Table 4. Median Absolute Error (MAE) of the data reconstruction from different manifold learning embeddings.
MAE is assessed using Leave-One-Out procedure. The reconstruction is done by the independent k-nearest neighbors regression of the coordinates in the original space of relative taxon abundances from the non-linear embedding. Notation as in Table 2.
Dataset | Method | Tax O | Tax F | Tax G |
---|---|---|---|---|
AGP | AutoEncoder | 0.06 | 0.19 | 0.22 |
t-SNE | 0.05 | 0.20 | 0.22 | |
UMAP | 0.06 | 0.22 | 0.24 | |
Isomap | 0.06 | 0.22 | 0.25 | |
LLE | 0.06 | 0.21 | 0.24 | |
Spectral | 0.06 | 0.21 | 0.24 | |
HMP | AutoEncoder | 0.09 | 0.24 | 0.22 |
t-SNE | 0.09 | 0.24 | 0.22 | |
UMAP | 0.11 | 0.27 | 0.25 | |
Isomap | 0.11 | 0.29 | 0.27 | |
LLE | 0.12 | 0.29 | 0.26 | |
Spectral | 0.13 | 0.34 | 0.29 |