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Patterns of crowd behavior are believed to result from
local interactions between pedestrians. Many studies
have investigated the local rules of interaction, such as
steering, avoiding, and alignment, but how pedestrians
control their walking speed when following another
remains unsettled. Most pedestrian models assume the
physical speed and distance of others as input. The
present study compares such “omniscient” models with
“visual” models based on optical variables. We
experimentally tested eight speed control models from
the pedestrian- and car-following literature. Walking
participants were asked to follow a leader (a moving
pole) in a virtual environment, while the leader’s speed
was perturbed during the trial. In Experiment 1, the
leader’s initial distance was varied. Each model was fit to
the data and compared. The results showed that visual
models based on optical expansion (θ̇) had the smallest
root mean square error in speed across conditions,
whereas other models exhibited increased error at
longer distances. In Experiment 2, the leader’s size (pole
diameter) was varied. A model based on the relative
rate of expansion (θ̇/θ) performed better than the
expansion rate model (θ̇), because it is less sensitive to
leader size. Together, the results imply that pedestrians
directly control their walking speed in one-dimensional
following using relative rate of expansion, rather than
the distal speed and distance of the leader.

Introduction

A number of pedestrian models have been developed
to characterize the interactions between walking
humans. For example, the dominant Social Force
Model and its variants (Helbing & Molnar, 1995;
Lakoba, Kaup, & Finkelstein, 2005; Yu, Chen, Dong, &
Dai, 2005) take the distance and velocity of objects and
other pedestrians as input to compute the acceleration
of the simulated agent. Velocity-based models of
collision avoidance (Berg, Lin, & Manocha, 2008; Guy,

Lin, & Manocha, 2010; Van Den Berg, Guy, Lin, &
Manocha, 2011) calculate the velocity space (set of
velocities) that will lead to collisions, then find a velocity
outside the space based on some optimization criteria.
However, physical variables such as distance and
velocity are not directly available to human observers,
nor is there evidence that pedestrian interactions
are governed by hypothesized forces or global
optimization. Such “omniscient” phenomenological
models are approximations of pedestrian movements
but do not offer plausible explanations of human
behavior grounded in the perceptual coupling between
individuals. Pedestrian interactions are likely based
on optical variables and governed by control laws for
locomotion (Warren, 2006).

In this article, we focus on one-dimensional (1D)
pedestrian following, in which a follower walks behind
a leader and regulates their speed to stay with the
leader. One-dimensional following is a phylogenetically
ancient behavior dating to the Cambrian explosion, as
revealed by fossils of trilobites processing in single file,
coupled via mechanoreception (Vannier et al., 2019).
Models of pedestrian following are often inspired by
car-following models of vehicular traffic (Brackstone
& McDonald, 1999; Wilson & Ward, 2011), which are
based on physical variables (variable names appear
in Table 1, models in the left two columns of Table 2; see
Rio, Rhea, & Warren, 2014, for detailed descriptions).
For example, the follower could maintain a constant
distance from the leader (Kometani & Sasaki, 1958),
maintain a distance that increases with speed (Herman,
Montroll, Potts, & Rothery, 1959; Pipes, 1953), use
a linear combination of distance and speed (Helly,
1959), or match the leader’s speed (Lee & Jones,
1967). Lemercier et al. (2012; Fehrenbach et al., 2015)
proposed that pedestrian followers use the ratio of
speed difference to leader distance to control their
speed, similar to the car-following model of Gazis,
Herman, and Rothery (1961), with an explicit time
delay between leader and follower. The model was able
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Notation Meaning

xf Position of follower
�x Distance between follower and leader
ẋ f Speed of follower
�ẋ Speed difference between leader and follower
ẍ f Acceleration of follower
θ Visual angle of leader from the perspective of follower
θ̇ Rate of expansion (RE)
θ̇

θ
Relative rate of expansion (RRE)

d0 Initial distance between leader and follower
�v Speed perturbation of leader

Table 1. Variable names used in this article.

to reproduce stop-and-go waves that are commonly
observed in dense one-way pedestrian traffic. Bruneau,
Dutra, and Pettré (2014) subsequently proposed a
model in which the speed of the follower is based on the
predicted future distance of the leader, which can also
replicate stop-and-go waves. However, these pedestrian
models are again omniscient, relying on the leader’s
physical distance and/or speed as input.

Rio et al. (2014) tested a variety of omniscient
physical models against data on following in pedestrian
dyads and found that the simple speed-matching model
fit the human data as well as or better than other
models. In this model, the follower’s acceleration (ẍ f ) is

proportional to the difference between the speed of the
leader and the follower (�ẋl f ), and the gain parameter
(c) is fit to the data:

ẍ f = c�ẋl f (1)

Rio et al. (2014) also proposed a visual control law
in which the follower adjusts their speed to cancel
the leader’s optical expansion and contraction (cf.
Andersen & Sauer, 2007; Lee & Jones, 1967, for car
following). Specifically, the follower’s acceleration is
proportional to the rate of change in the leader’s visual
angle (θ̇l ), and the gain parameter (b) is fit to the data:

ẍ f = −bθ̇l (2)

This rate of expansion (RE) model did not fit their
data quite as well as the physical speed-matching model,
but there are two possible reasons it may have fallen
short.

First, the theoretical advantage of the RE model is
that it exploits the nonlinearity of visual angle, which
decreases with distance (d) as tan−1(1/d) (see Figure
1A). Whereas the speed-matching model is independent
of leader distance, the rate of expansion decreases
nonlinearly with distance (Figure 1B). Consequently,
the RE model inherently depends on the leader’s
distance (Ducourant et al., 2005) without explicitly

Model Equation Parameters BIC Mean RMSE (m/s)

Relative rate of expansion (RRE) ẍ f (t ) = −b θ̇
θ

b = 0.920 −3,182a 0.092 (SD = 0.049)a

Ratio ẍ f (t ) = cẋMf
�ẋ
�xL c = 1.810 −3,162b 0.091 (SD = 0.053)a

M = −0.052
L = 1.509

Rate of expansion (RE) ẍ f (t ) = −bθ̇ b = 8.463 −3,136c 0.091 (SD = 0.056)a
Linear ẍ f (t ) = c1�ẋ + c2[�x − (a + bẋ f )] c1 = 0.255 −3,043d 0.102 (SD = 0.054)b

c2 = 0.010
a = −6.946
b = 10.665

Speed ẍ f (t ) = c�ẋ c = 0.219 −3,021e 0.105 (SD = 0.054)b

Lemercier et al. (2012) ẍ f (t ) = c�ẋ(t+τ )
�x(t )γ τ = 1.000 −3,008f 0.102 (SD = 0.056)b

c = 2.466
γ = 1.439

Speed-based distance (SBD) ẍ f (t ) = c[�x − (a + bẋ f )] c = 0.026 −2,494g 0.144 (SD = 0.087)c
a = −17.461
b = 19.750

Distance ẍ f (t ) = c(�x − �x0) c = 0.004 −2,355h 0.152 (SD = 0.096)d
Null ẍ f (t ) = 0 None −2,355h 0.154 (SD = 0.101)d

Table 2. Tests of the nine models in Experiment 1. Note: Parameter values and BIC values were acquired by fitting the models to all
perturbation trials (n = 696), while minimizing the RMSE on speed. BIC values were computed based on Equation 1. The models were
also tested using leave-one-subject-out cross-validation, in which each model was trained on 11 participants and tested on the one
left out until all combinations of training set and test set were used. The test results (mean and standard deviation of RMSE) of 12
iterations of cross-validation are shown in the table. The letters in the superscript of BIC values indicate the rank of model based on
BIC, whereas those in the superscript of cross-validation error indicate Duncan group in Duncan’s multiple range test. τ in Lemercier
et al. (2012) was capped at 1 s because a reaction time longer than 1 s is unlikely for a human pedestrian.
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Figure 1. (A) The visual angle of the leader (θ ) increases nonlinearly as distance decreases, at a rate that depends on leader size.
(B) Similarly, the rate of change in visual angle (optical expansion, θ̇ ) increases nonlinearly as distance decreases and also depends on
size. (C) The RRE (θ̇/θ ) also increases nonlinearly but is less dependent on size. Graphs are computed with a constant relative speed
between leader and follower (�ẋ = 1m/s).

recovering physical distance. It is possible that the
speed-matching model fit the data better because the
range of distances tested by Rio et al. (2014) was small
(1–4 m), and a larger distance range might produce a
distance effect consistent with the RE model. Second,
the RE model predicts an asymmetric response to
leader acceleration and deceleration. For a given
initial distance, decelerating decreases the leader’s
distance, producing a higher expansion rate, whereas
accelerating increases the leader’s distance, producing
a lower contraction rate. Rio et al. (2014) did not
report this asymmetry in their first experiment with a
human leader, perhaps because the leader’s acceleration
and deceleration were uncontrolled. But in a second
experiment with a virtual leader, they reported a
significant asymmetry in the follower’s response: Speed
changes were twice as large to leader deceleration as
to leader acceleration. In the present study, we tested
a larger range of distances and also controlled the
acceleration/deceleration of the leader using virtual
reality (VR).

A limitation of the RE model is the fact that the
rate of expansion depends on not only the leader’s
distance and relative speed but also its size: For a
given relative speed and distance, an object with a
larger diameter generates a higher rate of expansion or
contraction at the follower’s eye (Figure 1B). We thus
test an alternative model based on the relative rate of
expansion (RRE) (Wagner, 1982). The RRE normalizes
expansion rate (θ̇ ) by the visual angle (θ ) of the leader,
thus partially compensating for variation in leader size
(Figure 1C):

ẍ f = −b
θ̇l

θl
(3)

Note that RRE is the inverse of the time-to-contact
variable τ (assuming the small angle approximation)
(Lee, 1976). The τ variable is a poor control variable for
following, however, for as the follower brings the rate of
expansion to zero, τ goes to infinity. Its inverse is more
useful, for RRE ∼ 0 indicates successful following,

RRE < 0 indicates falling behind the leader, RRE
> 0 indicates gaining on the leader, and RRE >> 0
indicates an imminent collision. The relative rate of
expansion thus increases with temporal “immediacy.”

In Experiment 1, we compared the speed-matching
and RE models by varying the leader’s distance over a
larger range (1–6 m) and controlling the leader’s speed
perturbation (± 0.3 m/s). If distance influences the
follower’s response, the RE model should show a higher
goodness of fit than the speed-matching model and vice
versa. In Experiment 2, we compared the RE and RRE
models by varying the diameter of the leader (0.2, 0.6,
1.0 m) while controlling the speed perturbation (± 0.3
m/s). If leader size influences the follower’s response,
the RRE model should fit the data better than the RE
model and vice versa. We also compared six physical
models using the data from both experiments: speed
matching, constant distance, speed-based distance
(SBD), linear combination, ratio, and Lemercier models
(see Table 2). Finally, we did not investigate the role
of binocular disparity or vergence angle here, which
can contribute to time-to-contact judgments (Gray &
Regan, 1998; Heuer, 1993) and ball catching (Rushton
& Wann, 1999; Savelsbergh, Whiting, & Bootsma,
1991). Previously, Rio et al. (2014) dissociated disparity
and vergence from optical expansion and found
little influence of the former variables on pedestrian
following, possibly because optical expansion dominates
responses to objects larger than the interpupillary
distance (Rushton & Wann, 1999).

Experiment 1

Method

Participants
Twelve students from Brown University (four males,

eight females) participated in the experiment. All
participants had normal or corrected-to-normal vision.



Journal of Vision (2023) 23(10):3, 1–15 Bai & Warren 4

The protocol was approved by Brown University’s
Institutional Review Board, in accordance with
the Declaration of Helsinki. Informed consent was
obtained from all participants, who were paid for their
participation.

Apparatus
The experiment was conducted in the Virtual

Environment Navigation Laboratory (VENLab) at
Brown University. Participants walked freely in a 11-m
× 9-m area while immersed in a virtual environment
presented in a head-mounted display (HMD; Oculus
Rift CV1, Oculus VR, Long Beach, California, USA).
The HMD provided stereoscopic viewing with a 94 H ×
93 V binocular field of view (Okreylos, 2016), resolution
of 1,080 × 1,200 pixels in each eye, and a refresh rate
of 90 Hz. Displays were generated on an MSI VR One
backpack PC (New Taipei City, Taiwan; weight 3.3
kg) at a frame rate of 90 fps, using the Vizard 5 3D
animation package (WorldViz, 2014). Head position
was recorded at a sampling rate of 90 Hz by a hybrid
inertial-ultrasonic tracking system (IS-900; Intersense,
Billerica, MA, USA). Head orientation was tracked by
the built-in inertial sensor of the HMD. Head position
and orientation were used to update the display with a
latency estimated to be less than 50 ms.

Displays
The virtual environment consisted of a ground plane

with a granite texture and a blue sky; a blue home pole
(radius 0.12 m, height 1.35 m) with a granite texture
on the ground plane, where participants started each
trial; a stationary red orientation pole (radius 0.2 m,
height 3 m) that appeared in front of the participant,
which participants faced before the trial began; and a
moving green leader pole (radius 0.2 m, height 2 m) that
appeared during the trial, which served as the leader in
the following task (see Figure 2).

Procedure
Prerecorded instructions were played through the

HMD’s built-in headphones at the beginning of the
experiment. A session began with four self-paced
walking trials, in which the participant simply walked
to the red orientation pole in the virtual environment
at their preferred speed, allowing us to measure their
normal walking speed. The participant then received
four practice trials to learn the following task. These
preexperimental trials helped participants adapt
to walking in VR and rescale perceived distance in
the virtual environment (Mohler, Creem-Regehr, &
Thompson, 2006; Richardson & Waller, 2007). They
were followed by 90 experimental trials.

In both practice and experimental trials, participants
were asked to “walk behind the green pole as if you

Figure 2. Virtual display of the leader pole from the
participant’s viewpoint.

were following someone down the street, while trying
to keep a constant distance.” This instruction was
intended to encourage participants to keep up with
the leader pole and was also used by Rio et al. (2014).
Their observation that distance was not actually held
constant is consistent with reliance on some other
control variable. Participants were not told how closely
or quickly to follow the pole.

At the beginning of each trial, the participant stood
at the blue home pole and faced the red orientation
pole (see Supplementary Movie S1). After 3 s, the
green leader pole appeared (1, 3, or 6 m in front of
them) and immediately started to move away from
the participant on a straight path at a constant initial
speed (1.2 m/s), while the prerecorded instruction
“begin” was played over the headphones. After a
random interval (3−4 s), a speed perturbation (−0.3,
0, or +0.3 m/s) was applied to the leader pole,
with an average acceleration of 1 m/s2. After the
perturbation, the leader pole moved at a new constant
speed (0.9, 1.2, or 1.5 m/s) until the end of the trial.
The trial ended when the participant had walked for
12.2 m or 12 s, whichever came first. The blue home
pole then reappeared nearby and the participant walked
to it, which triggered the next trial.

Design
Experiment 1 had a within-subject factorial design: 3

initial distance (do = 1, 3, 6 m) × 3 speed perturbation
(�v = −0.3, 0, +0.3 m/s), yielding nine conditions.
There were 10 repetitions in each condition, for a total
of 90 trials, which were presented in different random
order for each participant.

Data processing
The time series of the participant’s head position

in the horizontal plane was recorded, which was
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reduced to a unidimensional trajectory along the
axis of leader motion. Given that there were minor
fluctuations in sampling rate, the unidimensional data
were then linearly interpolated to 90 Hz to ensure
equal time intervals between frames. The time series
for each trial was then filtered using a fourth-order
low-pass Butterworth filter (1 Hz cutoff) to reduce
anterior-posterior oscillations due to the step cycle and
tracker noise. To eliminate endpoint error caused by the
filter, each time series was extended by 2 s using linear
extrapolation before filtering and was truncated by 3 s
after filtering. The filtered time series of position were
then differentiated to produce a time series of speed for
each trial, which provided the data for model fitting.
Dependent variables for statistical analysis included the
participant’s final speed (the mean speed in the last 2 s)
and final distance from the leader (the mean distance in
the last 2 s), as well as final speed difference with the
leader (mean difference in speed during the last 2 s)
on each trial. Twenty out of 1,080 trials (1.85%) were
excluded due to tracking failures.

Statistical analysis

To analyze the relationships between independent
and dependent variables, linear mixed-effects regression
analyses were performed in R (R Core Team, 2019)
and lme4 (Bates, Mächler, Bolker, & Walker, 2015).
The advantage of a linear mixed-effects model is that
it has higher statistical power, partials out individual
differences, and is robust to missing data (Baayen,
Davidson, & Bates, 2008). Visual inspection of residual
plots did not reveal any obvious deviations from
homoscedasticity or normality. P values were obtained
from Wald chi-squared test.

Model fitting and comparison
Only trials in which the speed of the leader pole

was perturbed (−0.3 and +0.3 m/s) were used for
model fitting because trials with no speed perturbation
drive model parameters to zero. To avoid initial and
final transients, we fit the follower’s speed time series
from 0.5 s before the perturbation to 5.5 s after the
perturbation in each trial. Based on these criteria,
696 trials were used in the fitting procedures, while 11
were excluded for being shorter than 5.5 s after the
perturbation.

Two fitting procedures were used to serve different
goals. Numerical optimizations were achieved by a
derivative-free method (Lagarias, Reeds, Wright, &
Wright, 1998) for both procedures. The first procedure
searched for the optimal parameter values over all
trials; although this procedure introduces the risk
of overfitting, it allows us to have a set of optimal
parameters. Overfitting will be addressed by model

comparisons using the Bayesian information criterion
(BIC) because it penalizes models that have more free
parameters (i.e., higher chance of overfitting). The nine
candidate models in Table 2 were fit to and tested on
the time series of follower speed for all trials, including
a null model that made no response to the leader. Each
trial was simulated using the optimal parameter values
for a model, the mean squared error between the model
time series and human time series was computed for
each trial, and the mean squared error (MSE) was
computed over all n trials. The BIC (Equation 4) was
used to penalize models based on the number of free
parameters (k). The BIC value indicates the overall
goodness of fit for each model, and models can be
compared by computing the difference in BIC scores,
where a �BIC of 2–6 indicates positive evidence, 6–10
strong evidence, and > 10 very strong evidence in favor
of the lower BIC.

BIC = nln (MSE ) + kln (n) (4)

The second fitting procedure used leave-one-subject-
out cross-validation to avoid overfitting and allowed
frequentist model comparisons. The nine candidate
models were fit to the time series of speed for 11
participants and were tested on the data from the 12th
participant. This procedure was repeated 12 times, such
that each participant was left out and tested once. In the
test, each trial was simulated using the parameter values
from fitting the other 11 participants, and the root mean
squared error (RMSE) between the model time series
and human time series was computed. This resulted in a
mean RMSE for each subject in each condition, which
was compared using frequentist statistical tests. Note
that the RMSE does not penalize free parameters.

Results

Mean time series of speed for each condition appear
in Figures 3A, B. It is apparent that the participant’s
response decreased with leader distance on deceleration
trials (Panel A) and was greater on deceleration trials
than acceleration trials (Panel B).

Final states
The follower’s mean final distance, final speed, and

final speed difference with the leader are plotted for
each experimental condition in Figure 4. A linear
mixed-effects regression, in which initial distance (d0)
and speed perturbation (�v) were fixed-effect predictors
and subject was a random effect, was used to analyze
each of the three dependent variables. The results reveal
significant effects of initial distance, speed perturbation,
and their interaction on all final states, all p < 0.001
(see Table 3).
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Figure 3. Mean participant time series in Experiment 1. Time series of speed on (A) deceleration (n = 355) and (B) acceleration (n =
341) trials. Time series of distance from leader on (C) deceleration and (D) acceleration trials. Black curves indicate the leader’s speed,
red curves indicate participant responses at each initial distance, and shading indicates 95% confidence intervals computed on all
trials. All time series are aligned at the time of perturbation.

Figure 4. Mean final states in Experiment 1. (A) final distance to leader, (B) final speed of follower, and (C) final speed difference
between follower and leader as a function of initial distance (do) and speed perturbation (�v). In C, positive values mean that the
leader was faster than the follower. Error bars represent the standard error of the mean (SEM).

Dependent variable d0 �v d0 × �v

Final distance χ2(2, N = 1,060) = 669.74*** χ2(2, N = 1,060) = 115.13*** χ2(4, N = 1,060) = 148.16***
η2 = .98 η2 = .85 η2 = .13

Final speed χ2(2, N = 1,060) = 21.57*** χ2(2, N = 1,060) = 103.95*** χ2(4, N = 1,060) = 208.84***
η2 = .64 η2 = .83 η2 = .17

Final speed difference χ2(2, N = 1,060) = 21.79*** χ2(2, N = 1,060) = 73.48*** χ2(4, N = 1,060) = 208.80***
η2 = .64 η2 = .77 η2 = .17

Table 3. The results of the Wald chi-squared test on fixed effects on final states in Experiment 1. ***p < 0.0001.

Trials with greater initial distance showed greater
final distance (Figure 4A). There was also a significant
effect of initial distance on final speed (Figure 4B
red curve): Closer distances tended to produce
slower final speeds. However, this effect did not occur
when the leader sped up (blue curve), yielding a
significant distance by speed perturbation interaction.
This asymmetry will be considered further below.

Finally, the difference between the final speed
of the follower and the leader grew with initial
distance (Figure 4C), as revealed by the significant
distance effect. This effect was largely due to leader
deceleration (red curve), yielding a significant
interaction. Participants thus did not match the speed
of the leader, except in the constant-speed control
condition.
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Figure 5. The asymmetry in absolute speed change of
participants in response to the leader’s deceleration (light bars)
or acceleration (dark bars) (�v) in Experiment 1.

On deceleration trials (red curves), final distance was
smaller (Figure 4A) and final speed was slower but
depended on initial distance (Figure 4B). Acceleration
trials (blue curves) showed greater final distance
(Figure 4A) and faster final speed (Figure 4B). Thus,
our manipulations on initial distance and speed
perturbation effectively influenced the participants’
behavior.

Response asymmetry
The results for walking speed revealed an asymmetry

in the response to leader acceleration and deceleration
(Figures 3A, B and Figures 4B, C). Although the leader
increased and decreased speed by the same amount,

participants had a larger response to deceleration than
acceleration, especially at smaller initial distances,
consistent with the asymmetry in the rate of optical
expansion and contraction. A linear mixed-effects
regression was performed on the absolute value of
the follower’s speed adjustment, with initial distance
(d0) and leader speed perturbation (�v = −0.3 and
+0.3 m/s only) as fixed effects and subject as a random
effect. There was a significant main effect of leader
acceleration/deceleration (Figure 5), confirming the
asymmetry in the magnitude of the follower’s response
(χ2 =7.60, p < 0.01, η2 = .39). There was also a main
effect of initial distance (χ2 =49.42, p < 0.01, η2 =
.77). The interaction was not significant (χ2 = 4.31,
p = 0.12).

Finally, despite instructions to follow the leader
at a constant distance, the actual following distance
increased by the time of the speed perturbation and was
generally not maintained after perturbation (Figures
3C, D), except when the initial distance was 1 m and the
leader decelerated.

Model comparisons
Results from the two fitting procedures appear in the

right two columns of Table 2. Based on BIC (lower is
better), the ranking of models is RRE < Ratio < RE
< Linear < Speed < Lemercier < SBD < Distance =
Null. For all inequalities, �BIC > 10, indicating very
strong evidence in favor of this ordering.

Similar results were found for the mean RMSE from
cross-validation (right column of Table 2; smaller is
better), confirmed by frequentist tests (Figure 6). A
one-way analysis of variance (ANOVA) on RMSE

Figure 6. Box plots of RMSE for each model from leave-one-subject-out cross-validation in Experiment 1. (A) RMSE on acceleration
(red) and deceleration (pink) trials. (B) RMSE in each initial distance condition. The heavy black bar is the median, boxes represent the
interquartile range, and vertical whiskers represent the range of the data excluding outliers (black dots), which were defined as lying
outside 1.5 times the interquartile range.
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Figure 7. Box plots of RMSE highlighting the effects of (A) speed
perturbation and (B) initial distance on the RE and
speed-matching models. Data are the same as Figure 6.

revealed a main effect of model, F (8, 6,255) = 102.26,
p < 0.0001, η2 = 0.116. Duncan’s multiple range
test (de Mendiburu, 2019) showed the following
RMSE ranking: (RE, RRE, Ratio) < (Speed, Linear,
Lemercier) < SBD < (Null, Distance), where all
inequalities are p < 0.05.

The purpose of Experiment 1 was to compare the
RE and speed-matching models, because Rio et al.
(2014) found that these two models best explained their
data. We thus compared them in a linear mixed-effect
regression with model, initial distance (d0), and speed
perturbation (�v) as fixed effects and subject as a

random effect. The results revealed (a) a significant
main effect of model, χ2(1, N = 696) = 31.32, p =
0.020, η2 = 0.02; (b) a Model × d0 interaction, χ2(2,
N = 696) = 7.83, p = 0.020, η2 < 0.01; (c) a Model ×
�v interaction, χ2(1, N = 696) = 5.26, p = 0.022, η2

< 0.01; and (d) a three-way interaction of Model × d0
× �v, χ2(2, N = 696) = 24.73, p < 0.0001, η2 = 0.02.
The Model × d0 interaction indicates that the difference
between the RE model and speed-matching model
depends on d0: The speed-matching model shows larger
error than the RE model, especially when d0 is 1 or 6 m,
which is due to its distance invariance (Figure 7).

The mean time series of speed for the speed-matching
model and the RE model in each condition (Figure
8) reveal why the speed-matching model has a poorer
fit. The predictions of the RE model (green curves)
vary with initial distance, whereas the speed-matching
model (blue curves) makes similar predictions across
conditions (compare columns in Figure 8). For the
speed-matching model, minimizing error at the middle
distance (d0 = 3, panels B,E) means increasing error
at short (d0 = 1, panels A,D) and long (d0 = 6, panels
C,F) distances, because the behavior of participants
changed with distance.

Discussion

The RE, RRE, and ratio models describe pedestrian
following better than other models. They can predict

Figure 8. The real and predicted mean time series of speed in Experiment 1. D0 is initial distance, and �v is speed perturbation. The
shading indicates 95% confidence intervals for the human data. The predictions of the RE model are distance dependent, whereas
those of the speed-matching model are not.
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the speed of pedestrians across different conditions
without changing parameter values. In contrast, the
speed-matching model makes very similar predictions
at different following distances, which does not match
the behavior of the participants. This was not observed
in Rio et al. (2014) because the range of following
distances used in their experiments was not large
enough to reveal the limitation of the speed-matching
model.

Although distance can influence following behavior,
it did not do so as described by the distance model
or the SBD model. Participants did not maintain the
initial distance from the leader, nor did they maintain
a distance that increases with their speed. Moreover,
linearly adding a distance term to the speed-matching
model (linear model) did not significantly improve
the performance. The data and fitting results from
Experiment 1 suggest a nonlinear relationship between
distance and following behavior.

The models that use nonlinear forms of distance
are the RE, RRE, ratio, and Lemercier models. The
Lemercier model is a version of the ratio model with
a constant delay or reaction time, but it had a lower
goodness of fit. Although a delay can be observed
in the data, it is not a constant value. In particular,
the delay is shorter at smaller distances than at larger
distances; we suspect this is due to lower rates of optical
expansion/contraction at greater distances. In addition,
whereas the Lemercier model does not consider the
speed of the follower, the ratio model takes it into
account. The RE and RRE models both rely on the
change in visual angle, which is a nonlinear function of
distance and depends on the relative speed of leader
and follower. Not only do they predict behavior as well
as the ratio model, but they have a more concise form
with only one free parameter compared to three. Given
that humans rely on vision, they also offer biologically
plausible control laws for pedestrian following. In
contrast, the ratio model is omniscient, relying on
distance, absolute speed, and relative speed, variables
that are not immediately available in vision and are not
accurately perceived.

Experiment 2

The RE model is sensitive to the size of the leader,
because the optical expansion rate depends on the
leader’s visual angle, for a given distance and speed. The
model thus predicts that a larger leader will produce a
stronger response in the follower, all other things being
equal (Figure 1B). This size dependance is attenuated
by the RRE model because the expansion rate is
normalized by the visual angle (Figure 1C); in effect,
RRE specifies the immediacy of a collision in time at
the current relative speed. Experiment 1 did not strongly

distinguish these models because the leader pole was
a constant size, so they made similar predictions after
parameter fitting. In Experiment 2, we tested the models
by manipulating the size (diameter) of the leader pole.

Method

Participants
Twelve students from Brown University, five

males and seven females who had not participated
in Experiment 1, participated in Experiment 2. All
participants had normal or corrected-to-normal vision.
The protocol was approved by Brown University’s
Institutional Review Board, in accordance with
the Declaration of Helsinki. Informed consent was
obtained from all participants, who were paid for their
participation.

Apparatus and displays
The equipment and displays were the same as in

Experiment 1, with two exceptions. First, the diameter
(i.e., width) of the leader pole was manipulated (0.2,
0.6, or 1 m), while its height was 3 m in all trials. Second,
the initial distance of the leader pole was held constant
at 2 m.

Procedure and design
The instructions and procedure were the same as

before. Experiment 2 had a within-subject factorial
design: 3 leader width (0.2, 0.6, 1 m) × 3 speed
perturbation (−0.3, 0, +0.3 m/s), yielding nine
conditions. There were 10 repetitions in each condition,
for a total of 90 trials, presented in a different random
order for each participant. A test session lasted about
40 min.

Data processing and model fitting
The data were processed as in Experiment 1.

Thirty-six (3.33%) out of 1,080 trials were excluded
due to tracking failures. The data used for model fitting
were the time series of follower’s speed from 0.5 s before
the perturbation to 5.5 s after the perturbation in each
trial. Only trials with a speed perturbation (n = 694)
were used for model fitting, after removing 26 trials that
were shorter than 5 s after perturbation. Participants’
final speed (the average speed in the last 2 s) and final
distance to the leader pole (the average distance in the
last 2 s) were calculated for each time series. Models
were fitted and tested using the same procedures as in
Experiment 1.
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Figure 9. Mean participant time series in Experiment 2. Time series of speed on (A) deceleration (n = 346) and (B) acceleration (n =
351) trials. Time series of distance from leader on (C) deceleration and (D) acceleration trials. Black curves indicate leader speed, red
curves indicate participant responses in each width condition, and shading indicates 95% confidence intervals. All time series are
aligned at the time of perturbation.

Figure 10. Mean final states in Experiment 2. (A) final distance to (the near surface of) leader, (B) final speed of follower, and (C) final
speed difference between follower and the leader, as a function of leader width (w) and speed perturbation (�v). In C, positive
values on the ordinate mean that the leader was faster than the follower. Error bars represent the SEM.

w �v w × �v

Final distance χ2(2, N = 1,044) = 23.72 *** χ2(2, N = 1,044) = 63.68 *** χ2(4, N = 1,044) = 1.18
η2 = .52 η2 = .83

Final speed χ2(2, N = 1,044) = 1.15 χ2(2, N = 1,044) = 2173.35 *** χ2(4, N = 1,044) = 6.19
η2 = .99

Final speed difference χ2(2, N = 1,044) = 1.16 χ2(2, N = 1,044) = 23.23 *** χ2(4, N = 1,044) = 6.19
η2 = .55

Table 4. The results of the Wald chi-squared test on fixed effects on final states in Experiment 2. ***p < 0.0001.

Results

Mean time series of speed and distance in each
condition appear in Figure 9. Leader size (separate
curves) clearly influenced the participant’s distance
from the leader (Panels C, D), but had little influence on
the participant’s speed (Panels A, B). The latter result
is contrary to the RE model, but was predicted by the
RRE model.

Final states
The mean final distance, final speed, and final speed

difference between the participant and the leader are
plotted as a function of leader width in Figure 10.
A linear mixed-effect regression with leader width
(w) and speed perturbation (�v) as fixed effects and
subject as a random effect revealed a significant effect
of leader width on final distance (p < 0.001) (Table 4).
Specifically, distance increased with the width of the



Journal of Vision (2023) 23(10):3, 1–15 Bai & Warren 11

Model Equation Parameters BIC Mean RMSE (m/s)

Relative rate of expansion (RRE) ẍ f (t ) = −b θ̇
θ

b = 2.629 −3,289a 0.086 (SD = 0.038)a

Ratio ẍ f (t ) = cẋMf
�ẋ
�xL c = 3.698 −3,281b 0.088 (SD = 0.040)a

M = −1.760
L = 1.014

Linear ẍ f (t ) = c1�ẋ + c2[�x − (a + bẋ f )] c1 = 0.894 −3,281b 0.087 (SD = 0.038)a
c2 = −0.035
a = 2.080
b = 0.652

Speed ẍ f (t ) = c�ẋ c = 0.831 −3,267c 0.087 (SD = 0.039)a
Rate of expansion (RE) ẍ f (t ) = −bθ̇ b = 20.443 −3,141d 0.095 (SD = 0.043)b

Lemercier et al. (2012) ẍ f (t ) = c�ẋ(t+τ )
�x(t )γ τ = 1.000 −2,863e 0.121 (SD = 0.039)c

c = 1.833
γ = 0.796

Speed-based distance (SBD) ẍ f (t ) = c[�x − (a + bẋ f )] c = 2.644 −2,647f 0.137 (SD = 0.066)d
a = 1.231
b = 1.746

Null ẍ f (t ) = 0 None −1,887g 0.238 (SD = 0.097)f
Distance ẍ f (t ) = c(�x − �x0) c = 0.011 −1,868h 0.231 (SD = 0.120)e

Table 5. Tests of the nine models in Experiment 2. Note: Parameter values and BIC values were acquired by fitting the models to all
perturbation trials (n = 694), while minimizing the RMSE on speed. BIC values were computed based on Equation 1. The models were
also tested using leave-one-subject-out cross-validation, in which each model was trained on 11 participants and tested on the one
left out until all combinations of training set and test set were used. The test results (mean and standard deviation of RMSE) of 12
iterations of cross-validation are shown in the table. The letters in the superscript of BIC values indicate the rank of model based on
BIC, whereas those in the superscript of cross-validation error indicate Duncan group in Duncan’s multiple range test. τ in Lemercier
et al. (2012) was capped at 1 s because a reaction time longer than 1 s is unlikely for a human pedestrian.

leader (Figure 10A); this effect cannot be explained by
a constant visual angle, for the mean final angle was
four times larger with a 1-m width than a 0.2-m width
in each speed perturbation condition. In contrast,
there was no effect of leader width on final speed or
final speed difference (Figures 10B, C). This finding is
inconsistent with the RE model, in which the speed
response depends on leader size, but consistent with the
RRE model, in which the response is normalized by
leader visual angle.

On the other hand, the speed perturbation had
a significant effect on all final states, confirming
that it effectively influenced behavior. In particular,
participants followed at a closer distance when the
leader slowed down than when the leader sped up
(Figure 10A). Participants also walked slower when the
leader decelerated than when the leader accelerated
(Figure 10B), resulting in a slower and faster speed than
the leader, respectively (Figure 10C). However, the w ×
�v interaction was not significant for any final state.

Following speed and distance
As is apparent from the mean time series (Figure 9),

the width of the leader did not influence participants’
speed response (panels A, B) but did affect the distance

of participants from the leader (panels C, D). Once
again, participants did not maintain the initial distance
of 2 m to the leader, nor did they keep a constant
distance after perturbation.

Model comparisons
Results from the two fitting procedures are shown

in Table 5. Based on BIC (lower is better), the ranking
of models is RRE < (Ratio = Linear) < Speed <
RE < Lemercier < SBD < Null < Distance. For all
inequalities, �BIC > 8, indicating strong evidence in
favor of this ranking.

The mean RMSE for each model (smaller is better)
from leave-one-subject-out cross-validation appears
in Figure 11. One-way ANOVA on RMSE revealed
a main effect of model, F (8, 6,237) = 636.2, p <
0.0001, η2 = 0.449. Duncan’s multiple range test (de
Mendiburu, 2019) showed the following ranking of
models: (RRE, Speed, Linear, Ratio)<RE< Lemercier
< SBD < Distance < Null, where inequalities are p
< 0.05 (means and standard deviations are shown in
Table 5).

To compare the RE and RRE models, a linear
mixed-effect regression was performed on RMSE with
model, leader width (w), and speed perturbation (�v) as
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Figure 11. Box plots of RMSE for each model from leave-one-subject-out cross-validation in Experiment 2. (A) RMSE on acceleration
(red) and deceleration (pink) trials. (B) RMSE in each leader width condition.

Figure 12. The real and predicted mean time series of speed in Experiment 2. D0 is initial distance. �v is speed perturbation. The
shading indicates the 95% confidence intervals for the human data. The predictions of the RE model change with the width of the
leader pole, whereas those of the RRE model do not to the same degree.

fixed effects and subject as a random effect. It revealed
a significant main effect of model, χ2(1, N = 694) =
23.39, p < 0.001, η2 = 0.02; a model × w interaction,
χ2(2, N = 694) = 7.92, p = 0.019, η2 < .01; and a
significant model × �v interaction, χ2(1, N = 694) =
9.52, p = 0.002, η2 < .01. It can be seen from Figure
11B that the difference between the RE and RREmodel
depends on w. The error of the RE model is larger than

that of the RRE model, especially when w is 0.2 m or 1
m, due to the RE model’s sensitivity to the size of the
leader pole.

Mean time series for simulations of the RE and
RRE models in each leader acceleration/deceleration
condition (Figure 12) reveal that the RE model
overreacted to the large leader (w = 1 m, right) and
underreacted to the small leader (w = 0.2 m, left). The
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RRE model overcame this sensitivity by normalizing
the expansion/contraction rate with the visual angle of
the leader.

Discussion

Experiment 2 found that the width of the leader
did not influence the participant’s speed in 1D
following. Speed responses to the leader did not change
significantly based on its diameter, at least over the
range of 0.2 to 1.0 m. Whereas the RE model was
sensitive to this range of leader size, the RRE model
normalized the expansion rate by the leader’s visual
angle and thus had a smaller error.

Note that the final distance did vary with the width
of the leader. Figure 10A shows that the final distance
to the near surface of the leader increased as the width
of the leader increased. This is due to differences in
speed after initial acceleration. The time series of speed
in Figures 9A, B show that participants’ average speed
before the perturbation was lower when the leader was
larger, which caused a greater distance at the time of
perturbation. This reluctance to get close to a larger
object could be a result of safety concerns or the limited
field of view in the HMD. However, the width of the
leader did not influence how participants changed speed
in response to the perturbation. Therefore, the width of
the leader influenced final distance but not final speed.

Experiment 2 also replicated the results of Rio et
al. (2014), because it tested only one initial distance.
They found that the speed-matching, ratio, and linear
models all performed at a comparable level, with a
significantly lower RMSE than the RE, distance and
speed-based distance models. We find that the RRE
model is also comparable to these omniscient models by
the frequentist criterion, but it has the smallest RMSE
overall and performs the best by the BIC because it
has only one free parameter. The RRE model does not
rely on separate inputs of distance and speed but on an
optical variable that depends on both. Therefore, it is
free from assumptions about the accuracy of distance
and speed perception. The RRE model thus offers
a biologically plausible explanation of how human
pedestrians use visual information to control walking
speed while following a leader.

General discussion

Pedestrian-following behavior

The present study showed that the speed control of
pedestrian following depends on the distance and speed,
but not the size, of the leader. Although participants
were asked to maintain a constant following distance,

the actual distance varied. When the leader accelerated
to 1.5 m/s, participants did not fully match that speed,
which caused the distance to increase; conversely,
when the leader decelerated to 0.9 m/s, participants
also did not fully match that speed until the distance
decreased to less than 3 m. In addition, the present
study replicated the asymmetry in the response to leader
deceleration and acceleration reported by Rio et al.
(2014): Participants exhibited a greater change in speed
when the leader slowed down than when the leader
sped up. This asymmetry was greater at closer leader
distances because the rate of expansion was higher,
given the same deceleration. Finally, the follower’s
speed does not depend on leader size (over a range of
0.2–1.0 m), contrary to the prediction of the RE model
but consistent with the RRE model.

We note that the human data have a sigmoidal speed
profile in response to the leader’s change in speed,
whereas all the models produce an instantaneous speed
change (Figures 8, 12). This contributed to visible
prediction errors. The discontinuous change in speed is
due to the fact all the models are second-order models,
which control instantaneous acceleration. In the future,
use of third-order models could reduce this error by
controlling the derivative of acceleration (jerk). Such an
approach would allow the model to generate a gradual
change in speed similar to the sigmoidal speed profile
of the human data.

Models of pedestrian following

Previously, Rio et al. (2014) reported that the
speed-matching model approximated the human data
more closely than the RE model, at least over a small
range of leader distance (1–4 m). However, the present
Experiment 1 found that both the RE and RRE models
perform better than the speed-matching model when
tested on a wider range of distances (1–6 m). Moreover,
the follower’s speed is better predicted by the RRE than
the RE model in both of the present experiments. When
the size of the leader was varied in Experiment 2, the
error of the RE model increased, whereas the error of
the RRE model remained smaller than all other models,
with �BIC indicating strong evidence in favor of RRE.

The closest competitor to the RRE model is the ratio
model. However, it is predicated on physical rather
than optical variables and has three free parameters as
opposed to one. The ratio model takes leader distance,
follower speed, and speed difference as input and is thus
omniscient. In addition, the optimal value for each of
its three parameters differed between Experiment 1 and
Experiment 2, for reasons that are hard to interpret. In
contrast, the RRE model takes one optical variable and
its rate of change as input, and its one free parameter
has a straightforward interpretation as the gain or
sensitivity of speed control. Most important, the RRE
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model provides a biologically plausible explanation
of speed control based on vision, whereas the ratio
model presumes that distance and speed are accurately
perceived.

Conclusions

The RRE model explains speed control in pedestrian
following better than the eight other models tested in
the present study. The model generalizes over a range
of leader distances, speeds, and sizes. Most important,
it provides a concise, vision-based explanation of
1D pedestrian following, which can be applied to
related problems such as two-dimensional following,
or controlling heading and speed in the horizontal
plane (Dachner & Warren, 2017), and collective crowd
motion (Dachner, Wirth, Richmond, & Warren, 2022).

Keywords: pedestrian following, optical expansion,
visual control of locomotion
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