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Abstract

Pathogen population dynamics within individual hosts can alter disease epidemics and pathogen 

evolution, but our understanding of the mechanisms driving within-host dynamics is weak. 

Mathematical models have provided useful insights, but existing models have only rarely been 

subjected to rigorous tests, and their reliability is therefore open to question. Most models 

assume that initial pathogen population sizes are so large that stochastic effects due to small 

population sizes, so-called demographic stochasticity, are negligible, but whether this assumption 

is reasonable is unknown. Most models also assume that the dynamic effects of a host’s immune 

system strongly affect pathogen incubation times or “response times,” but whether such effects 

are important in real host-pathogen interactions is likewise unknown. Here we use data for a 

baculovirus of the gypsy moth to test models of within-host pathogen growth. By using Bayesian 

statistical techniques and formal model-selection procedures, we are able to show that the response 

time of the gypsy moth virus is strongly affected by both demographic stochasticity and a dynamic 

response of the host immune system. Our results imply that not all response-time variability can 

be explained by host and pathogen variability, and that immune system responses to infection may 

have important effects on population-level disease dynamics.
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“Such degraded forms of Diptera are the connecting links between the true six-footed insects and 

the order of Arachnids (spiders, mites, ticks, etc.). The reader should compare the Nycteribia with 

the young six-footed moose-tick figured on page 559 of the Naturalist. Another spider-like fly is 

the Chionea valga […], which is a degraded Tipula, the latter genus standing near the head of the 

suborder Diptera. The Chionea, according to Harris, lives in its early stages in the ground like 

many other gnats, and is found early in the spring, sometimes crawling over the snow.” From “A 

Chapter on Flies (Concluded)” by A. S. Packard Jr. (The American Naturalist, 1869, 2:638-644).
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Introduction

An understanding of within-host pathogen growth is critically important for predicting and 

responding to disease outbreaks, but achieving such an understanding is difficult without 

mechanistic mathematical models. The development of models of within-host population 

growth is therefore an important area of current research (Alizon and van Baalen 2008), but 

few existing models have been formally tested, and so their reliability is unknown. Here 

we use experimentally collected time-to-death data to test models of within-host pathogen 

growth for an insect virus by comparing the ability of different models to explain the time 

that it takes the virus to kill infected hosts.
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Most within-host pathogen growth models are aimed at understanding the fluctuations in 

pathogen density that occur during chronic or acute infections (Antia et al. 1994; Alizon 

and van Baalen 2008; King et al. 2009). These fluctuations are often described using 

deterministic models, because deterministic models can be easily analyzed. An important 

assumption made by deterministic models is that pathogen populations are so large that 

there are no effects of demographic stochasticity, the variability in population growth that 

results from the timing of chance events such as reproduction or death (Borsuk and Lee 

2009). A growing body of theoretical literature, however, suggests that stochastic events are 

important (Michael et al. 1998; Grant et al. 2008; Vaughan et al. 2012), suggesting in turn 

that deterministic models are insufficient for describing these dynamics.

Variability in susceptibility between hosts that results from differences in host genetics or 

condition is known to cause variation in within-host pathogen dynamics (van der Werf 

et al. 2011). Circumstantial evidence from the empirical literature, however, suggests 

that demographic stochasticity may also play an important role. First, the symptoms of 

many diseases only appear after relatively long incubation periods, suggesting that initial 

pathogen population sizes are small (Moury et al. 2007; Zwart et al. 2009a). Second, 

there is often high variability across hosts in within-host pathogen dynamics, even when 

pathogens are grown in closely related hosts under identical conditions (Mideo et al. 2008; 

Zwart et al. 2009a). Demographic stochasticity may therefore be an important source of 

variability in growth rates. What is needed then, is a formal test of whether models that 

allow for demographic stochasticity provide a better explanation for pathogen growth than 

do models that allow only for variability between hosts. Quantifying pathogen numbers 

within hosts when pathogen population sizes are small is often imprecise (Chandler 1998), 

but it is when population sizes are small that the effects of demographic stochasticity 

are most likely important. We therefore instead use incubation time data to test for 

the importance of demographic stochasticity. Our model-fitting procedure shows that 

demographic stochasticity does indeed play a crucial role in within-host pathogen growth.

Efforts to use stochastic models to make inferences about mechanisms determining pathogen 

population growth have a long history (Shortley 1965; Shortley and Wilkins 1965; Chang 

1970). Early efforts estimated parameters using data on a disease’s incubation period or 

“response time,” the time between infection and the appearance of disease symptoms. This 

work, however, was based only on “birth-death” models, which assume that per capita 

pathogen clearance rates are constant. In many organisms, however, pathogen clearance 

rates instead change over time because of changes in the immune system during the period 

of infection. Because birth-death models do not allow for such dynamic changes in the 

immune system, they generally provide a poor fit to data (Armitage et al. 1965; Williams 

and Meynell 1967; Schach and Schach 1970).

More recent stochastic models have instead often included immune system dynamics, 

usually to describe HIV growth, and have compared model predictions either to patterns 

in within-host pathogen dynamics (Chao et al. 2004; Lin and Shuai 2010; Conway and 

Coombs 2011; Vaughan et al. 2012), or to changes in within-host pathogen diversity (Woo 

and Reifman 2012). Comparisons to data, however, have been carried out only for the 

purposes of qualitative model validation, not for parameter estimation or model comparison. 
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Other researchers have instead neglected the dynamic effects of the immune system but have 

avoided poor fits to data by applying their models only to the first few days of infection, 

before the immune system has begun to have much effect. This latter approach requires 

reduced computing resources, and it has therefore been straightforward to compare models 

to data, using data on multiplicity of infection (Brown et al. 2006) or changes in pathogen 

diversity (Grant et al. 2008) in mice infected with typhoid (Salmonella enterica).

Nevertheless, neither approach directly addresses the questions prompted by Shortley’s 

work: does demographic stochasticity affect response times, and are response times affected 

by immune system dynamics? Answers to these questions are crucial for the further 

development of theories of the evolution of virulence, because response time is a key 

component of pathogen fitness (May and Anderson 1983). We therefore combined recent 

approaches, following the lead of HIV researchers in using models that allow for immune 

system dynamics and following the lead of mouse-typhoid researchers in using model-

selection procedures to formally choose between models. To meet the significantly greater 

computing requirements of our models, we used a highly parallel computing environment, 

and we developed a new form of Markov chain Monte Carlo algorithm that takes advantage 

of this environment (Kennedy et al. 2014b). Because response-time data are sometimes 

insufficient to choose between models (Morgan and Watts 1980), we constrained the values 

of some parameters by using previously collected experimental data, while estimating other 

parameters directly from response-time data.

The baculovirus that we study is a nucleopolyhedrovirus of the gypsy moth, Lymantria 
dispar. Because baculoviruses are directly transmitted, fatal, and usually either species-

specific or with narrow host ranges, they are widely used as environmentally benign 

insecticides (Moreau and Lucarotti 2007). In baculoviruses, response time is effectively 

equivalent to speed of kill, an important measure of efficacy when baculoviruses are 

used as insecticides. Our efforts to understand response times may therefore be helpful in 

efforts to use baculoviruses in pest management. Previous efforts to make inferences about 

mechanisms of baculovirus growth have in contrast used deterministic models (van Beek et 

al. 1988a), which often ignore relationships between speed of kill and probability of death, 

thereby requiring two separate models to analyze speed of kill and percent mortality. Our 

approach in contrast relates a particular baculovirus dose to both speed of kill and percent 

mortality, thereby using a single model to draw inferences from both types of data.

Methods

Study System

The gypsy moth is an invasive pest in North America that causes economic damage by 

periodically defoliating hardwood trees (Elkinton and Liebhold 1990). As in many forest 

insects, gypsy moth outbreaks are partly driven by a species-specific baculovirus, the 

Lymantria dispar nucleopolyhedrovirus (Dwyer et al. 2004). This virus is also used in gypsy 

moth control (Webb et al. 1999), but the evolutionary consequences of virus application 

are unknown. Because within-host pathogen growth is a crucial element in virus evolution, 

one of our aims is to develop a reliable model of within-host dynamics that can be used to 

understand the evolutionary consequences of microbial control programs.
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Baculovirus infection begins when a larva consumes foliage contaminated by infectious 

particles or “occlusion bodies” released from the cadaver of a virus-killed conspecific (Cory 

and Myers 2003). In the alkaline environment of the gut, the pH-sensitive, outer protein coat 

dissolves (Adams and McClintock 1991). Viral proteins called “enhancins” then increase the 

permeability of the peritrophic membrane of the insect gut (Wang and Granados 1997; Peng 

et al. 1999), allowing virions to bind to epithelial cells of the midgut (Horton and Burand 

1993). Infection is thus associated with damage to the peritrophic membrane (Rohrmann 

2008), and so gut-cell sloughing increases as a response to virus challenge (Washburn et al. 

2001). Larvae have many midgut cells (Baldwin and Hakim 1991), and so the number of 

suitable binding sites probably does not impose a severe limitation on midgut cell infection 

(van Beek et al. 1988a). Increased rates of cell sloughing, however, may nevertheless 

lead to a non-linear relationship between pathogen dose and the number of particles that 

successfully invade a host.

In infected midgut cells, virions bud from the cell membrane and enter the tracheal system, 

at which point systemic spread begins (Adams and McClintock 1991). Through the tracheal 

system, virions gain access to the hemolymph, where a particular virion’s fate depends on 

whether it first comes into contact with a host immune cell or with a host cell suitable 

for replication. If a virion contacts a host immune cell, or “hemocyte,” it is bound to the 

hemocyte (Washburn et al. 1996; Schmid-Hempel 2005; McNeil et al. 2010), an event that 

initiates a phenoloxidase cascade that destroys the virion and renders the hemocyte inactive 

(Ashida and Brey 1998; Trudeau et al. 2001). Interactions between virions and immune cells 

thus result in the destruction of both the virion and the immune cell. If a virion instead 

encounters a cell suitable for replication, it enters the cell and moves to the nucleus, where 

it begins to replicate (Rohrmann 2008). Newly formed virus particles then bud and detach 

from the cytoplasmic membrane of the cell, which allows them to find new cells to infect 

(Adams and McClintock 1991; Slack and Arif 2006). An important point is that insect 

immune systems lack clonal reproduction (Vilmos and Kurucz 1998), and so over the course 

of an infection, hemocytes likely become depleted. The depletion of these hemocytes thus 

results in a decline in the effectiveness of the immune system over time.

Some exposed larvae are able to clear all of the virions from their system and recover 

(Washburn et al. 1996), but in others, virion number increases from the presumably small 

number of particles consumed to a very large number, roughly 2 × 109 particles in the 

fourth-instar larvae (“instar” p larval developmental stage) that we use here (Shapiro et al. 

1986). Though the precise mechanism that causes death is unknown, nearly all internal host 

tissue is converted into a virus-rich, fluid-like substance that pours out of larvae on rupture 

of the host integument by the action of viral encoded chitinases and cathepsins (Hawtin et al. 

1997). The virus occlusion bodies are then available to infect additional larvae (Elkinton and 

Liebhold 1990).

Data Collection

To collect speed-of-kill data, we used egg masses from the New Jersey standard strain of 

gypsy moths (USDA-APHIS, Otis, MA), which are of low heterogeneity in susceptibility 

(Dwyer et al. 1997). Using this strain reduced differences between hosts, aiding our effort to 
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determine whether demographic stochasticity is important to host response times. Because 

this population nevertheless includes at least modest variability between individuals, we 

included variability between individuals in our models.

Larvae were reared according to standard rearing protocols (app. A, “Rearing Methods”; 

apps. A and B available online). Fourth-instar larvae were then used in a “diet-plug” 

bioassay (Hughes and Wood 1986; Dwyer et al. 1997; Li and Bonning 2007) to determine 

mortality and speed of kill at five virus doses (app. A, “Bioassay”).

Model Construction

Because there is already an extensive literature on baculovirus pathogenesis, the goal of 

our model-fitting was not to identify novel mechanisms but instead to determine which 

known mechanisms have detectable effects on response times. Our statistical approach to 

solving this problem was to fit a range of different models to the data and to use formal 

model-selection criteria to choose the model that best explains the data.

Baculovirus biology suggests that the number of virus particles that initiates infections 

is probably small (Zwart et al. 2009a, 2009b), and so we used probabilistic models 

that inherently allow for demographic stochasticity. The models track the replication and 

destruction of virions, as well as the immune cells that are destroyed along with the virions. 

Our most complex model is then

dpx, y

dt = bx − 1px − 1, y + dx + 1, y + 1px + 1, y + 1

− bx + dx, y px, y,
(1)

bx =
ϕx 1 − x

K
0

if x = 1, 2, …, xT − 1
otherwise , (2)

dx, y = βxy
0

if x = 1, 2, …, xT − 1
otherwise, , (3)

px, y(0) = 1
0
if x = x0 and y = y0

otherwise . (4)

Here px, y is Prob(X(t) = x, Y (t) = y), where x = 0, 1, 2, …, xT, and y = 0, 1, 2, …, y0. Term X(t)
is the number of virions, and Y (t) is the number of immune cells at time t. Term xT is the 

threshold number of virus particles at which host death occurs, and y0 is the initial number 

of immune cells in the host. Virus replication bx then follows a logistic-growth model, with 

intrinsic rate of increase ϕ and carrying capacity K. In practice, it is convenient to express 

K as xTK so that we instead estimate K, which is the extent to which the carrying capacity 

exceeds the host-death threshold xT. Note that the model assumes host death occurs when 
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the virus population reaches xT, but the assumption does not require that reaching xT is 

the cause of death. Virus removal dx, y depends on the massaction term βxy, where β is 

the rate at which virus-destruction events occur. We thus follow standard immune system 

models in assuming that virus-immune cell interactions can be modeled as predator-prey 

interactions, with the virus acting as the prey and the immune cell acting as the predator 

(Alizon and van Baalen 2008). An important difference from previous models, however, is 

that we assume that immune cells do not reproduce, to reflect the fact that insect hemocytes 

do not undergo clonal selection (Vilmos and Kurucz 1998). Nevertheless, because the model 

includes changes in the number of immune cells, it allows for a dynamic immune response.

The initial virus population size x0, the threshold virus population size for host death xT, and 

the initial immune-cell population size y0 are likely to vary among insects, and we therefore 

treat them as random variables. Preliminary results indicated that the initial virus population 

that actually established inside an insect was a saturating function of the applied dose. 

Because randomness is introduced during the process of virus establishment, we described 

this initial population using a Poisson distribution with parameter c1D/ c2 + D , such that D
is dose and c1 and c2 are estimated parameters that account for the dosesaturation effect. 

Specifically, c1 is the saturation value of the initial virus population, and c2 is the dose at 

which half of the saturation value is reached.

To allow for variability between individuals, we assumed that the initial immune cell 

population y0 and the threshold population size for host death xT followed lognormal 

distributions, with medians and variances estimated from the data. Lognormal distributions 

allow for separate adjustment of medians and variances while constraining the variables to 

be positive. Allowing for a nonzero variance in the number of immune cells is especially 

important, because it allows us to incorporate the effects of variability between hosts in 

immune system strength. The boundary conditions are thus

x0 ∼ Poisson c1D
c2 + D , (5)

y0 ∼ log − N ln(m), σm
2 , (6)

xT ∼ log − N ln(N), σN
2 . (7)

Note that in the above equations, we distinguish between the parameter m, which is the 

median initial number of immune cells in a host, and the state variable y0, which is the 

realized initial number of immune cells. We similarly distinguish between the median 

threshold virus population at which a host dies N and the realized threshold xT. These 

distinctions allow us to include the effects of stochastic variation between hosts in the initial 

number of immune cells and the threshold virus population size. All model parameters are 

listed in table 1.
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Our candidate models are then derived as follows. First, our most complex model (M1) is 

given by equations (1)–(7). Second, to produce a model in which host resources do not 

limit pathogen growth, we assumed that the virus carrying capacity is much greater than 

the threshold for host response (K ≫ xT), so that there is no effect of resource depletion 

on pathogen growth. This causes the logistic terms to disappear from equation (2). We 

call this the “no-carrying-capacity” model (M2). Third, to produce a linear birth-death 

model, we began with M2 and we additionally fixed the number of immune cells yt at y0

for all t, so that the death rate is set to the constant value βy0. Note that this model was 

first introduced by Shortley (1965), and so we call this the “Shortley birth-death” model 

(M3) (Chang 1970; Ercolani 1985). Fourth, by reparameterizing M1 according to c 1 = c1/c2

and by assuming that dose D ≪ c2, we produce a model in which virus establishment is a 

linear, nonsaturating function of dose. In practice, this is equivalent to rewriting equation 

(5) as x0 ∼ Poisson c 1D . We call this the “linear virus colonization” model (M4). Fifth 

and sixth, we remove variability between hosts in immune system strength and in the 

threshold for response, respectively, by setting σm and σN to 0. These changes, in effect, 

replace equations (6) and (7) with, respectively, y0 = m and xT = N. We call these latter 

two models the “identical immune system” (M5) and “identical response threshold” (M6) 

models, respectively. Seventh, we note that models including demographic stochasticity 

can be closely approximated by corresponding ordinary differential equation models, when 

population sizes are large (Renshaw 1991). We therefore constructed a model with no 

demographic stochasticity by assuming that virus population sizes are large enough to 

be tracked as continuous rather than discrete values. We then rewrite the probabilistic 

model as a set of differential equations, as in van Beek et al. (1988a). We call this the 

“no-demographic-stochasticity” model (M7). We emphasize, however, that this latter model 

does include stochasticity in the form of stochastic differences between hosts in immune 

system strength and the threshold for response. Transition probabilities for each of these 

models can be found in figure 1.

Our main goal in fitting models to data was to infer the importance of different mechanisms 

in determining pathogen growth within hosts. We therefore compared the ability of our 

competing models to explain the data, such that the best model included only those 

mechanisms that could justifiably be included given the data. Although equations (1)–

(7) include effectively every mechanism hypothesized to affect within-host dynamics of 

baculoviruses, it is possible that the effects of one or more of these mechanisms are weak 

enough that they can be neglected. Because we considered not just the most complex model 

but simpler models that successively left out mechanisms, we were able to quantify the 

importance of each mechanism (Burnham and Anderson 1998).

Bayesian Inference

We analyzed these models in a Bayesian statistical framework (Kennedy et al. 2014a; see 

app. A, “Fitting the Models to Data” for details), and we then compared our competing 

models using the deviance information criterion or DIC (Spiegelhalter et al. 2002). Smaller 

DIC values imply better models, and so if the DIC score of a simpler model is larger than 

that of a more complex model, the mechanism missing from the simpler model is likely to 
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be important in understanding speed of kill. To aid in these comparisons, we present the 

ΔDIC score of each model, which is the difference between a model’s DIC score and the 

DIC score of the best model. There is no absolute cutoff for ΔDIC scores such that one 

model can be outright rejected in favor of another, but a rule of thumb proposed by Burnham 

and Anderson (1998) for interpreting differences in the Akaike Information Criterion (AIC) 

appears to work well for DIC as well (Spiegelhalter et al. 2002; Bolker 2008). According 

to this rule of thumb, a model with ΔDIC of <2 has substantial support, a model with ΔDIC
between 3 and 7 has considerably less support, and a model with ΔDIC > 10 has very little 

support.

A crucial feature of DIC is that it allows us to include information from other data sets 

in model selection. This is important because estimating some of the model parameters 

from response-time data alone is very difficult (Morgan and Watts 1980). For example, 

unreasonably low estimates of the median threshold population size N can produce 

reasonable speeds of kill if the estimate of the virus growth rate parameter ϕ is also very low. 

Shapiro et al. (1986), however, directly counted occlusion bodies to estimate that, for the 

developmental stage of the insects that we use here, N = 2.05 × 109 ± 0.22 × 109, which we 

used to construct a prior distribution on N. We likewise used literature data to include such 

information in the priors of many of the model parameters (app. A, “Prior Construction”), an 

increasingly common practice in ecological modeling (McCarthy and Masters 2005; Elderd 

et al. 2006; Bolker 2008).

The resulting posterior distribution includes information from our priors as well as 

information from our response-time data (Gelman et al. 2004). As we explain in more 

detail in appendix A, “Prior Construction,” however, our priors serve mostly to constrain 

parameters away from biologically unrealistic values such as extremely low median 

threshold pathogen population sizes N and extremely low pathogen replication rates ϕ. 

Our informative priors, specifically for the threshold pathogen number at which death occurs 

N, the number of pathogen particles that cross the gut barrier c1/ c2 + 1 , and the pathogen 

replication rate ϕ are based on reliable data. Moreover, our main conclusions are not based 

on parameter estimates but are instead derived from model comparisons. By constraining our 

parameter estimates to biologically realistic values we ensure that our models are reasonable 

descriptions of pathogen growth in insect hosts, which in turn improves the reliability of our 

conclusions.

We additionally note that we used vague priors for the attack rate of immune cells β and the 

median initial number of immune cells m that describe the dynamics of the immune system. 

Our estimates of β and m thus depended almost entirely on the response-time data. We used 

identical priors for the models that include demographic stochasticity and for the model 

that does not. Our conclusion that response times are partly determined by demographic 

stochasticity and a dynamic immune system is thus not simply due to our use of informative 

priors for some parameters.
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Qualitative Model Behavior

To illustrate the key biological differences between our models, here we focus on the 

behavior of three particular models that highlight the effects of a dynamic host immune 

response and of demographic stochasticity on response times. In figure 2A, we show 

multiple stochastic realizations of our most complex model (M1), equations (1)–(7), which 

allows for a dynamic immune system and demographic stochasticity. In B, we show 

realizations of the Shortley birth-death model (M3), which does not allow for a dynamic 

immune system but does allow for demographic stochasticity. In C, we show realizations 

of the no-demographic-stochasticity model (M7), which allows for a dynamic immune 

system but does not allow for demographic stochasticity. Realizations of the former two 

models were generated using the Gillespie algorithm (Doob 1945; Gillespie 1977), while 

realizations of the latter model were generated using the Euler method of numerical 

integration (as we explain in app. A, “Fitting the Models to Data,” our fitting routine 

required millions of realizations, and so for the stochastic models in the fitting routine, 

we used a hybrid simulation algorithm). When we fit the models to data, we allowed for 

variation in doses and in hosts, but because figure 2 is intended to highlight the conceptual 

differences between the models, in these simulations, dose and susceptibility are identical 

across hosts. Parameter values were also chosen to highlight these conceptual differences 

(realizations using more realistic parameter sets are in fig. B1; figs. A1, A2, B1, B2 available 

online). In figure 2, the black lines show realizations in which the virus population grew 

to high levels and killed the host, while the gray lines show realizations in which the virus 

population was cleared and the host recovered. Importantly, parameters and initial conditions 

within each panel are identical for all realizations, so that differences in trajectories are only 

the result of the timing of birth and death events, and thus demographic stochasticity. As 

a result, for this figure, the no-demographic-stochasticity model is effectively deterministic. 

Demographic stochasticity is then evident in the jaggedness of the trajectories for the first 

two models. As the figure highlights, demographic stochasticity plays a substantial role 

when pathogen populations are small, and the trajectories become increasingly smooth as 

the pathogen population grows. Demographic stochasticity therefore leads to variability 

between trajectories in the time it takes for the pathogen population to reach a size at which 

its population growth is effectively deterministic.

Comparing the most complex model (A) and the Shortley birth-death model (B) reveals 

that the models behave similarly late in an infection when the pathogen population is large 

but that they behave quite differently early in an infection when the pathogen population 

is small. For the most complex model, pathogen populations are maintained at low sizes 

for a relatively long period of time before the immune system is finally overwhelmed 

and the pathogen population begins to grow quickly. The Shortley birth-death model in 

contrast predicts that the pathogen population will usually begin to increase immediately. 

This difference occurs because in the Shortley birth-death model the history and current state 

of the population have no effect on whether the next event is a birth or a death, while in 

the most complex model, the relative probabilities of births and deaths change over time, 

because the host immune system is dynamic. That is, in the most complex model, the 

relative probability of the death of a virus particle is highest immediately after infection, 

but it decreases over time as the immune system becomes exhausted. Because the effects 
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of demographic stochasticity are strongest when population sizes are small, and because 

the immune system keeps the virus population at low levels for long periods in the most 

complex model, the most complex model predicts that there will be a great deal of variation 

among trajectories. Response times in our data are highly variable, as is the case for many 

pathogens. Because the presence of a dynamic host immune system in the most complex 

model causes virus populations to be low for long periods, it allows the most complex 

model to provide a much better fit to the data than the Shortley birth-death model, which 

has only a static immune system. Because in figure 2 we temporarily assumed that there 

are no differences between hosts in the threshold virus population for host response or in 

immune system strength, the model without demographic stochasticity (M7) predicts that 

there will be no variation in response times (fig. B1 shows realizations of M7 that include 

those types of stochasticity). Although this is an extreme case, it usefully emphasizes the 

potential importance of demographic stochasticity in causing variation in response times.

Results

The data from this experiment are deposited in Dryad Digital Repository: http://dx.doi.org/

10.5061/dryad.04vh7 (Kennedy et al. 2014a).

As is almost always the case in dose-response studies using baculoviruses (van Beek et 

al. 2000; Hodgson et al. 2001; Zwart et al. 2009a), our data show clear relationships 

between virus dose and host outcomes (fig. 3; app. A, “Generalized Linear Model (GLM) 

Analyses”). Higher virus doses caused higher mortality and faster deaths. Model selection 

using DIC showed that the best model is the linear virus growth model (M2), which 

includes demographic stochasticity, a nonlinear relationship between applied and effective 

dose, dynamic effects of the immune system, and variability between hosts, but not a 

carrying capacity for virus growth (table 2). Reassuringly, this model fits the data quite 

well (fig. 4A). Relative to this best model, the Shortley birth-death model (M3), the linear 

virus colonization model (M4), and the no-demographic-stochasticity model (M7) all fit 

the data much more poorly (table 2). The best model includes a dynamic host immune 

response, nonlinear virus colonization, and demographic stochasticity, whereas the poorly 

fitting models leave out one or more of these mechanisms, and so we conclude that these 

mechanisms all have strong effects on the distribution of host response times. Reasonable 

explanations for the data were also provided by the most complex model (M1), which differs 

from the best model in including a virus carrying capacity, as well as the identical immune 

system model (M5), and the identical response threshold model (M6). The strong showing 

of the latter two models suggests that the effects of variability between hosts in response 

thresholds and immune responses are not very strong. To quantify such effects, we used our 

parameter estimates (fig. 5) to calculate the coefficients of variation (CV) for both the initial 

number of immune cells y0 and the threshold pathogen population size xT for our best model, 

the linear virus growth model (M2). The CV of y0 is approximately 0.027, and the CV of 

xT is approximately 0.249. The small CV on y0 and the modest CV on xT lend weight to our 

assertion that variability in speed of kill across hosts is not easily explained by variability 

among larvae, and we therefore conclude that demographic stochasticity in pathogen growth 

is important in generating variability in speed of kill.
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In addition to model selection, we also provide a visual comparison of the fit of the best 

model, the linear virus growth model (M2), as well as the Shortley birth-death model (M3) 

and the no-demographic-stochasticity model (M7). We include only these three models 

because the linear virus growth model (M2) represents our basic argument that the response 

time of the virus is driven by demographic stochasticity and a dynamic immune system, 

while the other two models represent the most important alternatives to this argument. 

Figure 4 shows that the nodemographic-stochasticity model (M7) does a poor job of 

explaining the data because, for this model, variability in response time can be explained 

only by differences between hosts. This model does a spectacularly poor job of reproducing 

response times at the lowest virus dose, because it predicts substantially lower mortality 

rates than what we observed. Even at higher doses, however, model M7 produces an overly 

flat distribution of response times, with too little mortality at the peak of each distribution 

and too much mortality in the right-hand tail (fig. 4). Model M7 thus does a poor job of 

reproducing the sharp peak of mortality and the extreme right-handed skew that are apparent 

at all doses, a failure that is perhaps easier to see when the fit of model M7 is compared to 

the fit of the linear virus growth model (M2), which includes demographic stochasticity.

The Shortley birth-death model (M3), which assumes a constant virus clearing rate and thus 

does not include the effects of a dynamic immune system, fails even more spectacularly at 

lower doses, drastically overpredicting mortality at the peak, and underpredicting mortality 

in the tails (fig. 4). The same effects are also present at higher doses, although they are not 

as striking. The Shortley birth-death model has long been criticized on the grounds that it 

predicts too little variability in response times relative to the variability seen in many data 

sets (Armitage et al. 1965; Schach and Schach 1970), and the model’s failure here is due to 

the same problem. A dynamic immune system, in contrast, allows the virus population to be 

maintained at low levels for highly variable periods of time (fig. 2). In the models that allow 

for a dynamic immune response and demographic stochasticity, the distribution of response 

times shows a sharp peak with an extreme right-handed skew, which leads to a much better 

fit to the data.

Insights can also be gained by examining the posterior estimates of the model parameters 

(fig. 5). First, the parameter estimates of the most complex model (M1), the linear virus 

growth model (M2), the identical immune system model (M5), and the identical immune 

response threshold model (M6) are all very similar. The relatively poor fits of models 

M5 and M6 (table 2) therefore suggest that small differences in the initial immune cell 

number (absent in M5) and in the threshold for host response (absent in M6) can have 

important effects on host response times. Second, our earlier conclusion that a virus carrying 

capacity K is unimportant to explaining our response time data is further strengthened by the 

observation that the central credible intervals of the carrying capacity are large and similar 

for every model considered.

As Shortley (1965) pointed out, decreasing the net virus growth rate and the threshold for 

host response in linear birth-death models increases the variability in host response times. 

Our estimates of the virus growth rate ϕ and the median threshold for host response N are 

quite a bit smaller for the Shortley birth-death model (M3) than for the other models (fig. 

5). This observation thus strengthens our previous contention that a dynamic host immune 
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system, missing from model M3, is important for generating the high level of variability 

seen in our response-time data.

Our best model (M2) and the no-demographic-stochasticity model (M7) provide very 

different estimates of the median number of initial immune cells m (on the order of 100,000 

for M2, but only 100–1,000 for model M7). Given that this latter model provides a much 

worse fit to the data, the difference in these estimates suggests that using model M7 alone 

would lead to the erroneous conclusion that gypsy moth larvae have only a small number 

of immune cells. Likewise, there is a substantial difference in the CV of the initial number 

of immune cells y0 between these models (0.048 for M7 vs. 0.027 for M2). This difference 

in CV likely occurs because the no-demographic-stochasticity model (M7) relies entirely 

on differences between hosts to explain variability in response-time data and therefore 

overestimates the size of these differences. If demographic stochasticity is important in 

other host-pathogen systems, similar biases may exist in parameter estimates for many 

within-host models. The differences in parameter estimates between these two models thus 

illustrate that inference based on a badly fitting model may lead to incorrect conclusions. 

Additionally, the relatively high estimate of the CV of the initial number of immune cells 

in the no-demographic-stochasticity model (M7) and the nonzero estimate of this CV in 

our best model (M2) emphasize that demographic stochasticity plays an important role in 

determining response times, as does variability among hosts.

Discussion

We found that the model that best fits our data (M2) allows for demographic stochasticity. 

This is because virus population sizes early in infections are small, and so chance 

events have disproportionately large impacts on whether and when hosts die and recover. 

Previous efforts to make inferences about the processes driving the within-host growth of 

baculoviruses used only deterministic models (van Beek et al. 1988a), and therefore could 

not have detected such effects (but see van der Werf et al. 2011 for a stochastic model of 

baculovirus colonization). Although studies in other systems have shown that differences in 

disease dynamics can sometimes be explained by stochastic processes (Riley et al. 2003; 

Brown et al. 2006; Grant et al. 2008; Woo and Reifman 2012), many models assume that 

differences in pathogen dynamics between hosts are due only to differences in host genetics 

or condition (Antia et al. 1996; Ganusov et al. 2002; Andre et al. 2003; Mideo et al. 2008; 

Pepin et al. 2010). To our knowledge, we are the first to show that models with demographic 

stochasticity and differences between hosts provide a better fit to response-time data than 

do models lacking either of these sources of variability. Indeed, the Shortley birth-death 

model provides a very poor fit to response-time data in several host-pathogen systems, 

especially compared to models that allow for variability between hosts (Armitage et al. 

1965; Chang 1970; Schach and Schach 1970). We likewise show that the model that allows 

for variability between hosts but not demographic stochasticity (M7) fits the data better than 

the Shortley birth-death model. Nevertheless, models with both variability between hosts 

and demographic stochasticity fit our data far better than models lacking either of these 

mechanisms, suggesting that both sources of variation are important. Our results therefore 

provide strong evidence that, for the gypsy moth virus, demographic stochasticity has an 

important effect on the response time of infected hosts. Additionally, differences between 
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hosts affect response times, even though the magnitudes of these host differences are quite 

modest. Small differences between hosts can thus have detectable effects on host outcomes. 

Our results thus suggest that the outcome of infection might be difficult to predict both 

because of demographic stochasticity within hosts and because of small differences between 

hosts that cannot be measured precisely.

A stochastic model will almost inevitably provide a better fit to data than a deterministic 

model given the importance of stochasticity in population biology, but all of our models 

include some form of stochasticity. Comparisons of the best model to the identical response 

threshold model (M5), the identical immune system model (M6), and the no-demographic-

stochasticity model (M7) show that both stochastic differences between hosts and stochastic 

variation in virus growth play roles in generating response times. Because M7 includes 

only stochastic differences between hosts, it cannot fully explain how the distribution of 

response times changes across virus doses, whereas the models that include demographic 

stochasticity can explain this aspect of the data. On the other hand, the models that neglect 

stochastic differences between hosts (M5 and M7) provide a substantially poorer fit than our 

best model (M2), which means that stochastic variation between hosts also plays a role in 

generating response times. Our general conclusion is thus that demographic stochasticity in 

within-host population growth is a neglected mechanism in studies of infectious diseases.

The crucial difference between our best model (M2) and the Shortley birth-death model 

(M3) is that our best model allows for dynamic effects of the immune system, demonstrating 

that changes in the immune system over time are important to understanding response-time 

data. Insect immune responses against viruses have long been presumed to be quite limited 

(Washburn et al. 1996; Strand 2008), and we therefore hope that our work will stimulate 

further research in insect immunology. More broadly, theory has strongly emphasized the 

role of dynamic immune responses on host-pathogen evolution (Antia et al. 1994; Hamilton 

et al. 2008; King et al. 2009), and models have shown that stochasticity may play an 

important role in pathogen dynamics within hosts (Grant et al. 2008; Vaughan et al. 2012; 

Woo and Reifman 2012). To our knowledge, however, we are the first to show that dynamic 

changes in an immune system can have a detectable effect on variation in host response 

times.

For nucleopolyhedroviruses like the gypsy moth pathogen, host death is required for 

transmission, and so variability in response time leads to variability in time to transmission. 

Variability in time to transmission can in turn have dramatic consequences for longer-

term disease dynamics (Wearing et al. 2005). Because we have shown that dynamic host 

immune responses affect response times, it follows that immune responses can affect disease 

dynamics.

We found that the most complex model (M1) provided a poorer fit to the data than the 

linear virus growth model (M2), even though model M2 lacks resource limitation during 

virus growth. Given that the difference in DIC scores between these models is small, this 

conclusion might change if we had more data or different data, but it is nevertheless worth 

considering why there may be no resource limitation. For baculoviruses and other obligately 

lethal pathogens, there are likely trade-offs between the benefits that arise from keeping 

Kennedy et al. Page 14

Am Nat. Author manuscript; available in PMC 2023 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a host alive so that the pathogen can replicate and the benefits that arise from killing a 

host quickly so that the pathogen can spread. Indeed, there is empirical evidence that such 

trade-offs exist in baculoviruses (O’Reilly and Miller 1991; Hodgson et al. 2001; Cooper et 

al. 2002). Given this trade-off between pathogen production and transmission, it follows that 

there must be an optimal killing time (Ebert and Weisser 1997) that maximizes pathogen 

fitness. The lack of importance of resource limitation in our models thus suggests that the 

gypsy moth virus usually kills before host resources are completely exhausted. A rapid 

speed of kill may be beneficial because doses in the field are very high (D’Amico et al. 

2005), which in combination with our finding that dose effects are nonlinear, implies that 

there is little benefit to producing additional virus particles. The optimal killing time may 

therefore occur well before host resources become limiting.

Although our data were collected for only a single host-pathogen system, our models are 

general. It is therefore at least possible that our results can be generalized to other host-

pathogen systems. In particular, the greater complexity of the vertebrate immune system 

suggests that the immune-system effects that we see in the gypsy moth may be even 

stronger in vertebrates. Likewise, population bottlenecks are associated with transmission 

events in many host-pathogen systems (McGrath et al. 2001; Moury et al. 2007), suggesting 

that initial pathogen populations within hosts are small for many pathogens. Demographic 

stochasticity may thus be important in many infectious diseases.

The importance of demographic stochasticity means that individual responses to pathogens 

may be unpredictable even given extensive knowledge of host and pathogen genetics. 

Furthermore, selection is often assumed to be extremely efficient in pathogen populations, 

because population sizes are large and generation times are short relative to host generation 

times (Tooby 1982; Altizer et al. 2003; Ebert and Bull 2008). In the case of within-host 

growth, however, demographic stochasticity is effectively equivalent to genetic drift (Turner 

and Duffy 2008). The importance of demographic stochasticity in explaining our data 

thus suggests that drift may often overwhelm selection inside hosts, in turn implying that 

selection may be less effective than previously believed. One consequence of this effect 

is that deleterious alleles may be quite common in pathogen populations, despite the 

common assumption that pathogens have optimal phenotypes (Ewald 1994; Ebert 1998). 

An interesting question for further research is thus, how strong a selective force is needed to 

overwhelm drift in insect-baculovirus systems?

The small magnitude of host differences in our best-fitting model is surprising given that 

previous research has shown that differences between hosts play a strong role in virus 

transmission in gypsy moth populations in the field (Dwyer et al. 1997, 2000; Elderd et al. 

2008). We emphasize again, however, that our host insects were derived from a lab colony of 

low variability (Dwyer et al. 1997), and we followed standard protocols by discarding larvae 

that did not consume the entire dose (Li and Bonning 2007). In nature, in contrast, larvae 

can sometimes detect and avoid infectious cadavers (Capinera et al. 1976), and variability in 

this trait appears to be heritable (Parker et al. 2010). The exclusion of such behaviors in our 

experiments may therefore explain why differences between hosts had only weak effects in 

our data.
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We used response time data because response time is important for insect biocontrol and 

because such data are cheap, can be collected more easily, and can be measured more 

accurately than pathogen population sizes. The success with which these data allowed us 

to detect effects of demographic stochasticity and a dynamic immune system suggests 

that response times do indeed provide substantial information about within-host pathogen 

growth, despite the Morgan and Watts (1980) argument that response-time data are 

insufficient for model comparison. A key difference between their work and ours, however, 

is that we took a Bayesian approach to estimate our model parameters. This allowed us 

to use literature data to construct prior distributions, ensuring that our parameter estimates 

would be biologically reasonable. We emphasize, however, that our main conclusions come 

from the relative abilities of the models to explain our data rather than from our parameter 

estimates. Our main conclusions are thus not based solely on parameter estimates that reflect 

our choices of priors.

More direct measurements of within-host population sizes may allow powerful inferences 

about within-host population growth. Nevertheless, in gypsy moths and other small insects, 

a quantitative polymerase chain reaction requires destructive sampling (Mukawa and Goto 

2008), and so time series of virus population sizes would still be unavailable. As a result, 

it may be difficult to distinguish demographic stochasticity from stochastic differences 

between hosts.

For baculoviruses in particular, response time data are very common. Most studies, however, 

report only median or mean survival times (Farrar and Ridgway 1998), making it difficult to 

use the data to choose between models. Nevertheless, we note that van Beek and colleagues 

(van Beek et al. 1988a, 1988b) have shown that within-host models can usefully describe 

variability in median survival time across treatments. By going beyond their approach to test 

our models with the entire distribution of survival times, we hope to have shown that more 

powerful conclusions can be drawn about the mechanisms driving within-host pathogen 

growth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Models considered. The most complex model (M1) contains all of the mechanisms 

hypothesized to be important for baculovirus growth in gypsy moth hosts. All other models 

are nested versions of this model, with the additional assumptions listed in the “Assumptions 

beyond model M1” column. Differences between M1 and all other models are shown either 

in boldface, representing a changed term, or in gray, representing a term that dropped out of 

the model.
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Figure 2: 
Realizations of the most complex model (A), the Shortley birth-death model (B), and the no-

demographic-stochasticity model (C). Each trajectory shows the pathogen population size 

inside a single simulated host. The gray trajectories show realizations in which the pathogen 

became extinct, so that the host recovers, while the black trajectories show realizations in 

which the pathogen overwhelms the host immune system, killing the host. Death occurs 

when the virus population reaches the upper threshold (solid horizontal line) at 104 virions, 

and the times of host deaths are marked on the horizontal axis (dotted vertical lines). Each 
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panel shows 10 realizations of the respective models. Parameters and initial conditions 

for A and C:ϕ = 0.3, β = 0.01, 1/K = 0, x0 = 3, y0 = 30. Parameters and initial conditions for 

B:ϕ = 0.55, β = 0.01, x0 = 3, y0 = 25.
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Figure 3: 
The relationship between host outcomes and virus dose, in the data and as predicted by the 

linear virus growth model (M2). The solid lines show the predictions of this model, the open 

circles show the data, and the error bars are ±2 SE of the mean. A, Relationship between 

host mortality and dose, with mortality increasing with dose. B, Relationship between kill 

time and dose, with earlier deaths occurring at higher doses.
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Figure 4: 
The fit of our models to the data. Each column shows the fit of a different model. A 
corresponds to the linear virus growth model (M2), which is the overall best model. 

B corresponds to the no-demographic-stochasticity model (M7). C corresponds to the 

Shortley birth-death model (M3). Each row shows a different virus dose D. To make model 

predictions, we sampled 105 parameter sets from the joint posterior distribution of the 

parameters, and we used each parameter set to simulate a set of response times. The median 

value of the number dying in each time bin is plotted as a solid black line, and the 99% 
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envelope is encompassed by the dotted lines. The open squares are the data. The symbol D 
indicates the applied virus dose, and n is the number of exposed larvae.
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Figure 5: 
Marginal medians and 95% central credible intervals for each parameter of each model. The 

model numbers (M1–M7) are shown on the Y -axes, with the log10 values of the parameters 

on the X-axes. Each line shows the respective 95% central credible interval with a point 

denoting the median. Note that priors are not shown for the parameters with extremely 

vague priors (β, m, σm), and for the parameters with a joint prior (c1, c2). All priors can be 

found in appendix A (available online), “Prior Construction.” Lines are also missing for 

modelparameter combinations that do not exist. For model M3, β and m are individually 

nonidentifiable, and so their respective marginal posterior distributions are not shown. We 

additionally note that the value shown as the virus birth rate ϕ has a slightly different 

interpretation in the Shortley birth-death model (M3) than in the other models. As we 

explain in appendix A, “Prior Construction,” the quantity most comparable to the birth rate 

ϕ of the other models is the net virus replication rate ϕ − βm, and so that is the value plotted 

in the panel labeled “Virus growth rate log10(ϕ) .” Finally, for the linear virus colonization 

model (M4), the parameter shown in the panel labeled “Virus establishment asymptote 
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log10c1 ” is actually c 1, which is defined in the main text as c1/c2. This difference likely 

explains why the estimate of this parameter is substantially lower than in the other models.
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Table 1:

List of the parameters, and parameter descriptions contained in the models

Parameter Parameter description

β Immune cell attack rate

ϕ Virus growth rate

c1 Virus establishment asymptote

c2 Virus establishment half-saturation constant

m Median initial immune cell number

σm Scale parameter of initial immune cell number

N Median threshold for host response

σN Scale parameter of threshold for host response

K Virus carrying capacity
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