a patient after the COVID-19
diagnosis and during the acute infection phase. We
defined this phase differently for inpatients and for
outpatients.8 For an outpatient, we defined it as starting
at the COVID-19 index date and ending at 21 days after
this date. We used the same duration for an inpatient
as well, unless the patient was treated in the hospital
for more than 21 days; in this case, we ended the phase
on the discharge date. This definition excluded symp-
toms experienced by a patient long after the acute
infection phase, which may be a manifestation of long
COVID.8

The symptoms feature category is different from the
comorbidities category. Symptoms capture the condi-
tions experienced by a patient during the acute infection
phase, whereas comorbidities were conditions that a
patient had at any time on or before the COVID-19 in-
dex date. A feature identified in the symptoms category
may or may not be a comorbidity. The intent was to
separate the existing health conditions in COVID-19
patients from the symptoms experienced by them dur-
ing the acute infection.

In the N3C, Observational Medical Outcomes
Partnership (OMOP) standard condition concepts are
encoded using the Systemized Nomenclature of Med-
icine (SNOMED) vocabulary. We used mappings be-
tween OMOP and Open Biomedical Ontologies
(OMOP2OBO) to map the SNOMED concepts to the
Human Phenotype Ontology (HPO).33 Translating the
disease conditions to HPO terms may help to better
analyse long COVID.8 For each HPO term and patient,
we assigned a value of 1 if the patient experienced the
symptom corresponding to that HPO term during the
acute infection phase; else the value was
0 (Supplementary Table S3 (Symptoms)).

Drugs
These features indicate the drugs ordered for the pa-
tients during the acute infection phase. We did not
take into account why a drug is recorded in the EHRs,
thus allowing any drug ordered or consumed for the
treatment of a pre-existing condition or for SARS-
CoV-2 infection to be considered as a feature. The
harmonisation of vocabularies in N3C causes the
same drug consumed in different dosages, adminis-
tered through different methods, or manufactured
and sold under different brand names to be recorded
as separate concepts or entities. Thus, we grouped the
drugs based on their active ingredients information in
the N3C. A patient had a value of 1 for a drug group if
there existed at least one drug record for that patient,
during the acute COVID-19 infection, corresponding
to any of the drugs mapped to that group, and
otherwise a value of 0 (Supplementary Table S3
(Drugs)).
www.thelancet.com Vol 96 October, 2023
Demographics
Demographic information about a patient included age at
the time of COVID-19 diagnosis and gender. While the
age of the patient is a single numeric feature, gender was
represented using multiple binary valued features using
one-hot encoding. We used a feature called “Gender–
Unknown” to record patients whose gender was not
available (Supplementary Table S3 (Demographics)).

Measures of COVID-19 treatment
This set of features corresponded to aspects of the
COVID-19 treatment for inpatients during the hospi-
talisation for COVID-19. These included the length of
stay in the hospital and indicators to state whether
Intermittent Mandatory Ventilation (IMV), Extracorpo-
real membrane oxygenation (ECMO), Remdesivir (the
drug) was administered to the patients (Supplementary
Table S3 (Measures of COVID-19 Treatment)).

Feature Combinations
We constructed multiple datasets involving 15 different
combinations of the feature categories described above for
each of the three patient cohorts (Supplementary Method:
Ablation Study Dataset Construction, Supplementary
Table S2 (Ablation Study Feature Counts)). We trained
and tested long COVID prediction models on each of
these datasets and analysed the importance of different
types of features in building a robust classifier.

Model training, evaluation, and interpretation
Fig. 2 illustrates our complete pipeline for predicting long
COVID in COVID-19 patients. We trained and evaluated
LR and RF models independently using each of the three
patient cohorts and the features defined above. Each
experiment performed in this study involved ten (hold-
out) iterations of the pipeline shown in Fig. 2.

Stratified hold-out
In each iteration, we used stratified hold-outs to obtain an
unbiased evaluation. We used 80% of every dataset for
training and the remaining 20% samples for testing
(evaluation). The ratio of positive to negative samples in
the training and test datasets was the same as in the
original dataset. Since the all-patient cohort was highly
skewed with only 0.78% positive samples (Fig. 1), we
subsampled the training dataset to have almost equal
number of positive and negative samples to reduce the risk
of overfitting. However, we did not rebalance the testing
dataset.

Feature selection
Due to the heterogeneity in the data, many features were
present in a small set of patients. Examples of such
rarely occurring features were Down’s syndrome before
COVID (prevalence = 0.02%), neck pain during the
acute COVID-19 infection (0.10%), tuberculosis before
COVID (0.20%), and oxytocin (0.26%).
5
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Fig. 2: Long COVID prediction pipeline. Overview of the classification pipeline implemented for the prediction of long COVID.
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To avoid any potential bias induced by such features,
we used the training dataset to implement two levels of
filtering. First, we used only those features present (i.e.,
there were patients associated with the feature) in at least
1% of the patient cohort. We settled on this threshold of
1% through trial and error to avoid filtering a large
number of features in the very first stage. Second, we
used the Boruta feature selection algorithm to select all
the features that were relevant34 for the long COVID
prediction task (Supplementary Table S4 (Prevalence and
Boruta)). In every iteration, we applied the Boruta method
on the training split to select features which we then used
to train and test the prediction models in that particular
iteration. Note that Boruta method may select different
subsets of features in every iteration. Among the 86
features for all patients, Boruta algorithm selected a
median of 38 features across the ten iterations. We nar-
rowed down the features in the inpatient and outpatient
cohorts using the same selection process.

Hyperparameter selection
We performed grid search35 using the training dataset to
find the optimal hyperparameter values that maximised
accuracy in a nested five-fold cross validation36

(Supplementary Table S5 (Hyperparameter Search)).
We retrained the classifier, with the chosen hyper-
parameter values, on the entire training dataset and
tested on the imbalanced, unseen testing dataset.

Evaluation
We compared the performance of the models trained on
balanced datasets based on their ability to classify imbal-
anced testing datasets (Supplementary Table S2 (Dataset
Splits)). We computed the area under receiver operating
characteristic curve (AUROC) and the area under
precision–recall curve (AUPRC) and reported the median
and inter-quartile range (IQR) over the ten iterations.

Explanation and interpretation
We used the SHAP (SHapely Additive exPlanations)37,38

method to interpret each model prediction. This tech-
nique uses game theoretic principles to compute, for
every patient, the contribution of each feature toward
the prediction for the patient. Further, for each iteration,
we computed the mean absolute value of the SHAP
values of every feature over all test set samples in that
iteration. We used these aggregated local interpretations
to explain the overall model.

To draw further interpretable insights from the
predictions, we analysed the SHAP values of individual
test examples sampled randomly from the set of true
positives, false positives, true negatives, and false neg-
atives (Supplementary Methods: SHAP interpretation
analysis) for the LR model.

Statistics
In the ablation study, we trained models with different
combinations of feature categories. We compared the
AUROC scores over ten iterations of the LR and RF
models on datasets with and without drug features us-
ing the Wilcoxon signed-rank test. For both models,
non-parametric statistical tests yielded p-value <0.0001.

In the cross-site analysis, we used the Wilcoxon Rank
Sum test to compare the AUROC scores of the models
trained on EHRs from only data partner 1, only data
partner 2, and from all data partners. The testing dataset
included all remaining data samples in the final patient
cohort. This non-parametric statistical test compared the
www.thelancet.com Vol 96 October, 2023
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statistical significance of the difference between two or
more sets of populations. We observed varying p-values
for different combinations of comparisons of the three
populations. We performed this test for all patients, in-
patients, and outpatients (Supplementary Table S8 (Sta-
tistical Test Results)).

Role of funding sources
The funding sources did not have any role in study
design, data collection, data analyses, interpretation, or
writing of the report.

Ethics
Participating institutions transfer electronic health records
to the National Center for Advancing Translational Sci-
ences (NCATS) under the Health Insurance Portability
and Accountability Act (HIPAA). The data transfer is
performed under a Johns Hopkins University Reliance
Protocol #IRB00249128 or individual site agreements with
National Institutes of Health (NIH). The N3C maintains
this data in the N3C Data Enclave. Related information is
available at https://ncats.nih.gov/n3c/about.
Results
Long COVID prediction
For each classifier (LR and RF), we trained and tested
ten separate models (ten iterations) using the three co-
horts (all patients, inpatients, and outpatients) curated
Fig. 3: Evaluation of long COVID prediction models in all three patient
iterations of long COVID classification using logistic regression and rando
boxplot, the lower endpoint, the line in the middle, and the higher endpoi
whiskers span 1.5 times the interquartile range. Diamonds denote values o
of a random predictor in the all-patient cohort.

www.thelancet.com Vol 96 October, 2023
using five categories of features. LR and RF had virtually
the same performance in all three cohorts (Fig. 3(a),
Supplementary Figure S1, Supplementary Table S6
(AUROC)) with median AUROC and IQR between
0.74 (IQR = 0.01) and 0.77 (IQR = 0.01), and median
AUPRC and IQR between 0.02 (IQR = 0.00) and 0.08
(IQR = 0.01) (Fig. 3(b), Supplementary Table S6
(AUPRC)). Both models yielded lowest AUROC and
AUPRC scores in outpatients.

Ablation Study
For each cohort, we compared performance of the
classification models when trained and tested with 15
different combinations of one or more features cate-
gories to assess the importance of individual feature
categories (Methods: Feature Combinations;
Supplementary Figure S2; Supplementary Table S6
(Ablation Study–AUROC, Ablation Study–AUPRC)).
The models trained with combinations including drugs
achieved higher AUROC (Fig. 4; p-value <0.0001, Wil-
coxon signed-rank test).

Feature importance
We plotted the distribution of the mean absolute SHAP
values for every feature selected in at least five of the ten
iterations for the LR (Fig. 5) and RF (Supplementary
Figure S3) models in the all-patient cohort.
Supplementary Table S7 and Supplementary Figure S4
contain the mean SHAP values for each feature,
cohorts. Distribution of (a) AUROC and (b) AUPRC scores from ten
m forest models for all patients, inpatients and outpatients. In each
nt denote the first, second, and third quartiles of the distribution. The
utside this range. The grey dotted line represents the expected score

7
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Fig. 4: Importance of drug features in long COVID prediction in all three patient cohorts. The x-coordinate of each point is the AUROC score
of a feature category combination and the y-coordinate is the score of the same combination but after including drug features. Each cohort is
represented by a unique color and has 70 points (seven pairs of feature combinations and ten iterations each). The grey dotted line represents
the x = y line.
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iteration, model, and cohort combination. Across the
samples analysed for interpretation of individual pre-
dictions, a value of one for the following features
influenced the LR model to predict a probability in
favour of developing long COVID. These features
included age, gender, symptoms such as cough and fa-
tigue during the acute COVID-19 infection, comorbid-
ities such as chronic lung disease, depression, diabetes,
kidney disease, and obesity (Supplementary Figure S5).

Cross-site analysis
The data in N3C is procured from multiple data part-
ner sites across the United States. This data is then
harmonised using the OMOP common data model and
made available for analysis. Variability in the data ob-
tained from multiple sources has the potential to
introduce bias in the results and thus can limit the
generalizability of machine learning models trained on
multisource data.39 We performed a cross-site analysis
to gauge the impact of using data from disparate
sources on the performance of our models. The patient
cohorts in this study contained data from 39 N3C data
partners (Fig. 1; Methods: Patient Cohort Definition).
For each of these 39 sites, we counted the number of
long COVID patients (Supplementary Table S2 (Cross-
site Analysis)). The top two contributing data partners
(data partners 1 and 2) reported 2,253 and 1,668 long
COVID patients, respectively, thereby accounting for
23% of the total number of long COVID samples in our
dataset.

We trained models using data from each one of these
two data partners (data partners 1 and 2) independently
and evaluated the models on data from the remaining
sites. Specifically, we built prediction models for each
cohort with training data from only data partner 1. We
then tested these models with data from the 38 other
data partner sites (including data partner 2). We
repeated this process for data partner 2.

For both the institutions, LR and RF yielded compa-
rable median AUROC scores between 0.74 (IQR = 0.01)
and 0.75 (IQR = 0.00) in the all-patient cohort (Fig. 6;
Supplementary Figure S6; Supplementary Table S6
(Cross-site Analysis–AUROC, Cross-site Analysis–
AUPRC)).
Discussion
We predicted long COVID occurrence in COVID-19
patients using EHR data. For this classification task,
we used existing comorbidities in patients, symptoms,
drugs, and measures of treatment during the acute
infection, and patient demographics.

The performance of the RF method was virtually
identical to that of the LR (Fig. 3). While AUROC scores
were promising in all the experiments, the AUPRC
scores were low (Fig. 3), possibly due to the low preva-
lence of long COVID diagnosis in our cohorts. For
example, the RF model had a median AUPRC of 0.04
(IQR = 0.00) in the all-patient cohort (proportion of long
COVID patients in cohort = 0.78%). Thus, the model
was approximately five times better than a random
predictor. Similarly the model outperformed the
random predictor by four times in inpatients (2.21%),
and was three times better in outpatients (0.67%).
www.thelancet.com Vol 96 October, 2023
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Fig. 5: Importance of features in long COVID prediction models. Each row (along the y-axis) corresponds to a feature. The x-axis represents
the mean absolute value of SHAP values of the given feature over all test set samples in one iteration. Each boxplot shows the distribution of
these mean values for one feature across the iterations (maximum ten) in which it was selected by the Boruta method. The features are sorted
in decreasing order of the median of the distribution of their mean absolute SHAP values. In each boxplot, the lower endpoint, the line in the
middle, and the higher endpoint denote the first, second, and third quartiles of the distribution. The whiskers span 1.5 times the interquartile
range. Diamonds denote values outside this range. The legend displays the mapping between feature category and colour.
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Further, we evaluated the same trained models on four
additional testing datasets. These datasets contained
testing records with varying ratios of positive and
negative samples, namely 1:1, 1:2, 1:5, and 1:10. We
observed a decline in the AUPRC scores as the pro-
portion of the negative samples in the testing dataset
increased (Supplementary Figure S7), while the
AUROC scores remained the same (Supplementary
Figure S8). The AUPRC metric captures the imbal-
ance in datasets by accounting for both precision and
recall. On the other hand, the AUROC metric utilises
only the true and false positive rates.

The ablation study helped us compare the value
added by each of the feature categories to predicting
long COVID. Drugs had the highest predictive infor-
mation when compared to the other four feature cate-
gories (Fig. 4). The exclusion of drugs caused an average
decrease of 5.06% in the median AUROC scores of the
models in all patients.
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Prognosis models for complex conditions such as
long COVID are generally built and evaluated using data
from the same source.7,13 However, when they are vali-
dated externally, though seldom, we find large decre-
ments in performance. Those large decrements often
make it unwise to use the models to stratify data from
any institutions other than the training data sites. Thus,
it is important to assess the performance of models
across many data partners, distinct from the training
data sites. These observations motivated our novel cross-
site analysis (Results: Cross-site Analysis). We trained
models on only one data partner (1 or 2) and tested on
data from all other partners. We compared the perfor-
mance of these models with the performance of models
trained and tested on data from all partners. With LR
trained on EHR from only data partner 1, we observed a
decrease in the median AUROC in all patients
(decrease = 1.32%, p-value = 0.0002, Wilcoxon Rank
Sum test), inpatients (18.92%, 0.0002), and outpatients
9
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Fig. 6: Performance of long COVID prediction models in cross-site analysis. Results of cross-site analysis where we train a prediction model
on data from only one data partner site and test on data from all other data partners. Distribution of AUROC values from ten iterations of
prediction using logistic regression and random forest models when the training dataset comprises data from only (a) data partner 1 and (b)
data partner 2. In each boxplot, the lower endpoint, the line in the middle, and the higher endpoint denote the first, second, and third quartiles
of the distribution. The whiskers span 1.5 times the interquartile range. Diamonds denote values outside this range. The grey dotted line
represents the expected score of a random predictor in the all-patient cohort.
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(0.00%, 0.0002). The differences were similar for the RF
model and for both models trained only on data from
partner 2. Although the performance decrements were
statistically significant (Supplementary Table S8 (Sta-
tistical Test Results)), the magnitudes of the decreases
were small for all patients and outpatients, and it was
noticeable for inpatients. This suggested that data from
a single data partner may not sufficiently capture the
variation in inpatients’ data across the N3C due to dif-
ferences in population, care and data quality, and
medical practices, thereby impeding the generalizability
of the prediction models for inpatients.

We computed SHAP37 values of features to analyse
their importance in the prediction task (Fig. 6,
Supplementary Figures S3–S5). Among the top features,
we observed that LR utilised all five types of features
whereas RF did not rely on symptoms to make de-
cisions. 21 features appeared in the top 30 features of
both the prediction models as well as in the local in-
terpretations of individual test samples. These features
included gender, age at COVID index date, severity of
the COVID-19 infection, drugs such as acetaminophen
(prevalence = 10.32%), albuterol (4.58%), remdesivir
during COVID hospitalisation (1.95%), and albuterol
ipratropium (1.05%), and comorbidities such as heart
failure (3.53%), hypertension (21.14%), obesity
(32.70%), kidney disease (6.57%), chronic lung disease
(12.23%), diabetes (16.93%), depression (11.63%), and
coronary artery disease (4.90%).
There are stark differences in the data sources and
types, patient populations, features, and definitions of
long COVID considered in prior studies7,8,13,17,40 that
characterise long COVID. This diversity limits the
extent to which we can directly compare our results to
the existing studies. Nevertheless, there is significant
support for the features we identified as having high
SHAP values. Higher age of patients (feature impor-
tance rank for LR = 2, feature importance rank for
RF = 14), female sex (LR = 1, RF = 29), and treatment
metrics such as severity of COVID-19 infection
(LR = 26, RF = 20) and length of hospitalisation
(LR = 24, RF = 36) are well-known risk factors of long
COVID.4,5,7,13,14 Existing studies validate that chest-pain
(LR = 38, RF = 38)7 has been found to persist in long
COVID patients. Comorbidities such as obesity (LR = 5,
RF = 6), anxiety and/or depression (LR = 7, RF = 24),
dementia (RF = 8), diabetes (LR = 33, RF = 10), kidney
disease (LR = 32, RF = 7), and chronic lung disease
(LR = 6, RF = 11) are risk factors for long COVID.4,5,14,41

Treatments provided during and after the acute COVID-
19 infection such as melatonin (LR = 18)7 and poly-
ethylene glycol 3350 (LR = 36)7 are also indicative of long
COVID.

As in the ablation study, we observed that drugs
played a crucial role in classifying patients. Benzonatate
and guaifenesin are used for respiratory symptoms.
Albuterol is a bronchodilator used for asthma,
wheezing, and respiratory symptoms caused by viral
www.thelancet.com Vol 96 October, 2023
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infections. These drugs have been used on a large scale
for symptomatic relief in COVID-19 infections.42 Dexa-
methasone and prednisone are corticosteroid medica-
tions used to decrease the immune response, which
might have detrimental effects, in COVID-19.43,44 While
the role of corticosteroids in long COVID treatment is
under investigation, these agents may reduce the
symptoms and some of the immunological alterations
present in long COVID.45 Patients hospitalised with
moderate to severe COVID-19 infection have been
treated with corticosteroids and remdesivir.45–50 While
melatonin is a mild sleep aid, a study found decreased
mortality in patients treated with it.51 Melatonin has also
been proposed as an adjuvant treatment in COVID-
1952,53 and for treating long COVID.54 Enoxaparin is an
anticoagulant medication used to prevent and treat deep
vein thrombosis. In COVID-19, enoxaparin used pro-
phylactically has been associated with a significant
reduction of mortality.55 Antihistamines and azi-
thromycin have been proposed for the early treatment of
COVID-19 for severity reduction and long COVID.
While the exact mechanism of antihistamines causing
the antiviral effect remains unclear, studies hypothesise
that antihistamines inhibit the proinflammatory cyto-
kine storm and virus binding in COVID-19.56–59 The use
of these drugs suggests that the corresponding comor-
bidities and symptoms might increase the risk of long
COVID.

We conclude this section with the limitations of our
study. First, as reported by Pfaff et al.,7 the laboratory data
are sparsely represented in the N3C Enclave. The pro-
portion of missing values in the harmonised measure-
ments ranged from 68.25% to 99.99%. Therefore, we did
not include laboratory test values measured during the
acute COVID-19 infection as features. Furthermore,
three years after the emergence of COVID-19, informa-
tion about the different variants of SARS-CoV-2 and
COVID-19 vaccinations administered to patients may
play an important role in the development of long
COVID in COVID-19 patients.4 However, N3C Enclave
lacked this data at the time of performing this study.

Second, EHRs are biased towards patients seeking
health care or having health insurance at institutions
that have partnered with the N3C. Moreover, the lack of
data about a patient in N3C cannot be definitively
associated with the absence of the disease condition.
The demographic information of the patient cohorts in
Supplementary Table S1 shows that a higher number of
people in the age group 51–80 years were hospitalised.
The cohorts also had a significantly higher representa-
tion of patients whose race is ‘white’ while males were
slightly over represented than females. Thus, the co-
horts do not guarantee a holistic representation of all
COVID-19 patients.

Finally, literature estimates of the proportion of
COVID-19 patients who have long COVID range from 10
to 70%6,14 and are much larger than the approximate 0.3%
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of long COVID patients in our cohorts. The American
version of the 2022 ICD-10-CM diagnosis code U09.9,
which we used to label long COVID patients, was
released on October 1, 2021. Prior to this date, patients
were diagnosed using the more general ICD-10-CM code
B94.8,60 which includes all forms of sequelae of unspec-
ified infectious and parasitic diseases not already encap-
sulated by the ICD-10-CM codes in the range B90–B94.60

Since our study considered longitudinal data starting
from January 1, 2018, it is likely that some of the early
long COVID patients may have been diagnosed with the
ICD-10-CM code B94.8. Besides, the adoption of the
U09.9 code for long COVID diagnosis by the health in-
stitutions has been slow.12 Hence, we analysed the EHRs
of patients labelled incorrectly as long COVID patients by
our prediction models, i.e., false positives
(Supplementary Method: B94.8 analysis). 8.78% of them
were diagnosed with the ICD-10-CM code B94.8. There is
no data available in the N3C on the nuances of the usage
of U09.9 code such as the number of long COVID pa-
tients seeking clinical referral being accounted for in this
code. McGrath et al. studied the adoption and use of this
code in the US using commercial insurance claims data
and found that 50.9% of the long COVID data came from
outpatient settings whereas 6.8% was from inpatients.
However, 37.2% of the U09.9 diagnosis could not be
traced back to categorizable sources.21

Conclusion
We predicted the occurrence of long COVID in COVID-
19 patients using their EHRs from the N3C Enclave. We
leveraged the symptoms experienced by COVID-19 pa-
tients, the drugs ordered for them, and treatment details
(if hospitalised) during their SARS-CoV-2 infection,
their demographic information, and comorbidities to
implement long COVID predictors based on two clas-
sical ML models — logistic regression and random
forest. The models performed on par with each other
across different patient cohorts and feature combina-
tions. We validated the generalizability of the predictors
through cross-site analysis. We computed feature
importance values to explain the predictions of the
classifiers. Given the lack of well-defined symptoms and
attributes to diagnose long COVID, healthcare in-
stitutions and clinicians could leverage the proposed
computational methods to identify COVID-19 patients
who may be at risk of developing long COVID. These
patients could then be advised on the need for follow-up
or preventive measures to alleviate or prevent the
possible manifestation of long COVID.4

Training models using deep learning is a key direc-
tion for future research. Including vaccination status
and socio-economic factors can enrich our datasets. We
may also impose a lower bound constraint on the gap
between the end of the acute infection phase and the
long COVID diagnosis. These considerations may lead
to more powerful long COVID predictors in the future.
11
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