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Abstract
Cancer cell invasion, intravasation and survival in the bloodstream are early steps of the metastatic process, pivotal to 
enabling the spread of cancer to distant tissues. Circulating tumor cells (CTCs) represent a highly selected subpopulation 
of cancer cells that tamed these critical steps, and a better understanding of their biology and driving molecular principles 
may facilitate the development of novel tools to prevent metastasis. Here, we describe key research advances in this field, 
aiming at describing early metastasis-related processes such as collective invasion, shedding, and survival of CTCs in the 
bloodstream, paying particular attention to microenvironmental factors like hypoxia and mechanical stress, considered as 
important influencers of the metastatic journey.
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Introduction

Metastasis encompasses the spread of cancer cells from the 
primary tumor to distant sites, via the bloodstream and/or 
the lymphatic system. Despite consistent advances in cancer 
treatment, metastatic disease remains largely uncurable and 
accounts for the vast majority of cancer-associated deaths. 
Improving our understanding of the molecular and cellu-
lar processes that drive metastasis, particularly in its early 
steps, is crucial for the development of effective treatments 
to prevent the spread of cancer.

Metastasis of solid tumors is a complex, multi-factorial 
process involving distinct sequential steps collectively 
termed as invasion-metastasis cascade. The major steps 
include cell migration, local invasion through adjacent tis-
sues, intravasation into the bloodstream, arrest and extrava-
sation, dissemination to adjacent or distant sites, survival 
and adaptation to the foreign microenvironment, establish-
ment of micrometastases, and finally formation of clinically 
evident macrometastases [1]. Of note, these steps are con-
tinuously replicated, even in cells that have already metasta-
sized, fostering metastasis-to-metastasis dissemination [2]. 
Invasion into the surrounding extracellular matrix (ECM) is 
one of the essential early steps in the metastatic cascade [3]. 
Histopathological examination of patient tumor specimens, 
intravital imaging in mouse cancer models and in vitro 
experimental systems revealed that tumor cells can display 
diverse invasive behaviors [4, 5]. Broadly speaking, three 
major categories can be distinguished: cells can employ 
either amoeboid or mesenchymal single cell invasion, mul-
ticellular streaming (elongated strands of loosely-attached 
tumor cells moving through a common path) or collective 
invasion, characterized by sustained cell-cell adhesion [5]. 
Modes and dynamics of cancer cell invasion are not merely 
regulated by intrinsic cancer cell factors, but also depend on 
multiple elements of the tumor microenvironment (TME) 
[6]. In addition to cancer cells, the TME comprises a broad 
range of non-malignant cell types, including immune cells, 
cancer-associated fibroblasts (CAFs), endothelial cells, 
pericytes, and various other tissue-specific cell types that 
are all surrounded by vascularized and modified ECM [7].

It is increasingly acknowledged that collective cell 
invasion, including the formation of cell clusters, is a key 
mechanism in the progression of solid tumors. Two types 
of cells can be identified among collectively invading units: 
leader and follower cells. Leader cells, either tumor-derived 
or stroma-derived, are in charge of creating low resistance 
tracks to be exploited for migration, both by using biochem-
ical and biomechanical mechanisms, such as matrix deposi-
tion, proteolysis and cytoskeletal remodeling. Leader cells 
can be classified into four main categories: mesenchymal-
like (or hybrid epithelial/mesenchymal) tumor cells, basal 

epithelial tumor cells, CAFs and tumor-associated macro-
phages (TAMs) [4]. In contrast to highly invasive leader 
cells, follower cells are most frequently described as a phe-
notypically distinct subpopulation of cancer cells, charac-
terized by low invasive potential and migrating along the 
created invasive paths. The ways by which leader cells col-
lectively coordinate both leader and follower cells, as well 
as their specific contribution to metastasis remains unclear. 
Cancer cells that leave the primary tumor and enter the cir-
culation are referred to as circulating tumor cells (CTCs), 
and act as first-line pioneers of the metastatic cascade [8]. 
While the primary tumor is thought to shed large numbers of 
tumor cells, only an extremely small fraction of CTCs will 
effectively give rise to secondary tumors [3, 9, 10]. CTCs 
circulate in the blood as single cells or as aggregated cell 
clusters formed by two or more tumor cells (homotypic CTC 
clusters) or formed by tumor cells and non-neoplastic cells 
(heterotypic clusters) [11–14]. Multicellular CTC clusters 
have a higher metastatic potential compared to individual 
CTCs, and their occurrence in patients with various cancer 
types is linked to a poor prognosis [14, 15].

In this review, we discuss research advances in the field 
of early metastasis events, with a particular focus on the 
mechanistic determinants of collective invasion, shedding 
and survival of CTCs in the bloodstream. Particularly, we 
will highlight hypoxia and mechanical stress as key regula-
tors of CTC biology and metastatic proclivity.

Hypoxia in the tumor microenvironment

Hypoxia, or low oxygen (O2) tension, is a key factor of the 
TME that influences the behavior of both tumor and stromal 
cells. Studies measuring the partial pressure of O2 (pO2) in 
solid tumors have shown a median pO2 value of ~ 10 mm 
Hg, as compared with for example 65 and 42 mm Hg in nor-
mal human breast and cervix tissue, respectively [16, 17]. 
pO2 values < 10 mm Hg have been associated with a worse 
prognosis [17, 18]. Two types of hypoxia are observed in 
tumors, namely chronic and cycling (intermittent) hypoxia 
(Fig. 1a). Chronic hypoxia is defined as O2 deficiency over a 
continuous period of time (at least several hours) and affects 
cells that are rather distant from blood vessels. In order to 
grow beyond a certain size, tumors require nourishment in 
the form of nutrients and O2, as well as an ability to remove 
metabolic wastes and carbon dioxide. Therefore, during 
tumor progression, an angiogenic switch is activated that 
boosts vascular supply by causing the normally quiescent 
vasculature to continually sprout new blood vessels [19–
21]. However, the tumor vasculature is not fully functional; 
due to an improper balance and/or excessive production of 
angiogenic factors, it is chaotically organized, leaky, and 
blood often follows different paths through the same vessel 
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[22–25]. The abnormal tumor vasculature leads to irregu-
lar O2 perfusion of the tumor tissue and therefore tumors 
experience temporal and spatial fluctuations in oxygenation 
[22, 26, 27]. This type of hypoxia is named cycling hypoxia 
and affects cells immediately adjacent to inefficiently per-
fused blood vessels, and when the blood flow is restored, 
the hypoxia period is followed by a reoxygenation period. 
Reoxygenation can cause “reoxygenation injury” to the 
cells, involving free radical formation, reactive oxygen spe-
cies (ROS) generation, and tissue damage [26, 28].

Hypoxia-inducible factors (HIFs) are transcription fac-
tors that are central to the molecular mechanisms underly-
ing O2 homeostasis and function as master regulators of the 
adaptive response to hypoxia. HIF-α signaling regulates 
multiple specific biological processes that are involved in 
many stages of the metastatic cascade, and the focus of the 
following sections is on the hypoxia-related steps leading 
up to the intravasation of cancer cells.

Regulation of hypoxia-inducible factors

HIFs are frequently overexpressed in human cancers 
because of either intratumoral hypoxia or genetic altera-
tions that lead to HIF-α stabilization (e.g., loss of the von 
Hippel-Lindau (VHL) tumor suppressor) [29]. HIFs are 
heterodimers containing an O2-sensitive HIF-α subunit and 

an O2-independent, constitutively expressed aryl hydrocar-
bon receptor nuclear translocator (ARNT)/HIF-1β subunit. 
Three HIF-α subunits have been identified, namely HIF-1α, 
endothelial PAS domain protein 1 (EPAS1)/HIF-2α, and 
HIF-3α [29]. HIF-1α is ubiquitously expressed, while 
HIF-2α is expressed in endothelial cells and in distinct cell 
populations of kidneys, brain, lungs, liver, gastrointestinal 
tract, pancreas, and heart [30]. The HIF3A gene gives rise to 
multiple HIF-3α isoforms by utilizing different promoters, 
different transcription initiation sites, and alternative splic-
ing [31]. The multiple HIF-3α isoforms have different and 
even opposite functions, and studies suggest that they nega-
tively regulate the activity of HIF-1α and HIF-2α [31, 32]. 
Under normoxia, HIF-α subunits are hydroxylated by prolyl 
hydroxylase domain (PHD)-containing enzymes on two pro-
line residues within the O2-dependent degradation domain 
(Fig. 1b) [32]. The hydroxylated HIF-α subunits are recog-
nized and targeted for proteasomal degradation by the VHL 
E3 ubiquitin ligase complex [33]. Hypoxia or oncogenic 
alterations such as loss of function of VHL, phosphatase and 
tensin homolog (PTEN), tumor protein 53 (TP53) as well 
as activation of the phosphoinositide 3-kinase (PI3K)-AKT 
pathway stabilize HIF-α subunits [34–36]. The stabilization 
of HIF-α subunits under non-hypoxic conditions is a phe-
nomenon termed pseudohypoxia [29]. The HIF-α subunits 
dimerize with HIF-1β and interact with the transcriptional 

Fig. 1  (a) In solid tumors, HIF-α is stabilized under conditions of low O2 due to reduced vascularization and the establishment of a hypoxic micro-
environment. (b) Post-transcriptional regulation of HIF-α subunits. Under normoxic conditions, PHD enzymes utilize oxygen and 2-oxoglutarate 
as substrates to hydroxylate two proline residues in the HIF-α subunit. These hydroxylation events are required for VHL to bind, ubiquitinate, and 
target HIF-α for proteasomal degradation. Under hypoxia, hydroxylation is inhibited and HIF-α stabilized. HIF-α heterodimerizes with HIF-1β, 
interacts with the transcriptional coactivators p300 and CBP, and binds to HRE elements within regulatory regions of target genes. Illustrations 
were created with BioRender.

 

1 3

377



Clinical & Experimental Metastasis (2023) 40:375–394

hypoxia. The mechanism of enhanced HIF-1α  activity is 
multifactorial, but one factor is the hypoxia-reoxygenation 
injury-induced production of ROS, which stabilize HIF-1α 
even in the presence of enhanced oxygenation. In contrast 
to HIF-1α, the effect of cyclic hypoxia on the stabilization 
of HIF-2α has been understudied. One study even showed 
that cyclic hypoxia leads to the degradation of HIF-2α via a 
calpain-dependent signaling pathway, which in turn results 
in oxidative stress [62].

HIF-mediated metabolic reprogramming

In the last few years, several studies have addressed how 
tumor acidosis participates in cancer progression. In hypoxia, 
cells shift from O2-dependent mitochondrial adenosine tri-
phosphate (ATP) production to O2-independent production, 
via glycolysis. In cancer cells, the rate of glucose uptake 
is dramatically increased and lactate is produced, even in 
the presence of oxygen and fully functioning mitochondria. 
This process is known as the Warburg Effect or aerobic 
glycolysis and required for tumor growth [63]. The rate of 
glucose metabolism through aerobic glycolysis is higher 
compared to mitochondrial respiration, and the production 
of lactate is 10–100 times faster than the complete oxida-
tion of glucose in the mitochondria [63]. In addition, the 
Warburg effect supports the biosynthetic requirements of 
proliferating cells by diverting glucose-derived carbon into 
the multiple branching pathways of glycolysis [64].

HIF signaling enhances glycolysis by inducing genes 
that encode glucose transporters (e.g., GLUT1/SLC2A1, 
GLUT3/SLC2A3) and glycolytic enzymes (Fig. 2) [65]. Lac-
tate dehydrogenase A (LDHA), which converts pyruvate to 
lactate and ensures NAD+ regeneration for glycolysis, and 
monocarboxylate transporter 4 (MCT4), which transports 
lactate and H+ out of the cell, are also upregulated by HIF 
signaling (Fig. 2). Remarkably, lactate produced by hypoxic 
cancer cells can be taken up by non-hypoxic cancer cells 
or stromal cells via MCT1 to regenerate pyruvate, used for 
oxidative phosphorylation [66, 67]. Consequently, glucose 
freely diffuses through the oxygenated tumor cell sheath to 
fuel glycolysis of hypoxic tumor cells.

Cancer cells have evolved several mechanisms to main-
tain their intracellular pH [68]. H+ can also be exported 
by specific H+ transporters, including Na+/H+ exchanger 
1 (NHE1/SLC9A1) [68]. Hypoxic cancer cells counteract 
local acidosis by HIF-dependent induction of the mem-
brane-bound ectoenzyme carbonic anhydrase 9 (CA9), 
which converts H2O and metabolically generated CO2 to H+ 
and HCO3

− (Fig.  2) [69, 70]. Na+/HCO3
− co-transporters 

facilitate HCO3
− flux through the cell membrane to main-

tain the alkaline intracellular pH. In summary, the activity of 

coactivator p300/cAMP response element-binding protein 
(CREB)-binding protein (CBP) complex. This transcrip-
tional complex binds to hypoxia-response elements (HREs) 
in promoters of HIF-α target genes involved in metabolism, 
nutrient uptake, apoptosis resistance, sustained growth fac-
tor signaling, replicative immortality, invasion, metastasis, 
angiogenesis, and erythropoiesis [29, 37, 38]. HIF-1α and 
HIF-2α have both overlapping and distinct target genes [32].

In general, HIF signaling reinforces most hallmarks of 
cancer [20, 21] and confers cancer cells with more aggres-
sive characteristics in hypoxic niches. Increased expression 
of HIF-1α and/or HIF-2α has been associated with increased 
tumor aggressiveness and poor prognosis in a broad range 
of tumor types [39]. Increased levels of HIF-1α, which cor-
relate with poor prognostic outcomes and increased metas-
tasis in patients, have been identified in many solid tumors 
such as breast, cervical, ovarian, pancreatic, gastric, colorec-
tal, esophageal, lung, liver and prostate cancer [40–45]. In 
breast cancer, survival is significantly decreased in patients 
with the highest HIF-1α levels, regardless of the lymph 
node status [46, 47]. HIF-2α expression in primary tumors 
is associated with distant metastasis and poor outcome in 
patients with small cell lung cancer, non-small cell lung 
cancer, clear cell renal cell carcinoma (ccRCCs), neuro-
blastoma, and breast cancer [48–52]. Intratumoral hypoxia 
is associated with the invasion and metastasis of HIF-1α-
active pancreatic cancer cells [53, 54], and eradication of 
the HIF-1α-active cells compromises malignant progres-
sion. In addition, it has been shown that highly metastatic 
pancreatic ductal adenocarcinoma (PDAC) subpopulations 
are enriched for hypoxia-induced genes, and hypoxia-medi-
ated induction of the transcription factor B lymphocyte-
induced maturation protein-1 (BLIMP1) contributes to the 
regulation of a subset of hypoxia-associated gene expres-
sion programs [55]. ccRCC is the most common subtype 
(~ 75%) of renal cancer and complete loss of VHL function 
occurs in ~ 90% of ccRCCs, leading to constitutive stabili-
zation of the HIF-α subunits and activation of their signal-
ing [51, 52]. HIF-2α is considered to be a driver oncoprotein 
for ccRCC. Almost a third of all patients with ccRCC show 
metastatic dissemination at presentation (at which time it 
has 95% mortality), and ~ 60% have metastases within the 
initial 2–3 years after diagnosis. Furthermore, it has been 
shown in experimental models that overexpression of HIFs 
in several tumor cell types promotes metastasis, whereas 
inactivation of HIFs decreases the metastatic potential of 
tumor cells [56].

Several studies have shown that HIF-1α upregulation is 
more strongly induced by repeated exposures to hypoxia–
reoxygenation than by chronic hypoxia [57–61]. The pri-
mary consequence of cycling hypoxia is upregulation of 
HIF-1α activity to a level that supersedes that of chronic 
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consumption in response to hypoxia is also achieved by 
HIF-α-mediated suppression of mitochondrial biogenesis 
and enhancement of selective mitochondrial autophagy 
(mitophagy) [29].

A common feature of cultured cancer cells is glutamine 
addiction [74]. Under conditions where HIF-α is stabilized, 
cells shift from oxidative to reductive glutamine metabo-
lism and reverse TCA cycle flux to compensate for the 
reduced flux of glucose to citrate (Fig. 2) [29]. Glutamine 
is metabolized through glutaminolysis to α-ketoglutarate, 
which is converted to citrate by isocitrate dehydrogenase 1 
or 2 and aconitase [75]. Thus, reductive glutamine metabo-
lism is the major source of acetyl-CoA for de novo lipid 
synthesis when HIF-α is stabilized.

MCT4, NHE1, and CA9 leads to intracellular alkalization 
of cancer cells.

HIF signaling suppresses both the tricarboxylic acid cycle 
(TCA) and oxidative phosphorylation within mitochondria 
(Fig. 2). HIF-α induces the expression of pyruvate dehydro-
genase kinase 1 (PDK1), which phosphorylates and inhibits 
the mitochondrial pyruvate dehydrogenase (PDH), thereby 
inhibiting the conversion of pyruvate to acetyl-CoA for 
entry into the TCA cycle [71, 72]. A HIF-1α-mediated iso-
form switch from cytochrome c oxidase subunit 4 isoform 1 
(COX4-1) to COX4-2 optimizes the efficiency of mitochon-
drial respiration under hypoxia [73]. The mitochondrial Lon 
peptidase 1 (LONP1) is induced by HIF-1α and degrades 
COX4-1. Attenuation of mitochondrial metabolism and O2 

Fig. 2  Regulation of glucose and glutamine metabolism and pH by HIF-α. Blue circles indicate proteins encoded by HIF-α target genes. To com-
pensate for the reduced flux of glucose to citrate, reductive glutamine metabolism generates cytosolic citrate for de novo lipid synthesis. α-KG, 
α-ketoglutarate; Glu, glutamate; OXPHOS, oxidative phosphorylation; NBC, Na+/HCO3

− co-transporter; TCA, tricarboxylic acid
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breast and colon cancer cells, invasion and peritumoral pH 
were monitored using intravital microscopy [87]. The peri-
tumoral pH is acidic and heterogeneous and the regions of 
highest tumor invasion corresponded to areas of lowest pH, 
whereas no invasion is evident in regions with normal or 
near-normal extracellular pH [87]. An examination of core 
and invasive edges of invasive ductal breast carcinoma 
showed that tumor edges are characterized by increased 
staining of HIF-1α, CA9, and GLUT1 [90]. Interestingly, the 
vascular marker CD34 is co-expressed with these hypoxia 
markers, suggesting that they might be expressed in well-
oxygenated regions. In addition, with the acidosis markers 
- the pH-(low)-insertion peptides (pHLIP), plasma mem-
brane-localized lysosome-associated membrane protein 2 
(Lamp2), and CA9 it has been shown that acidic regions 
are not restricted to hypoxic areas, yet overlap with highly 
proliferative, invasive regions at the tumor-stroma interface 
[91]. These and other studies led to the acid-mediated inva-
sion model [89]. Accordingly, several studies have shown 
that neutralization of tumor acidosis can inhibit metastasis 
[89].

The increased motility of cancer cells is due in part to 
changes in the dynamics of the cytoskeleton. Cancer cells 
have a slightly higher intracellular pH (pHi >7.4) than 
normal cells (pHi ~7.2), which leads to de novo assem-
bly of actin filaments through a pH-dependent increase 
in the activities of several actin-binding proteins [68, 90]. 
Hypoxia also promotes remodeling of the actin cytoskeleton 
and cancer cell motility through the activation of the RhoA/
Rho-associated protein kinase (ROCK) signaling pathway 
by HIF-1α, which leads to increased invasion and migra-
tion of hepatocellular carcinoma (HCC) cells in vitro and 
in vivo [92].

Hypoxia-induced ECM remodeling

Cell migration and invasion require the remodeling of ECM 
structures. For invasion to occur, cancer cells must degrade 
the surrounding basement membrane (BM). HIF signaling 
promotes ECM remodeling through the upregulation and 
secretion of proteolytic enzymes. Matrix metalloproteinases 
(MMPs) are the main enzymes involved in ECM degrada-
tion, and increased levels of many MMPs in both primary 
tumors and/or metastases are positively associated with 
tumor progression [93]. HIF signaling induces the expres-
sion of MMP1, MMP2, MMP3, MMP9, MMP13, MMP14, 
and MMP15 [94–97]. It has been shown that MMP2 and 
MMP14 are expressed selectively in leader cells during col-
lective invasion [98], and the knockdown of MMP14 inhib-
ited fibrosarcoma and breast cancer cell collective invasion 
[99]. The HIF-dependent upregulation of the urokinase plas-
minogen activator surface receptor (PLAUR) also increases 

The increased consumption of glucose and glutamine by 
cancer cells causes metabolic competition for nutrients in 
the TME between cancer cells, stromal and immune cells, 
ultimately promoting cancer progression [76]. It can neg-
atively impact the functions of immune cells in the TME 
such as T cells, TAMs, and myeloid-derived suppressor 
cells (MDSCs) [77]. TAMs and T cells depend on glucose 
availability and glucose metabolism. Naïve T cells in a rest-
ing state require low amounts of glucose, amino acids, and 
fatty acids to meet basic energy requirements, but active T 
cells increase glucose and glutamine catabolism for nucle-
otide and lipid synthesis as well as ATP production [78]. 
Tumor cells, macrophages, and tumor-infiltrating lympho-
cytes (TILs) compete for glucose in the TME, and the high 
rates of glycolysis in tumor cells limit the availability of 
glucose to TAMs and TILs, which require sufficient glucose 
for their effector functions [76, 79]. High lactate concentra-
tions in the TME disturb the metabolism and function of 
human cytotoxic T lymphocytes and suppress their prolif-
eration and cytokine production [80]. Tumor-derived lactate 
also suppresses survival and function of TILs and natural 
killer (NK) cells, leading to immune evasion [81]. The intra-
cellular acidification blocks the interferon-γ production in 
T and NK cells by preventing the upregulation of the tran-
scription factor nuclear factor of activated T cells (NFAT). 
High rates of cancer cell glycolysis suppress anti-tumor T 
cell effector functions by depriving T cells of glucose and 
the downstream metabolite phosphoenolpyruvate, which 
regulates Ca2+-NFAT signaling in T cells [79].

TAMs promote tumor cell invasion, intravasation, and 
induce angiogenesis in primary tumors [82]. The extracel-
lular acidification increases the proteolytic activity of TAMs 
to enhance cell motility [21, 83]. Cancer cell-derived lactate 
leads to HIF-1α-dependent polarization of TAMs towards 
a tumor-permissive M2 phenotype and induces vascular 
endothelial growth factor A (VEGFA) expression in TAMs 
[84]. In breast cancer, a subpopulation of perivascular TAMs 
has been identified that has high levels of the TEK receptor 
tyrosine kinase and expresses VEGFA, which increases vas-
culature leakiness and causes tumor cell intravasation [85]. 
In addition, HIF-1α-mediated proangiogenic signaling in 
the TME also occurs in breast CAFs [86].

HIF signaling and invasion

Acid-mediated invasion

The increased glucose metabolism in cancer cells decreases 
the pH in the TME due to lactate secretion, and the acid-
ity results in increased progression and metastasis [87–89]. 
A lactate gradient is formed in the TME with the highest 
concentration in the most hypoxic regions. In a study using 
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ECM stiffening is induced by increased collagen cross-
linking, which is mediated by lysyl oxidase (LOX) and 
LOX-like (LOXL) enzymes [139]. The expression and 
secretion of LOX, LOXL2, and LOXL4 is induced under 
hypoxia by HIF-1α [125, 140–145]. The ECM remodeling 
by LOX and LOXL enzymes leads to collagen fiber realign-
ment, bundling, and stiffening with dense collagen bundles 
that are frequently positioned perpendicular to the tumor, 
thereby allowing cancer cells to migrate via the fibers and 
invading the host tissue [146–148]. Hypoxic secretion of 
LOX family members by cancer cells also regulates the 
formation of premetastatic niches in distant organs, priming 
these sites for colonization by metastatic cancer cells [56, 
109, 111, 139]. Hence, HIF-driven ECM remodeling also 
has long-distance effects.

An important mediator of cell invasion is the hepatocyte 
growth factor (HGF) that acts through the MET tyrosine 
kinase receptor (MET) [149, 150]. HGF is a pleiotropic 
cytokine and hypoxia sensitizes cells to HGF stimulation by 
inducing the expression of MET [151, 152]. For example, 
in non-small-cell lung cancer, it has been shown that pro-
longed treatment with the MET inhibitor JNJ-605 and the 
epidermal growth factor receptor inhibitor erlotinib resulted 
in aggravation of Warburg metabolism in cancer cells with 
increased lactate release [153].

The gene encoding the C-X-C motif chemokine recep-
tor 4 (CXCR4) is a direct HIF target [154]. CXCR4 is 
highly expressed in many types of cancer cells, and ele-
vated CXCR4 levels correlate with distant metastases, poor 
prognosis, and unfavorable outcomes in most solid tumors 
[155, 156]. HIF signaling also regulates CXCR4 expres-
sion in endothelial cells [157]. The upregulation of CXCR4 
also aids in the transendothelial migration of cancer cells. 
A study suggested that hypoxia could drive intravasation 
via signaling through CXCR4 and its ligand stromal cell 
derived factor 1 (SDF-1, also known as C-X-C motif che-
mokine ligand 12 (CXCL12)), which results in adhesion of 
cancer cells to endothelial cells and trans-endothelial migra-
tion of breast cancer cells in in vitro assays [157]. Accord-
ingly, neutralizing the interactions of CXCL12/CXCR4 
impaired metastasis of breast cancer cells to regional lymph 
nodes and lung [158].

Extensive in vitro studies have shown that the migration 
of cancer cells is associated with an epithelial-to-mesen-
chymal transition (EMT), whereby cells lose expression of 
epithelial markers such as E-cadherin and increase expres-
sion of mesenchymal markers (e.g., N-cadherin, fibronec-
tin, and vimentin) [159]. This leads to changes in cell-cell 
and cell-matrix adhesions. Hypoxia and HIF signaling have 
been linked to EMT-like phenomena by the induction of 
the transcription factors such as twist family BHLH tran-
scription factor (TWIST) [160], snail family transcriptional 

the proteolytic activity of cancer cells, thereby altering the 
interaction between integrins and the ECM, promoting cell 
invasion [100–102].

The tissue inhibitors of metalloproteinases (TIMPs) fam-
ily consists of four members and controls the enzymatic 
activity of MMPs [95, 103]. The HIF-dependent downregu-
lation of TIMPs has been shown to increase the invasion 
ability of cancer cells and enhance metastasis [104–106].

In addition to the perforation of the BM by proteolytic 
enzymes, CAFs assist cancer cells in breaching the BM to 
promote invasion. CAFs can also facilitate BM breakthrough 
in a MMP-independent manner, by applying physical forces 
to the BM and by widening of pre-existing gaps initially 
created by MMPs or other proteases such as PLAUR [107].

Solid tumors are often characterized by excessive deposi-
tion of ECM proteins (referred to as fibrosis), and therefore 
are often stiffer than the surrounding normal tissue [108–
111]. Changes in the posttranslational modification, depo-
sition, and degradation of the matrix result in changes in 
the composition, density, and mechanical properties of the 
ECM [112, 113], which in turn affect ECM stiffness, cell 
migration, tumor growth, invasion, and metastasis [114–
116]. Hypoxia has been shown to promote fibrosis in breast 
cancer [117, 118] and PDAC [119–122]. Chronic hypoxia 
is an important determinant of fibrosis and carcinogenesis 
in the liver [123, 124]. In addition, breast cancer and PDAC 
aggression associate with a stiffer ECM [113].

The HIF pathway controls the expression of genes 
encoding collagens and collagen-modifying enzymes [125, 
126]. Posttranslational modifications of collagen include 
the hydroxylation of proline and lysine residues that are 
catalyzed by prolyl-4-hydroxylase α-subunit isoform 1 
(P4HA1) and 2 (P4HA2) and procollagen-lysine 2-oxyglu-
tarate 5-dioxygenase 1 (PLOD1) and 2 (PLOD2) [113, 127, 
128]. These enzymes catalyze modifications that are neces-
sary for the production of stiff and aligned collagen fibrils. 
HIF-1α induces the expression of P4HA1, P4HA2, PLOD1, 
and PLOD2 in different cancer and non-cancer cell lines 
[109, 129–136], and enhanced activities of these enzymes 
are associated with increased collagen deposition in can-
cer tissue. In sarcoma, increased expression of PLOD2 is 
associated with a more metastatic phenotype, and loss of 
HIF-1α and HIF-1α-dependent PLOD2 expression disrupts 
cell migration and pulmonary metastasis [133]. Hypoxia-
induced expression of PLOD2 in sarcomas enhances col-
lagen fiber size and tumor density and thus promotes lung 
metastasis [137]. The knockdown of PLOD2 also impairs 
the invasion of breast cancer cells into the adjacent normal 
tissue of the mammary fat pad [136]. Knockdown of P4HA1, 
P4HA2, and PLOD2 inhibits the spontaneous metastasis of 
breast cancer cells to the lungs and lymph nodes of mice 
[135, 136, 138].
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low blood vessel density [180]. Blood vessels are distrib-
uted in both normoxic and hypoxic regions of tumors, with 
a higher presence in normoxic tumor regions. The presence 
of functional blood vessels in hypoxic tumor areas indicates 
possible access routes for metastatic cells to the circulatory 
system. Furthermore, scattered hypoxic areas are due to 
cycling hypoxia, and cancer cells in these regions might be 
more prone to intravasation since they are located closer to 
blood vessels. It has been shown that intra-tumor hypoxia 
in breast cancer leads to upregulation of cell-cell junction 
components and intravasation of hypoxic CTC clusters with 
high metastatic ability, while single CTCs rather derive 
from normoxic tumor regions [180]. Anti-angiogenic thera-
pies targeting the VEGF pathway have been developed to 
reduce intratumoral vasculature and consequently starve the 
tumor from its nutrients. However, in breast cancer patients, 
VEGF inhibitors lacked efficacy in the long run, even pro-
moting tumor invasiveness and metastasis in some cases 
[23]. This led to withdrawal of the VEGF-targeting agent 
Avastin for the treatment of breast cancer patients in 2011 
[183]. Accordingly, targeting VEGF in breast cancer mouse 
models leads to primary tumor shrinkage, but it increases 
intra-tumor hypoxia and results in a higher CTC cluster 
shedding rate and metastasis formation [180]. In contrast, 
pro-angiogenic treatment increases primary tumor size, but 
it dramatically suppresses the formation of CTC clusters 
and metastasis [180].

Using a fate-map system for hypoxic cells in vivo, cells 
exposed to physiological levels of hypoxia in the primary 
breast tumor were shown to have a four times greater prob-
ability of becoming viable CTCs, compared to cells from 
normoxic regions of the primary tumor [184]. Cells exposed 
to hypoxia in the primary tumor have the ability to migrate 
toward a more oxygenated invasive front of tumor regions 
and intermingle with blood vessels. In addition, post-
hypoxic cells have a 6-7-fold greater probability of forming 
lung metastasis, suggesting that they have an enhanced met-
astatic potential [184]. Another study showed that oxidative 
stress prevents the survival of CTCs in the bloodstream and 
is therefore a limiting step in metastasis [185]. Cells that 
experience hypoxia in the primary tumor are more resistant 
to oxidative stress and have lower levels of mitochondrial 
ROS in both the primary tumor and in the blood [184]. It 
has been suggested that the enhanced metastatic potential of 
post-hypoxic cells is in part due to the ROS-resistant pheno-
type that allows them to survive high levels of ROS in the 
circulation.

Taken together, these observations highlight a prominent 
role of hypoxia in the early steps of the metastatic cascade, 
conferring both advantageous metabolic features as well as 
invasive traits that result in the intravasation of aggressive 
precursors of metastasis.

repressor 1 (SNAI1) [161–163], zinc finger E-box binding 
homeobox 1 (ZEB1) [164], and snail family transcriptional 
repressor 2 (SNAI2) [165], and the modulation of cell sig-
naling pathways such as neurogenic locus notch homolog 
protein (NOTCH), WNT, and AXL [166–172]. However, 
the consensus that EMT is required for cancer metastasis 
has been challenged by studies showing that CTCs are not 
the homogeneous mesenchymal phenotype described in the 
EMT-metastasis hypothesis [173]. A study using a mouse 
lineage-tracing model suggested that cells do not activate 
EMT in order to metastasize [174]. Along these lines, 
absence of TWIST1 or SNAI1 did not alter invasion and 
metastasis in genetically engineered PDAC mouse models 
[175]. Recent studies suggest that instead of being a binary 
process, EMT rather occurs through distinct intermediate 
states, a process referred to as hybrid EMT [176, 177]. Mul-
tiple subpopulations of cancer cells have been identified that 
are associated with different states of EMT, ranging from 
epithelial to mesenchymal-like states [178]. EMT or mesen-
chymal-to-epithelial transition (MET) are therefore not “all-
or-none” processes, and cells undergoing hybrid EMT may 
display cellular plasticity associated with distinct invasive 
and metastatic potential [176, 178]. It has been suggested 
that the acquisition of a hybrid EMT state is involved in the 
determination of leader and follower cells [176].

CTCs and hypoxia

In the laboratory setting, a standard O2 level of 20% 
(160  mm Hg) used for cell cultures is referred to as nor-
moxia. However, the physiological O2 levels (physoxia) 
found in normal tissues are much lower and average about 
5% O2 (38 mm Hg) and range from ~ 3–7% [179]. It has 
been suggested that physiological hypoxia, the O2 level at 
which tissues respond to maintain their preferred O2 level, 
ranges from 2 to 6%, whereas O2 levels < 2% are referred 
to as pathological hypoxia [179]. O2 levels of 5% mimic 
more closely in vivo conditions and are therefore commonly 
utilized for expansion of patient-derived specimens in the 
laboratory. Along with dedicated media components, physi-
ological hypoxia has been used to expand and maintain 
patient-derived CTCs ex vivo [180, 181]. While most of the 
laboratories employ hypoxic conditions, which have been 
proven critical for certain cancer types [180, 183], some 
CTC lines have been occasionally cultured under normoxic 
conditions as well [184].

Clinically, hypoxia and the expression of HIF-α are asso-
ciated with increased distant metastasis and poor survival 
in a variety of tumor types [182]. Interestingly, in mouse 
models of breast cancer, a bimodal distribution of hypoxia 
has been observed, either restricted within a central core or 
more scattered throughout the tumor, often in areas with 
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process whereby cells convert forces arising from mechani-
cal stimuli into biochemical signals. It involves sensing 
various physical stimuli through specialized ion channels, 
integrins and cytoskeletal structures, subsequently trigger-
ing alterations in gene expression, protein synthesis and cel-
lular behavior [190]. Several types of solid stresses such as 
compression, tension, shear and ECM stiffness are applied 
to tumor cells from their environment [191]. It is widely rec-
ognized that these mechanical forces play a significant role 
in various steps of the metastatic cascade, starting from the 
growth of the primary tumor, intravasation of cancer cells 
into the bloodstream, their survival in circulation, infiltra-
tion into secondary sites and formation of metastatic out-
growths [192]. In the human body, cancer cells experience 
two fundamental types of shear stress due to the flow of 

Fluid shear stress

In addition to biochemical signals, biomechanical forces 
also affect tumor progression (Fig.  3). The effects of 
mechanical forces on living tissues are in the focus of 
mechanobiology, a multidisciplinary field at the interface 
between biology, physics and engineering that investigates 
how cells sense and respond to physical cues, and how these 
mechanisms impact their behavior and organization [186]. 
The field of mechanobiology is growing rapidly thanks to 
imaging techniques such as atomic force microscopy, tech-
nological innovations in force-application methods used to 
manipulate cells mechanically, microfluidics and advanced 
computational simulation [186–189]. Within the field, 
an extensively studied aspect is mechanotransduction, a 

Fig. 3  Hypoxia and shear stress regulate dissemination of circulating tumor cells (CTCs). Cancer cells are in interaction with several types of 
immune cells and experience various biophysical forces both in the primary tumor microenvironment and in the circulation. Primary tumors have 
normoxic and hypoxic regions with constant interstitial flow, inducing biochemical and biophysical signaling changes in cancer cells. Cancer cells 
can intravasate as single cells, as a group of cells (homotypic clusters) or together with non-neoplastic cells (heterotypic clusters). When CTCs 
enter the bloodstream, they are subjected to different levels of fluid shear stress that can lead to cell rupture and apoptosis, and initiate rapid signal-
ing changes. Due to mechanical shielding, CTC clusters are more resistant to shear stress than single cells. In contrast, single cells are more prone 
to cell membrane blebbing caused by mechanical forces. MDSC, myeloid-derived suppressor cell; CAF, cancer-associated fibroblast; NK, natural 
killer cell. Illustrations were created with BioRender.
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over time in patients that are not responding to immunother-
apy, whereas they decreases in responders [207]. Moreover, 
clinical data on cervical cancer has shown that patients with 
higher interstitial fluid pressure are significantly more prone 
to develop distant metastasis and recurrence [208].

Fluid shear stress exposure in vascular 
microenvironment

Not only in the primary tumor, but also during their hema-
togenous dissemination, cancer cells are notably exposed to 
circulatory fluid shear stress, the most prominent mechani-
cal force in the bloodstream [209]. Circulatory fluid shear 
stress arises due to tangential frictional forces generated by 
blood flow acting on the surface of cells. Upon intravasa-
tion, cancer cells experience various levels of shear stress 
(ranging 1–30 dyn/cm2) [210], depending on the vessel type. 
Higher levels of shear stress are imposed in arteries (15–30 
dyn/cm2) and in capillaries (10–20 dyn/cm2), whereas in 
aorta, vena cava and veins shear stress levels are lower (< 10 
dyn/cm2) [211]. However, in the vicinity of vessel bifurca-
tions at the heart, shear stress levels can raise up to ~ 3350 
dyn/cm2 [212]. Fluid shear stress can be studied with vari-
ous technologies both experimentally and computationally, 
including parallel plate flow chambers, microfluidic devices, 
syringe/peristaltic pumps and computational fluid dynamics 
modelling [213–216]. For instance, a recent study investi-
gated the effect of brief pulses of high-level shear stress on 
prostate cancer cells by using a syringe pump to mimic high 
shear stress values in the turbulent flow region around the 
heart. They demonstrated that cancer cells activate RhoA-
myosin II and stiffen in response to shear stress. Moreover, 
shear stress triggers the elevation of cortical F-actin, which 
further contributes to cell stiffness [214]. In another report, 
using a peristaltic pump to imitate arterial levels of shear 
stress, including high levels achieved during exercise, it has 
been shown that high shear stress (60 dyn/cm2) destroys 
over 90% of CTCs derived from multiple types of cancer 
within 4 h of circulation [213]. In a different study, com-
putational fluid dynamics simulations were performed to 
mathematically predict the behavior of CTC clusters under 
various levels of shear stress [215]. Tumor cell intravasa-
tion is more likely to occur in areas with reduced fluid flow, 
as low shear stress is less detrimental for tumor cells dur-
ing intravasation [217]. Recently, it has been reported that 
human cancer cells avoid high shear stress regions in the 
process of intravasation through the activation of transient 
receptor potential cation channel, subfamily M, member 7, 
also known as TRPM7 channel, a key shear-stress sensor, 
which promotes calcium influx into the cell followed by 
RhoA/myosin-II and calmodulin/IQGAP1/ Cdc42 pathway 
activation, subsequently reversing migration [217]. Even 

bodily fluids: shear stress, generated by interstitial fluid flow 
within the primary TME, and shear stress, generated by the 
blood flow within the circulatory system [193, 194]. Here, 
our attention will be directed towards the impact of fluid 
shear stress on tumor progression both in the primary TME 
as well as in the bloodstream.

Fluid shear stress exposure in tumor 
microenvironment

The TME can be considered as a dynamic niche where cells 
are constantly encountering physical and mechanical cues. 
Cancer cells in the TME are subjected to shear stress and 
hydrostatic pressure generated by interstitial fluid flow, ten-
sile and contractile forces [195]. Interstitial fluid flow arises 
from the movement of fluids through the ECM, commonly 
occurring between blood and lymphatic vessels [196]. A 
common characteristic of progressing cancers is an increase 
in intratumoral pressure and the consequent elevated inter-
stitial flow from the tumor mass to the adjacent healthy 
stroma [197]. The observed changes are the result of various 
contributing factors, such as vascular abnormalities, lym-
phatic co-option, and an increase in cell number and density. 
Elevated interstitial fluid and blood/lymph flows within the 
primary tumor produce a constant fluid shear stress, rang-
ing between 0.1 and 1 dyn/cm2, that can affect cell behav-
ior [198]. For example, several studies have shown that 
physical cues in the primary tumor can promote migration 
and invasion of cancer cells [199–201]. Shear stress can 
stimulate the formation of circular dorsal ruffles, F-actin 
rich membrane structures, thereby promoting migration of 
breast cancer cells [202]. In an in vitro experimental setup, 
oral squamous cell carcinoma cells were subjected to con-
ditions mimicking various levels of interstitial fluid pres-
sure, by using a humidified pressure chamber with cyclic 
pressure system connected to an air pump to tightly control 
atmospheric pressure on cells. This revealed that, as inter-
stitial fluid pressure elevates, cell proliferation, survival and 
invasion capabilities of cancer cells increase [203]. A study 
where breast cancer and melanoma cells were seeded into 
a collagen-Matrigel matrix and placed within a flow cham-
ber has demonstrated that physiological levels of intersti-
tial flow strongly induce their migration through autocrine 
C-C motif chemokine receptor 7 (CCR7) signaling [204]. 
Multiple glioma cells lines exposed to pressure-driven flow 
(mimicking interstitial flow) have increased cell invasion 
capabilities driven by CXCR4-dependent mechanism [205].

Furthermore, increased interstitial fluid causes a decrease 
in transcapillary transport, leading to decreased anti-cancer 
drug uptake [206]. A study investigating interstitial fluid 
pressure in patients with metastatic melanoma has shown 
that interstitial fluid pressure levels significantly increases 
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travelling with companions. Although both single CTCs and 
CTC clusters are accountable for metastasis formation, they 
display different survival abilities in the circulation due to 
their physical characteristics [11]. A study performed using 
a microfluidic system to mimic capillary constrictions has 
revealed that CTC clusters may migrate through the cap-
illary bed by rapidly unfolding into single-file chain-like 
geometry. This structural strategy facilitates their migra-
tion and substantially reduces the hydrodynamic resistance 
[227], however, fabricated glass capillaries may not fully 
recapitulate the properties that are ascribable to endothe-
lial walls. Moreover, a recent study has revealed that shear 
stress disassociates the CTC clusters due to strong forces 
and disaggregates most of the CTC clusters in breast cancer 
[215]. Along the same line, it has been shown that majority 
of the CTC events that have been captured from the periph-
eral blood of patients and experimental models are single 
CTCs, with clusters being considered as a rarer event [11, 
13]. While rare in numbers, CTC clusters have higher meta-
static potential compared to single cells [11]. Compared to 
single CTCs, CTC clusters have upregulated expression of 
cell junction components, such as plakoglobin. Knockdown 
of plakoglobin halts the formation of CTC clusters and sup-
presses lung metastasis. Therefore, plakoglobin dependent 
intercellular adhesion within CTC clusters contributes to 
the multicellular nature of clusters as well as to their higher 
metastasis efficiency [11]. Increasing evidence points toward 
a clear CTC cluster survival advantage within the blood-
stream, possibly due to their enhanced resistance to shear 
stress [224], among other factors. Various non-neoplastic 
elements have been suggested to facilitate CTC survival 
in circulation, likely impacting on shear stress resistance, 
among other aspects. For instance, through cytokines cross-
talk within individual CTC-neutrophil clusters, neutrophils 
promote proliferation of CTCs while in circulation, thereby 
accelerating metastasis seeding [13]. Accordingly, breast 
cancer patients with detectable CTC-neutrophil clusters are 
characterized by a poor prognosis [13]. In another study 
employing an in vitro model of shear induced damage, 
investigators have shown that in the absence of platelets, 
ovarian cancer cells display a higher shear-induced mem-
brane damage, suggesting that platelet adhesion may be 
protective in this context [228]. CAFs can also accompany 
CTCs on their metastatic journey in the blood, as observed 
in patients and experimental models [12]. An in vitro study 
addressed the role of CAFs in cancer cell survival under 
extremely high shear stress (5920 dyn/cm2) using a 3-D cell 
co-culture system. When co-cultured with prostate cancer 
cells, CAFs provide resistance to high shear, support tumor 
cell survival and promote proliferation via intercellular con-
tact and soluble derived factors such as CCL2, CCL7 and 
CXCL5 [229]. In contrast to healthy individuals, circulating 

though carcinoma cells have higher mechanical resistance 
compared to non-transformed epithelial cells, shear stress in 
the blood circulation can readily destroy many of the intrav-
asated cancer cells, explaining the relative inefficiency of 
the metastatic process [198]. Arterial levels of shear stress 
(15–30 dyn/cm2) could also increase ROS, which impair 
mitochondria activity and lead to further cellular death 
[218]. While shear forces are thought to drastically reduce 
the viability and number of CTCs in the circulation, a small 
fraction of these are mechanically robust and develop mech-
ano-adaptive resistance. Fluid shear stress also involves 
human Piezo type mechanosensitive ion channel component 
1 (PIEZO1) activation, which leads to the influx of extra-
cellular calcium [219, 220]. Among other signals, PIEZO1 
activates Akt/mTOR (mammalian target of rapamycin) 
pathway in breast cancer, and may subsequently positively 
regulate cell motility and survival [221, 222]. Although 
regulation of cytoskeletal organization and certain mecha-
nosensitive ion channels such as PIEZO1 and TRPM7 have 
been shown to play a role in shear stress related responses, 
further mechanisms are likely to be involved.

Along with the mechanical trapping, blood flow is also a 
regulator of intravascular arrest of CTCs. It has been shown 
that early arrest on the vascular endothelium is mediated 
by integrin αvβ3 and CD44. Moreover, during the stron-
ger adhesion to endothelium, cancer cells utilize integrin 
α5β1-dependent adhesions, which facilitate the adherence 
of CTCs to low shear stress regions of the vascular wall 
[223]. Due to the vessel diameter and numerous bifurca-
tions, capillary beds seem to be one of the most common 
locations of CTC entrapment. When CTCs come across a 
capillary, they either become trapped and exit the vessel (in 
a process called extravasation) or they pass through the cap-
illary without getting trapped. While CTCs are transiting or 
arrested in capillaries, shear forces can induce morphologi-
cal changes and cause severe cell deformation and, hence, 
affect cell fate [224]. During CTC squeezing through tight 
capillary constrictions, cytoplasmic deformation activates 
several mechanotransduction signaling pathways, including 
yes-associated protein 1 / transcriptional co-activator with 
PDZ-binding motif (YAP/TAZ) and GTPase RhoA. Upon 
activation of Rho-family GTPase RhoA, several down-
stream effectors are triggered, including ROCK. As a result, 
ROCK promotes the activation of myosin II molecular 
motor, responsible for cytoskeletal rearrangement via con-
traction of actomyosin networks and can further enhance 
cancer cell survival and metastatic ability [225, 226].

Resistance to shear stress

To resist detrimental effects of shear stress, cancer cells 
developed various resistance mechanisms, including 
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systems combined with computational simulations and in 
vivo experiments may provide new insights in understand-
ing how flow dynamics and shear stress alter cell behavior 
and regulate metastasis. Deep insights into the mechanistic 
drivers of CTC intravasation and survival in circulation may 
highlight new opportunities for therapeutic interventions 
aimed at metastasis suppression.
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