Skip to main content
. 2023 Sep 8;11:e15838. doi: 10.7717/peerj.15838

Table 5. Selected clustering results with high or moderate clustering partition metrics.

Clustering validity metrics and the number of clusters k for different partitions obtained from different data representations. Repr. denotes a data representation used for clustering. It is either an embedding provided by a manifold learning algorithm (SE - Spectral Embedding, LLE - Locally Linear Embedding) or pairwise distances inferred from the data (L1 - Manhattan distance in the original space of taxonomic abundances). Spectral, Spectral Clustering algorithm. D-B index, Davies-Bouldin index. Silh. score, Silhouette score. DBCV, Density-Based Clustering Validation index. Ent., Entropy. Notation as in Table 2.

Tax Repr. Cluster method k D-B index Silh. score DBCV Prediction Strength Ent.
AGP O L1 Spectral 2 0.60 0.60 −0.63 0.98 0.06
O LLE Spectral 2 0.49 0.74 −0.86 0.94 0.06
O LLE Spectral 3 0.60 0.60 −0.91 0.91 0.18
O SE Spectral 2 0.50 0.68 −0.91 0.96 0.09
O SE Spectral 3 0.57 0.63 −0.92 0.94 0.19
F t-SNE HBDSCAN 2 1.38 0.14 0.15 1.00 0.09
F UMAP HBDSCAN 2 1.02 0.17 0.22 1.00 0.06
G UMAP HBDSCAN 2 1.03 0.23 0.25 1.00 0.08
HMP O t-SNE HBDSCAN 2 1.00 0.13 0.12 1.00 0.06
O UMAP HBDSCAN 2 0.87 0.15 0.19 1.00 0.08
O UMAP HBDSCAN 3 1.02 0.06 0.19 1.00 0.16
F UMAP HBDSCAN 2 1.03 0.08 0.10 1.00 0.08
F SE HBDSCAN 2 0.53 0.64 −0.63 1.00 0.09
F t-SNE HBDSCAN 2 1.11 0.09 0.21 0.97 0.09
G UMAP HBDSCAN 2 1.24 −0.02 0.16 1.00 0.06