Skip to main content
. Author manuscript; available in PMC: 2024 Aug 1.
Published in final edited form as: Regul Toxicol Pharmacol. 2023 Jun 9;142:105434. doi: 10.1016/j.yrtph.2023.105434

Table 6.

Summary of the TTC models published since 2009.

Reference Data input No. of chemicals Grouping- discriminate chemicals based on toxicity potency Discriminate local/systemic TTC

Carthew et al., 2009 Local NOAEC Systemic NOAEL (EPA, BfR, TNO, ECETOC) 92 Cramer Classes (CC) Yes Local: CC1: 1400 μg/d
CC3: 470 μg/d
Systemic: CC1: 980 μg/d
CC3: 170 μg/d
Escher et al., 2010 NOEC RepDose, local/sys, organic compounds 203 Cramer Classes CC1 only CC1: 71 μg/d
CC3: 4 μg/d
Tluczkiewicz et al., 2016 NOEC RepDose 296 Structure factors identified for high vs low NOEC; machine learning; 28 groups: 19 high, 9 low No Low toxic: 4260 μg/d
High toxic: 2 μg/d
Schüürmann et al., 2016 NOEC RepDose 296 Structural alerts identified for high vs low NOEC, machine learning. Physicochemical properties, bioavailability, metabolism, MoA, to explore No Low Tox NOEC >12 ppm
High Tox NOEC <0.75 ppm
Hoersch et al., 2018 IFA GESTIS DNEL list 1876 Statistical DNEL distribution (99th percentile, 8 h occupational exposure) Yes 50 μg/m3 corresponding to 500 μg/worker/d
Nelms and Patlewicz, 2020 ToxVal database (subacute, subchronic, chronic, reproductive, developmental, multigeneration toxicity studies) 4703 (of which 613 used in TTC) Identified chemical structure, process through Kroes and Patlewicz profilers (OECD Toolbox, ToxTree). Filter for relevant studies (species, duration), remove statistical outliers, taking minimum NOAEL/NOAEC MoA sub-categories, Bootstrapping to explain uncertainty of 95thpercentile CC3, MoA profiling scheme for aquatic toxicity → reactive and baseline No (inconclusive) Comparable to Escher et al.: CC3
CC1: 8.23 μg/d
CC3: 4.28 μg/d
Baseline: 22.4 μg/d
Reactive: 4.3 μg/d
RIFM/P&G Carthew, RepDos, P&G, RIFM, ECHA 246 Hierarchical clustering with machine learning 5 clusters, 4 features Yes