Table 2. The results of data analysis for two models made in blocks for each population separately.
| Temp (°C) | Isoline | Population | Block | Slope.ev | Slope.anc | Slope.diff | Slope.ratio | Slope. p | Fisher slope. p | Mean.ev | Mean.anc | Mean.diff | Mean.ratio | Mean. p | Fisher mean. p |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 20 | Iz8 | K02 | 3 | 0.082 | 0.065 | 0.017 | 1.261 | 0.439 | 0.190 | 0.175 | 0.015 | 1.089 | 0.877 | ||
| 12 | 0.106 | 0.061 | 0.045 | 1.735 | 0.102 | 0.541 | 0.254 | 0.288 | 2.133 | 0.038* | |||||
| 16 | 0.040 | 0.052 | −0.012 | 0.772 | 0.474 | 0.100 | 0.124 | −0.024 | 0.808 | 0.725 | |||||
| K12 | 4 | 0.111 | 0.112 | −0.002 | 0.987 | 0.930 | 0.367 | 0.356 | 0.012 | 1.033 | 0.929 | ||||
| 12 | 0.106 | 0.061 | 0.044 | 1.722 | 0.180 | 0.339 | 0.254 | 0.086 | 1.337 | 0.588 | |||||
| 16 | 0.069 | 0.052 | 0.017 | 1.332 | 0.274 | 0.217 | 0.124 | 0.093 | 1.751 | 0.244 | |||||
| K25 | 4 | 0.110 | 0.112 | −0.003 | 0.975 | 0.836 | 0.450 | 0.356 | 0.094 | 1.266 | 0.453 | ||||
| 12 | 0.097 | 0.061 | 0.036 | 1.583 | 0.223 | 0.299 | 0.254 | 0.045 | 1.179 | 0.734 | |||||
| 16 | 0.039 | 0.052 | −0.013 | 0.755 | 0.461 | 0.099 | 0.124 | −0.025 | 0.800 | 0.718 | |||||
| K54 | 4 | 0.118 | 0.112 | 0.006 | 1.049 | 0.731 | 0.193 | 0.500 | 0.356 | 0.144 | 1.406 | 0.279 | 0.580 | ||
| 12 | 0.109 | 0.061 | 0.048 | 1.778 | 0.051 | 0.332 | 0.254 | 0.078 | 1.308 | 0.548 | |||||
| 16 | 0.070 | 0.052 | 0.017 | 1.334 | 0.350 | 0.165 | 0.124 | 0.042 | 1.336 | 0.619 | |||||
| Iz6 | K60 | 6 | 0.099 | 0.106 | −0.007 | 0.933 | 0.753 | 0.324 | 0.322 | 0.002 | 1.005 | 0.99 | |||
| 11 | 0.106 | 0.031 | 0.075 | 3.408 | 0.001* | 0.292 | 0.073 | 0.219 | 4.000 | 0.038 | |||||
| K28 | 6 | 0.112 | 0.106 | 0.007 | 1.065 | 0.651 | 0.374 | 0.404 | 0.322 | 0.082 | 1.255 | 0.511 | 0.341 | ||
| 11 | 0.052 | 0.031 | 0.021 | 1.661 | 0.184 | 0.151 | 0.073 | 0.078 | 2.068 | 0.205 | |||||
| Iz9 | K29 | 2 | 0.053 | 0.018 | 0.035 | 2.937 | 0.060 | 0.156 | 0.05 | 0.106 | 3.121 | 0.110 | |||
| 11 | 0.111 | 0.029 | 0.082 | 3.810 | 0.001* | 0.383 | 0.450 | −0.067 | 0.852 | 0.682 | |||||
| 17 | 0.040 | 0.033 | 0.007 | 1.224 | 0.562 | 0.101 | 0.088 | 0.012 | 1.139 | 0.816 | |||||
| 24 | Iz6 | E01 | 6 | 0.047 | 0.028 | 0.019 | 1.674 | 0.091 | 0.017* | 0.162 | 0.076 | 0.087 | 2.146 | 0.099 | 0.074 |
| 9 | 0.024 | 0.009 | 0.015 | 2.750 | 0.026* | 0.056 | 0.017 | 0.039 | 3.265 | 0.141 | |||||
| E02 | 6 | 0.058 | 0.028 | 0.030 | 2.052 | 0.030* | 0.010* | 0.154 | 0.076 | 0.079 | 2.043 | 0.198 | 0.000* | ||
| 9 | 0.039 | 0.009 | 0.031 | 4.594 | 0.040* | 0.106 | 0.017 | 0.088 | 6.147 | 0.085 | |||||
| 14 | 0.025 | 0.008 | 0.017 | 3.000 | 0.179 | 0.222 | 0.028 | 0.194 | 8.000 | 0.000* | |||||
| E03 | 7 | 0.043 | 0.013 | 0.030 | 3.320 | 0.004* | 0.006* | 0.117 | 0.034 | 0.083 | 3.412 | 0.064 | 0.130 | ||
| 9 | 0.022 | 0.009 | 0.013 | 2.515 | 0.047* | 0.049 | 0.017 | 0.032 | 2.868 | 0.200 | |||||
| 15 | 0.051 | 0.043 | 0.008 | 1.194 | 0.594 | 0.133 | 0.094 | 0.039 | 1.412 | 0.560 | |||||
| E05 | 7 | 0.034 | 0.013 | 0.021 | 2.643 | 0.011* | 0.014* | 0.083 | 0.034 | 0.048 | 2.406 | 0.179 | 0.194 | ||
| 9 | 0.018 | 0.009 | 0.010 | 2.132 | 0.182 | 0.045 | 0.017 | 0.028 | 2.618 | 0.269 | |||||
| E06 | 5 | 0.043 | 0.014 | 0.029 | 3.090 | 0.008* | 0.138 | 0.042 | 0.096 | 3.302 | 0.036* | ||||
| 14 | 0.008 | 0.008 | 0.000 | 1.000 | 1.000 | 0.017 | 0.028 | −0.011 | 0.600 | 0.426 | |||||
| 15 | 0.015 | 0.043 | −0.028 | 0.355 | 0.027 | 0.039 | 0.094 | −0.056 | 0.412 | 0.249 | |||||
| E08 | 7 | 0.031 | 0.013 | 0.018 | 2.417 | 0.096 | 0.052 | 0.080 | 0.034 | 0.046 | 2.338 | 0.246 | 0.203 | ||
| 8 | 0.052 | 0.021 | 0.031 | 2.496 | 0.096 | 0.134 | 0.050 | 0.084 | 2.671 | 0.208 | |||||
| E09 | 5 | 0.028 | 0.014 | 0.014 | 2.019 | 0.087 | 0.097 | 0.042 | 0.055 | 2.324 | 0.094 | ||||
| 8 | 0.023 | 0.021 | 0.002 | 1.107 | 0.834 | 0.081 | 0.050 | 0.031 | 1.622 | 0.407 | |||||
| 15 | 0.021 | 0.043 | −0.022 | 0.484 | 0.099 | 0.050 | 0.094 | −0.044 | 0.529 | 0.387 | |||||
| 24 | Iz6 | E12 | 5 | 0.060 | 0.014 | 0.046 | 4.314 | 0.002* | 0.176 | 0.042 | 0.134 | 4.206 | 0.031* | ||
| 15 | 0.042 | 0.043 | −0.001 | 0.968 | 0.921 | 0.117 | 0.094 | 0.022 | 1.235 | 0.709 | |||||
| Iz8 | E14 | 3 | 0.047 | 0.034 | 0.013 | 1.390 | 0.254 | 0.000* | 0.138 | 0.096 | 0.042 | 1.434 | 0.442 | 0.000* | |
| 10 | 0.049 | 0.003 | 0.047 | 17.800 | 0.000* | 0.305 | 0.006 | 0.300 | 54.982 | 0.000* | |||||
| 13 | 0.032 | 0.008 | 0.024 | 3.841 | 0.025* | 0.068 | 0.022 | 0.046 | 3.068 | 0.225 | |||||
| E17 | 4 | 0.022 | 0.074 | −0.051 | 0.303 | 0.003 | 0.055 | 0.300 | −0.245 | 0.183 | 0.002 | ||||
| 10 | 0.014 | 0.003 | 0.011 | 5.000 | 0.054 | 0.028 | 0.006 | 0.022 | 5.000 | 0.238 | |||||
| E18 | 4 | 0.060 | 0.074 | −0.014 | 0.816 | 0.534 | 0.218 | 0.300 | −0.082 | 0.727 | 0.385 | ||||
| 10 | 0.080 | 0.003 | 0.078 | 28.955 | 0.000* | 0.433 | 0.006 | 0.427 | 77.909 | 0.000* | |||||
| 13 | 0.024 | 0.008 | 0.016 | 2.879 | 0.199 | 0.203 | 0.022 | 0.180 | 9.114 | 0.000* | |||||
| Iz9 | E34 | 2 | 0.080 | 0.028 | 0.052 | 2.886 | 0.000* | 0.289 | 0.061 | 0.228 | 4.736 | 0.003* | |||
| 13 | 0.015 | 0.021 | −0.006 | 0.733 | 0.649 | 0.033 | 0.042 | −0.008 | 0.800 | 0.832 |
Notes.
- Slope.ev
- slope estimate for a given evolved population in a given block
- slope.anc
- slope estimate for the ancestral population in the same block
- slope.diff
- difference between the former and the latter
- slope.ratio
- ratio of the former to the latter (analogously for means)
- slope. p
- P value for the interaction term in model 1
- mean. p
- P value for the interaction term in model 2
Statistically significant values (P < 0.05) are marked with: asterisk for positive coefficient estimates or italic font for negative coefficient estimates. Underscore marking block number means that in that block, the population it applies to was thawed from a different generation than in the previous block(s) (cf. Table 1 for details). Bolded fonts are marking populations that in all blocks had positive slope and mean differences (slope.diff & mean.diff). For those populations, the P values (for means and slopes separately) were combined using the Fisher’s method. The resulting combined P values are represented in columns Fisher slope. p and Fisher mean. p for slope. p and mean. p accordingly.