Table 6.
Reference | Data input | No. of chemicals | Grouping- discriminate chemicals based on toxicity potency | Discriminate local/systemic | TTC | |
---|---|---|---|---|---|---|
| ||||||
Carthew et al., 2009 | Local NOAEC Systemic NOAEL (EPA, BfR, TNO, ECETOC) | 92 | Cramer Classes (CC) | Yes | Local: | CC1: 1400 μg/d CC3: 470 μg/d |
Systemic: | CC1: 980 μg/d CC3: 170 μg/d |
|||||
Escher et al., 2010 | NOEC RepDose, local/sys, organic compounds | 203 | Cramer Classes | CC1 only | CC1: 71 μg/d CC3: 4 μg/d |
|
Tluczkiewicz et al., 2016 | NOEC RepDose | 296 | Structure factors identified for high vs low NOEC; machine learning; 28 groups: 19 high, 9 low | No | Low toxic: 4260 μg/d High toxic: 2 μg/d |
|
Schüürmann et al., 2016 | NOEC RepDose | 296 | Structural alerts identified for high vs low NOEC, machine learning. Physicochemical properties, bioavailability, metabolism, MoA, to explore | No | Low Tox NOEC >12 ppm High Tox NOEC <0.75 ppm |
|
Hoersch et al., 2018 | IFA GESTIS DNEL list | 1876 | Statistical DNEL distribution (99th percentile, 8 h occupational exposure) | Yes | 50 μg/m3 corresponding to 500 μg/worker/d | |
Nelms and Patlewicz, 2020 | ToxVal database (subacute, subchronic, chronic, reproductive, developmental, multigeneration toxicity studies) | 4703 (of which 613 used in TTC) | Identified chemical structure, process through Kroes and Patlewicz profilers (OECD Toolbox, ToxTree). Filter for relevant studies (species, duration), remove statistical outliers, taking minimum NOAEL/NOAEC MoA sub-categories, Bootstrapping to explain uncertainty of 95thpercentile CC3, MoA profiling scheme for aquatic toxicity → reactive and baseline | No (inconclusive) | Comparable to Escher et al.: CC3 CC1: 8.23 μg/d CC3: 4.28 μg/d Baseline: 22.4 μg/d Reactive: 4.3 μg/d |
|
RIFM/P&G | Carthew, RepDos, P&G, RIFM, ECHA | 246 | Hierarchical clustering with machine learning 5 clusters, 4 features | Yes |