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Abstract 

Background  To explore the pathologic basis and prognostic value of tumor and liver stiffness measured pre-opera-
tively by two-dimensional shear wave elastography (2D-SWE) in hepatitis B virus (HBV)-related hepatocellular carci-
noma (HCC) patients who undergo hepatic resection.

Methods  A total of 191 HBV-infected patients with solitary resectable HCC were prospectively enrolled. The stiffness 
of intratumoral tissue, peritumoral tissue, adjacent liver tissue, and distant liver tissue was evaluated by 2D-SWE. The 
correlations between stiffness and pathological characteristics were analyzed in 114 patients. The predictive value 
of stiffness for recurrence-free survival (RFS) was evaluated, and Cutoff Finder was used for determining optimal cut-
off stiffness values. Cox proportional hazards analysis was used to identify independent predictors of RFS.

Results  Pathologically, intratumoral stiffness was associated with stroma proportion and microvascular invasion (MVI) 
while peritumoral stiffness was associated with tumor size, capsule, and MVI. Adjacent liver stiffness was correlated 
with capsule and liver fibrosis stage while distant liver stiffness was correlated with liver fibrosis stage. Peritumoral 
stiffness, adjacent liver stiffness, and distant liver stiffness were all correlated to RFS (all p < 0.05). Higher peritumoral 
stiffness (> 49.4 kPa) (HR = 1.822, p = 0.023) and higher adjacent liver stiffness (> 24.1 kPa) (HR = 1.792, p = 0.048) were 
significant independent predictors of worse RFS, along with tumor size and MVI. The nomogram based on these vari-
ables showed a C-index of 0.77 for RFS prediction.

Conclusions  Stiffness measured by 2D-SWE could be a tumor microenvironment and tumor invasiveness biomarker. 
Peritumoral stiffness and adjacent liver stiffness showed important values in predicting tumor recurrence after cura-
tive resection in HBV-related HCC.

Clinical relevance statement  Tumor and liver stiffness measured by two-dimensional shear wave elastography 
serve as imaging biomarkers for predicting hepatocellular carcinoma recurrence, reflecting biological behavior 
and tumor microenvironment.
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Key points   
• Stiffness measured by two-dimensional shear wave elastography is a useful biomarker of tumor microenvironment 
and invasiveness.

• Higher stiffness indicated more aggressive behavior of hepatocellular carcinoma.

• The study showed the prognostic value of peritumoral stiffness and adjacent liver stiffness for recurrence-free 
survival.

• The nomogram integrating peritumoral stiffness, adjacent liver stiffness, tumor size, and microvascular invasion 
showed a C-index of 0.77.

Keywords  Hepatocellular carcinoma, Two-dimensional shear wave elastography, Microenvironment, Tumor 
recurrence, Stiffness

Graphical Abstract

Background
Hepatocellular carcinoma (HCC) is the fifth most com-
mon malignancy and the third leading cause of cancer-
related death worldwide [1]. Surgical resection is the 
first-line therapy in patients with solitary tumors and 
well-preserved liver function. However, recurrence after 
surgical resection is common, with 5-year recurrence 
rates reaching 70% [2]. In addition to tumor size, tumor 
number, and liver function, the microenvironment and 
biologic behavior of tumors are also considered as impor-
tant prognostic factors [3, 4].

The tissue stiffness reflects the mechanical proper-
ties and characterizes the complex interactions between 
tumor cells and extracellular matrix (ECM). The find-
ings from various studies indicate that higher matrix 
stiffness promotes proliferation and chemotherapeu-
tic resistance [5], upregulates VEGF expression [6], 
and enhances stemness [7] in HCC, which suggests the 
value of tissue stiffness to function as an integrative bio-
marker for HCC aggressiveness and prognosis [8]. Stud-
ies have demonstrated the value of tumor stiffness for 
predicting tumor recurrence following hepatic resection 
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[9–11], showing a positive correlation between higher 
tumor stiffness and increased recurrence rates. It was 
reported that higher matrix stiffness could trigger epi-
thelial-mesenchymal transition in HCC and facilitate 
HCC invasion and metastasis, which suggested the role 
of tumor stiffness in characterizing tumor aggressive-
ness [5, 12]. Besides, liver stiffness was also reported to 
be an independent predictor of recurrence in HCC after 
surgical resection or radiofrequency ablation [13–17]. 
The liver stiffness, mainly related to the degree of liver 
fibrosis, has been proved to be involved in both car-
cinogenesis and progression of HCC [18–20]. There-
fore, both tumor stiffness and liver stiffness could serve 
as comprehensive biomarkers for evaluating the tumor 
microenvironment, offering the possibility of being a 
prognostic marker for HCC recurrence.

The two-dimensional shear wave elastography (2D-
SWE) technique is an ultrasound-based technique for 
real-time visualization of soft tissue’s viscoelastic prop-
erties by measuring the speed of shear waves generated 
using acoustic radiation force [21]. The performance for 
assessment of diffuse liver disease by 2D-SWE has been 
confirmed [21, 22].

Several studies have also demonstrated the utility of 
2D-SWE for the evaluation of tissue stiffness and for 
diagnosis or prognosis of focal liver lesions (FLLs) [23–
26], and for characterizing tumor microenvironment 
and revealing the behavior of tumor-stroma interactions 
in HCC [27]. It may provide important tumor biologic, 
pathological, and ultimately prognostic information for 
HCC patients. Previous studies have reported the prog-
nostic value of stiffness measured by magnetic resonance 
elastography, transient elastography, or acoustic radiation 
force impulse elastography for HCC recurrence [9–11, 
13–17]. However, it remains unclear whether tumor stiff-
ness and liver stiffness measured by 2D-SWE can also 
be used as prognostic markers for HCC recurrence after 
curative treatment. Furthermore, the pathological basis 
of the stiffness in HCC is also unknown.

Therefore, the hypothesis of this study is that tumor 
stiffness and liver stiffness measured by 2D-SWE can 
reflect the biological behavior and tumor microenviron-
ment, thus serving as an imaging biomarker for predict-
ing the prognosis of HCC. This study aimed to assess 
the pathological basis of tumor and liver stiffness and to 
evaluate the potential utility of tissue stiffness measured 
by 2D-SWE for predicting the recurrence of hepatitis B 
virus (HBV)-related HCC patients after hepatic resec-
tion, with a focus on combining tumor stiffness and liver 
stiffness for prediction.

Materials and methods
Patients
This prospective study was approved by the ethics com-
mittee of the First Affiliated Hospital of Sun Yat-Sen Uni-
versity. Written informed consents were obtained from 
all patients before enrollment. HBV-infected patients 
with solitary HCC who underwent surgical resection 
from February 2019 to February 2021 were consecutively 
included in this study according to the inclusion and 
exclusion criteria. The diagnosis of HCC before surgery 
was based on the American Association for the Study of 
Liver Diseases (AASLD) guideline [2]. Inclusion criteria 
included the following: (1) patients aged 18–80 years; (2) 
patients with solitary resectable HCC; (3) performance 
status Eastern Cooperative Oncology Group score 0–1. 
Exclusion criteria included the following: (1) poor qual-
ity of 2D-SWE image data (e.g., the elastography color 
map was less than 75% filled); (2) the lesions received 
local or systematic anti-tumor therapies before 2D-SWE 
examination or surgery; (3) Pathological confirmation of 
non-HCC lesions. Figure 1 shows the patient recruitment 
process.

Ultrasound data acquisition
Both conventional ultrasound and 2D-SWE examina-
tions were performed within one week before surgery. 
All examinations were performed by an Aixplorer Ultra-
sound system (SuperSonic Imagine, France) equipped  
with an SC6-1 convex probe by a radiologist with more 
than 10 years of ultrasound experience and more than 3 
years of experience in liver 2D-SWE examination (M.X.L.).

After overnight fasting for at least 8 hours, the patient 
was placed in the supine position with the right arm in 
maximal abduction. 2D-SWE examination was per-
formed for both tumor and liver according to the Euro-
pean Federation of Societies for Ultrasound in Medicine 
and Biology (EFSUMB) guideline [21]. For 2D-SWE 
examination of the tumor and adjacent liver, a B-mode 
ultrasound scan was first performed to determine the 
maximum cross-section of the tumor and adjacent liver 
parenchyma of at least 1cm. Then the ultrasound mode 
was switched to elasticity imaging mode. A 2D-SWE 
window of 4 cm × 3 cm was placed at a depth of 1–8 
cm beneath the liver capsule and the scale was 70 kPa 
[28]. For tumors < 3 cm, the 2D-SWE window overlaid 
the tumor and adjacent liver parenchyma of at least 1.0 
cm [29]. For tumors ≥ 3 cm, the 2D-SWE window over-
laid a part of the tumor and adjacent liver parenchyma 
of at least 1.0 cm. The patients were asked to hold their 
breath for several seconds during quiet breathing and 
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five sequential images were obtained when the color 
map filled more than 75% of the 2D-SWE window and 
the signal stabilized for a few seconds [30]. For 2D-SWE 
examination of distant liver tissue, a B-mode ultrasound 
scan was first performed to locate a well-visualized liver 
area free of large vessels (diameter > 3 mm) and at least 
5 cm away from the lesion margin. Areas in the right 
anterior lobe of the liver were preferred if available. Then 
the ultrasound mode was switched to elasticity imaging 
mode with the scale of 40 kPa. A 2D-SWE window of 
4 cm × 3 cm was placed at a depth of 1.5–2 cm beneath 
the liver capsule. Patients were asked to hold their breath 
for a few seconds to obtain five sequential images once 
the elastography signal became stable and the color fill-
ing in the sampling frame reached 75%. The median and 
interquartile range (IQR) of five sequential acquisitions 
(in kilopascals) was calculated. An IQR/median < 30% 
was considered successful.

Image analysis
The B-mode ultrasound and 2D-SWE images were ana-
lyzed by one radiologist (X.Z.) with more than 5 years of 
experience in ultrasound, who was unaware of the patho-
logical results. Evaluations of B-mode ultrasound images 
were performed from the PACS system. The 2D-SWE 
image analysis was performed on the machine using 

the built-in ROI (Q-box) whose size and position were 
adjustable.

Evaluations of tumor B-mode ultrasound images 
included tumor size, shape,  boundary, and presence 
of hypoechoic halo. Evaluations of 2D-SWE images 
included quantitative stiffness of both intratumoral and 
peritumoral tissue, as well as adjacent liver parenchyma 
and distant liver parenchyma. An intratumoral Q-box 
was placed inside the tumor to cover the tumor area as 
much as possible for intratumoral stiffness [26]. A peri-
tumoral Q-box of about 5 mm was placed in the tumor 
border with the highest stiffness [31, 32]. An adjacent 
liver parenchyma Q-box of about 1cm was placed in 
adjacent liver parenchyma [26] (Fig.  2a). A distant liver 
parenchyma Q-box of about 2 cm was placed in distant 
liver parenchyma (Fig. 2b). The mean values (Emean) of 
Young’s modulus in these four areas were recorded. The 
median values of Emean in five sequential images were 
used for further analysis.

Clinical data collection and pathological examination
Preoperative patient characteristics and laboratory data 
were collected within one week ahead of surgery. Due 
to the unavailability of some pathological specimens, 
the pathological specimens of 114 patients from Febru-
ary 2019 to January 2020 were reviewed by a pathologist 
(L.L.C.) with more than 10 years of experience in HCC 

Fig. 1  Flow chart of the enrolled patients in our study
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pathology, without knowing the patient’s clinical data and 
ultrasound results. The specimens were sampled accord-
ing to the 7-point baseline sampling protocol [33]. Infor-
mation about Edmondson-Steiner grade, proportion of 
stroma, the presence and proportion of tumor necrosis, 
the presence of tumor capsule, degree of peritumoral 
lymphocytic reaction, microvascular invasion (MVI) of 
HCC, and grade of liver fibrosis were evaluated using a 
microscope on 4-μm paraffin-embedded histological sec-
tions with hematoxylin and eosin staining. The presence 
of cirrhosis was defined as S4 according to the Scheuer 
liver fibrosis staging system by pathological examination 
[34]. Definitions of the other pathological characteristics 
can be found in the Supplementary material.

Follow‑up
Patients were consistently followed up after liver resec-
tion at intervals of 3 to 6 months based on serum 
alpha-fetoprotein and imaging examination (contrast-
enhanced computed tomography or contrast-enhanced 
magnetic resonance imaging). All patients were under 
anti-viral treatment after resection. All patients were fol-
lowed up until September 2021. The mean period of fol-
low-up was 14.2 ± 9.2 months (range 1.5–30.7 months). 
Recurrence-free survival (RFS) was calculated from the 
date of surgical resection to the tumor recurrence (local 

recurrence, new intrahepatic tumor, vascular invasion, 
or distant organ metastasis). RFS was censored at the 
date of death or of the last follow-up visit for recurrence-
free patients.

Statistical analysis
Statistical analyses were performed by using SPSS, ver-
sion 20.0, and R4.1.2. The Student’s t-test or the Mann-
Whitney test, as appropriate, was used to compare 
continuous variables in recurrence and non-recurrence 
groups. The χ2 test was used to compare categorical vari-
ables. The elasticity values of different pathological mani-
festations were compared by using the Mann-Whitney 
test. An online tool Cutoff Finder was used to determine 
the optimal cut-off elasticity values for predicting RFS 
[35]. The elasticity values were dichotomized based on 
the optimal cut-off values. Univariable and multivari-
able analyses were performed to determine the signifi-
cant clinical, ultrasound, and pathological factors for RFS 
prediction. The survival curves were generated using the 
Kaplan–Meier method and the log-rank test was applied 
to compare the differences between groups. After the 
univariable Cox proportional hazards model was applied 
to each variable, the variables with a p value less than 
0.05 entered multivariate analysis to identify independent 
predictors for RFS based on stepwise Cox proportional 

Fig. 2  Elasticity measurement of 2D-SWE images. a Regions of interest (ROI) for measurement of the stiffness of intratumoral tissues (red ROI), 
peritumoral tissues (black ROI), and adjacent liver parenchyma (yellow ROI). b ROI for distant liver parenchyma (white ROI)
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Table 1  Clinical and ultrasound characteristics of patients included in this study

AFP, alpha-fetoprotein; TBIL, total bilirubin; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate transaminase; GGT​, gamma-glutamyl transferase; HBV, hepatitis 
B virus

Unless otherwise indicated, data are shown as number of patients, with the percentage in parentheses
a Data are shown as median (interquartile range)

Characteristic All patients (n = 191) Non-recurrence group  
(n = 125)

Recurrence group (n = 66) p value

Age (year)a 55.0 (47.0–64.0) 55.0 (47.5–64.0) 55.0 (46.5–62.5) 0.346

Sex 0.354

  Male 173 (90.6) 115 (92.0) 58 (87.9)

  Female 18 (9.4) 10 (8.0) 8 (12.1)

Tumor size (cm)a 5.3 (3.6–7.8) 4.7 (3.3–6.5) 7.7 (5.0–10.5) < 0.001

BCLC stage 0.205

  Very early stage (0) 3 (1.6) 3 (2.4) 0 (0.0)

  Early stage (A) 188 (98.4) 122 (97.6) 66 (100.0)

Child-Pugh class 0.949

  A 185 (96.9) 121 (96.8) 64 (97.0)

  B 6 (3.1) 4 (3.2) 2 (3.0)

Edmondson-Steiner grade 0.099

  Grade I–II 88 (46.1) 63 (50.4) 25 (37.9)

  Grade III–IV 103 (53.9) 62 (49.6) 41 (62.1)

Microvascular invasion < 0.001

  Absent 110 (57.6) 84 (67.2) 26 (39.4)

  Present 81 (42.4) 41 (32.8) 40 (60.6)

Cirrhosis of background liver 0.310

  Absent 139 (72.8) 88 (70.4) 51 (77.3)

  Present 52 (27.2) 79 (29.6) 15 (22.7)

AFP 0.006

  ≤ 20 U/L 90 (47.1) 68 (54.4) 22 (33.3)

  > 20 U/L 101 (52.9) 57 (45.6) 44 (66.7)

TBIL 0.816

  ≤ 17.1 µmol/L 138 (72.3) 91 (72.8) 47 (71.2)

  > 17.1 µmol/L 53 (27.7) 34 (27.2) 19 (28.8)

ALB 0.244

  < 35 g/L 164 (85.9) 110 (88.0) 54 (81.8)

  ≥ 35 g/L 27 (14.1) 15 (12.0) 12 (18.2)

ALT 0.751

  ≤ 40 U/L 133 (69.6) 88 (70.4) 45 (68.2)

  > 40 U/L 58 (30.4) 37 (29.6) 21 (31.8)

AST 0.005

  ≤ 40 U/L 116 (60.7) 85 (68.0) 31 (47.0)

  > 40 U/L 75 (39.3) 40 (32.0) 35 (53.0)

GGT​ 0.007

  ≤ 50 U/L 92 (48.2) 69 (55.2) 23 (34.8)

  > 50 U/L 99 (51.8) 56 (44.8) 43 (65.2)

HBV-DNA 0.178

  ≤ 100 IU/mL 88 (46.1) 62 (49.6) 26 (39.4)

  > 100 IU/mL 103 (53.9) 63 (50.4) 40 (60.6)

Intratumoral stiffness (kPa) a 32.1 (20.6–49.8) 31.5 (10.5–48.1) 35.7 (23.1–53.1) 0.179

Peritumoral stiffness (kPa) a 48.3 (30.4–62.7) 43.8 (28.2–60.5) 51.9 (39.4–66.3) 0.020

Adjacent liver stiffness (kPa) a 12.5 (9.5–18.7) 12.7 (9.5–18.3) 12.2 (9.7–21.4) 0.600

Distant liver stiffness (kPa) a 8.8 (7.0–11.4) 8.5 (6.8–10.6) 9.2 (7.3–12.0) 0.123
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hazards regression. Schoenfeld residuals were used to 
check the proportional hazards assumption of the Cox 
proportional hazards model and a stepwise Cox regres-
sion was used to prevent multicollinearity. A nomogram 
was constructed based on independent predictors. The 
discrimination performance was quantified by concord-
ance index (C-index) and area under the receiver oper-
ating characteristic curve (AUC) at 0.5 years, 1 year, and 
2 years. The calibration performance was determined by 
calibration curve analysis. All statistical tests were two-
tailed and a p value < 0.05 was considered a statistically 
significant difference.

Results
Baseline characteristics
A total of 191 HBV-infected patients with single HCC 
who underwent surgical resection were prospectively 
enrolled in this study, including 173 males and 18 females 
with a median age of 55.0 (47.0–64.0) years (Fig. 1).

During the follow-up, HCC recurrence was observed 
in 66 (34.6%) patients. The baseline characteristics 
of the recurrence group, non-recurrence group, and 
all patients were summarized in Table  1. There were  
significant differences in tumor size (p < 0.001), presence  
of MVI (p < 0.001), AFP level (p = 0.006), AST level  

Table 2  Correlations between pathological characteristics and tissue stiffness

Pathological characteristics Intratumoral 
stiffness (kPa)

p Peritumoral stiffness (kPa) p Adjacent liver 
stiffness (kPa)

p Distant liver 
stiffness (kPa)

p

Tumor size 0.533 0.014 0.959 0.607

  ≤ 5 cm 33.9 (18.6–49.4) 40.7 (23.2–50.5) 11.3 (8.9–18.9) 8.8 (7.0–11.5)

  > 5 cm 33.6 (24.6–49.9) 53.3 (33.9–64.6) 11.8 (9.0–18.0) 9.3 (7.6–10.8)

Proportion of stroma 0.016 0.165 0.290 0.754

  ≤ 20% 30.9 (16.7–40.8) 43.3 (30.2–55.2) 12.9 (9.1–20.6) 9.2 (7.5–11.7)

  > 20% 35.4 (26.5–54.2) 51.7 (28.0–66.5) 11.1 (8.7–17.4) 9.1 (7.2–10.8)

Tumor necrosis 0.203 0.230 0.997 0.288

  Absent 27.9 (17.8–50.1) 44.9 (21.7–61.2) 12.5 (8.1–19.4) 9.1 (7.9–12.8)

  Present 34.9 (25.6–49.8) 48.8 (30.2–64.7) 11.7 (9.2–18.0) 9.2 (7.2–10.6)

Proportion of necrosis 0.158 0.205 0.454 0.828

  < 20% 32.9 (20.8–44.2) 44.7 (23.9–61.9) 12.0 (9.0–19.4) 8.5 (7.3–11.4)

  ≥ 20% 34.5 (26.0–55.1) 51.7 (30.1–68.2) 11.0 (8.9–17.5) 9.4 (7.0–11.0)

Edmondson-Steiner grade 0.376 0.104 0.833 0.577

  Grade I–II 30.7 (20.8–43.6) 44.3 (25.2–55.7) 12.1 (8.2–19.2) 9.1 (7.0–12.2)

  Grade III–IV 34.5 (23.1–52.1) 51.1 (30.3–67.6) 11.1 (9.2–17.7) 9.3 (7.4–10.6)

Tumor capsule 0.602 0.004 0.026 0.497

  Absent 35.3 (18.3–57.9) 30.4 (19.3–47.7) 9.5 (8.0–12.9) 8.7 (6.6–10.9)

  Present 32.9 (23.6–46.5) 50.2 (32.1–63.9) 12.3 (9.3–19.4) 9.3 (7.5–11.5)

Peritumoral lymphocytic reaction 0.542 0.353 0.605 0.541

  Low 31.3 (16.8–46.1) 43.8 (24.2–63.3) 11.9 (9.5–20.7) 8.5 (6.9–11.4)

  Moderate 32.4 (25.4–49.0) 50.6 (39.7–66.5) 11.9 (9.5–17.5) 9.3 (7.9–10.7)

  High 38.2 (22.4–54.0) 44.9 (25.3–61.0) 10.3 (8.1–18.7) 11.4 (6.6–19.4)

Microvascular invasion 0.015 0.021 0.121 0.219

  Absent 30.6 (18.3–43.2) 40.5 (23.6–61.9) 10.9 (8.6–17.5) 8.5 (7.2–10.5)

  Present 39.9 (30.4–53.4) 52.7 (40.3–63.9) 13.4 (9.3–10.9) 10.2 (7.9–11.8)

Cirrhosis of background liver 0.777 0.050 0.036 0.002

  Absent 33.7 (21.2–48.9) 43.6 (25.2–48.8) 10.9 (8.2–17.3) 8.7 (6.9–10.5)

 Present 33.4 (25.6–52.6) 54.1 (40.3–52.7) 13.7 (10.5–19.5) 11.4 (8.2–12.9)

(See figure on next page.)
Fig. 3  Correlations between pathological characteristics and tissue stiffness. a, b Differences in intratumoral stiffness between patients 
with different subgroups of stroma proportion and status of microvascular invasion. c–e Differences in peritumoral stiffness between patients 
with different subgroups of tumor size, tumor capsule, and status of microvascular invasion. f, g Differences in adjacent liver stiffness 
between patients with different subgroups of tumor capsule and cirrhosis status. h Differences in distant liver stiffness between patients 
with different cirrhosis status
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Fig. 3  (See legend on previous page.)
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(p = 0.005), GGT level (p = 0.007), and peritumoral 
stiffness (p = 0.020) between the recurrence group and 
non-recurrence group.

Pathological basis of intratumoral, peritumoral, 
adjacent liver and distant liver elasticity
Comparisons of intratumoral stiffness, peritumoral 
stiffness, adjacent liver stiffness, and distant liver stiff-
ness between different pathological characteristics in 
114 patients were shown in Table 2 and Fig. 3. Intratu-
moral stiffness was higher in tumors with the propor-
tion of stroma of > 20% compared with tumors with 
the proportion of stroma of ≤ 20% (p = 0.016) and in 
tumors with MVI compared with those without MVI 
(p = 0.015). Peritumoral stiffness was higher in tumors  
with larger tumor size (> 5 cm, p = 0.014), presence  
of tumor capsule (p = 0.004), and presence of MVI  
(p = 0.021). Adjacent liver stiffness was significantly cor-
related with the presence of a tumor capsule (p = 0.026) 
and cirrhosis of the background liver (p = 0.036). While 
distant liver stiffness was significantly correlated with 
cirrhosis of background liver (p = 0.002).

Quantitative 2D‑SWE features and recurrence
The optimal cut-off values of intratumoral stiffness, peri-
tumoral stiffness, adjacent liver stiffness, and distant liver 
stiffness for predicting RFS were 63.5 kPa, 49.4 kPa, 24.1 

kPa, and 15.7 kPa, respectively. Based on these cut-off 
values, patients were dichotomized into two groups and 
RFS was compared between the two groups. Kaplan–
Meier survival analysis showed that RFS was significantly 
shorter in patients with higher peritumoral stiffness 
(p = 0.003), adjacent liver stiffness (p = 0.001), and dis-
tant liver stiffness (p = 0.030) compared with lower ones 
(Fig.  4). However, there was no significant difference in 
RFS between patients with high intratumoral stiffness 
and low intratumoral stiffness (p = 0.088).

Univariable and multivariable Cox proportional hazards 
analyses for predictors for RFS
Univariable Cox proportional hazards analysis showed 
that peritumoral stiffness (HR = 2.104; 95% CI, 1.283–
3.450; p = 0.003), adjacent liver stiffness (HR = 2.509; 
95% CI, 1.428–4.408; p = 0.001), and distant liver stiff-
ness (HR = 1.249; 95% CI, 1.065–4.751; p = 0.034) were 
associated with RFS (Table  3). With regard to clinical, 
histological and B-mode ultrasound features, tumor size 
(HR = 1.205; 95% CI, 1.149–1.264; p < 0.001), AFP level 
(HR = 2.078; 95% CI, 1.245–3.369; p = 0.005), AST level 
(HR = 2.119; 95% CI, 1.306–3.439; p = 0.002), GGT level  
(HR = 1.931; 95% CI, 1.164–3.206; p = 0.011), MVI  
(HR = 2.901; 95% CI, 1.768–4.762; p < 0.001), and 
Edmondson-Steiner grade (HR=1.686; 95% CI, 1.024–
2.775; p = 0.040) were associated with RFS (Table 3).

Fig. 4  Correlations between recurrence-free survival and tissue stiffness. a Recurrence-free survival curves stratified by intratumoral stiffness.  
b Recurrence-free survival curves stratified by peritumoral stiffness. c Recurrence-free survival curves stratified by adjacent liver stiffness.  
d Recurrence-free survival curves stratified by distant liver stiffness
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Multivariable Cox proportional hazards analysis 
showed that larger tumor size (adjusted HR=1.190; 95% 
CI, 1.125–1.258; p < 0.001), MVI (adjusted HR = 1.764; 
95% CI, 1.031–3.018; p = 0.038), higher peritumoral stiff-
ness (> 49.4 kPa) (adjusted HR = 1.822; 95% CI, 1.088–
3.051; p = 0.023), and higher adjacent liver stiffness  
(> 24.1 kPa) (adjusted HR = 1.792; 95% CI, 1.005–3.196;  
p = 0.048) were significant independent predictors of 
worse RFS (Table 3). The forest plot in Fig. 5 showed the 
results of multivariable Cox proportional hazards analysis.

Development and validation of the nomogram 
for predicting RFS
The final nomogram integrated tumor size, MVI, peritu-
moral stiffness, and adjacent liver stiffness (Fig.  6a). The 
C-index of the nomogram was 0.77 (0.713–0.827). Receiver 
operating characteristic (ROC) curves to predict 0.5-, 1-, 
and 2-year recurrence-free RFS were shown in Fig. 6b with 
AUCs of 0.847, 0.818, and 0.777, respectively. The calibra-
tion curve showed good calibration for the nomogram to 
predict 0.5-, 1-, and 2-year recurrence-free RFS (Fig. 6c).

Discussion
In this study, the pathological basis and prognostic impli-
cations of tumor stiffness and liver stiffness measured by 
2D-SWE were explored in HBV-related HCC patients 

with solitary lesions and treated with surgical resection. 
The results indicated the important role of stiffness as 
an imaging biomarker of the tumor microenvironment 
and tumor invasiveness. Four stiffness characteristics, 
including intratumoral stiffness, peritumoral stiffness, 
adjacent liver stiffness, and distant liver stiffness, were 
analyzed in the current study. In HCC, higher values of 
the four stiffness were correlated with more aggressive 
metrics, such as higher proportion of stroma, presence 
of MVI, and larger tumor size. For the prognostic impli-
cations, peritumoral stiffness and adjacent liver stiffness 
were shown more valuable than intratumoral stiffness 
and distant liver stiffness in predicting tumor recurrence. 
Higher peritumoral stiffness (> 49.4 kPa) and higher 
adjacent liver stiffness (> 24.1 kPa) were independent 
risk factors for recurrence following hepatic resection in 
HBV-related HCC, along with traditional predictors such 
as larger tumor size and presence of MVI.

In this study, increased intratumor stiffness and peri-
tumoral stiffness were shown to be associated with 
higher stroma proportion and the presence of tumor 
capsule, which were consistent with other studies show-
ing that increased stiffness is mainly correlated with 
ECM remodeling and the deposition of ECM compo-
nents [36, 37]. Many tumors are characterized by ECM 
deposition, remodeling, and cross-linking that drive 

Table 3  Univariate and multivariate analysis for predictors of RFS after HCC hepatectomy

AFP, alpha-fetoprotein; TBIL, total bilirubin; ALB, albumin; ALT, alanine aminotransferase; AST, aspartate transaminase; GGT​, gamma-glutamyl transferase; HBV, hepatitis 
B virus; MVI, microvascular invasion

Variables Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Sex, female vs. male 1.410 (0.693–2.955) 0.363

Age, years 0.989 (0.968–1.010) 0.290

Tumor size, cm 1.205 (1.149–1.264) < 0.001 1.190 (1.125–1.258) < 0.001

AFP, > 20 U/L vs. ≤ 20 U/L 2.078 (1.245–3.369) 0.005

TBIL, > 17.1 µmol/L vs. ≤ 17.1 µmol/L 1.049 (0.616–1.788) 0.860

ALB, < 35 g/L vs. ≥ 35 g/L 1.623 (0.868–3.036) 0.129

ALT, > 40 U/L vs. ≤ 40 U/L 1.094 (0.652–1.837) 0.733

AST, > 40 U/L vs. ≤ 40 U/L 2.119 (1.306–3.439) 0.002

GGT, > 50 U/L vs. ≤ 50 g/L 1.931 (1.164–3.206) 0.011

HBV-DNA, > 100 IU/mL vs. ≤ 100 IU/mL 1.454 (0.887–2.383) 0.137

Cirrhosis, present vs. absent 0.686 (0.385–1.222) 0.201

MVI, present vs. absent 2.901 (1.768–4.762) < 0.001 1.764 (1.031–3.018) 0.038

Edmondson-Steiner grade, III–IV vs. I–II 1.686 (1.024–2.775) 0.040

Shape, irregular vs. regular 1.655 (0.986–2.780) 0.057

Boundary, unclear vs. clear 1.243 (0.665–2.325) 0.496

Halo, present vs. absent 0.950 (0.575–1.569) 0.840

Intratumoral stiffness, > 63.5 kPa vs. ≤ 63.5 kPa 1.685 (0.918–3.093) 0.092

Peritumoral stiffness, > 49.4 kPa vs. ≤ 49.4 kPa 2.104 (1.283–3.450) 0.003 1.822 (1.088–3.051) 0.023

Adjacent liver stiffness, > 24.1 kPa vs. ≤ 24.1 kPa 2.509 (1.428–4.408) 0.001 1.792 (1.005–3.196) 0.048

Distant liver stiffness, > 15.7 kPa vs. ≤ 15.7 kPa 1.249 (1.065–4.751) 0.034
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fibrosis to stiffen the stroma and promote malignancy 
[38]. Increased stiffness can, in turn, promote numer-
ous cellular functions that promote tumor progres-
sion and invasiveness [37]. This study also showed that 
intratumoral and peritumoral stiffness were correlated 
with the presence of MVI, a histopathologic evidence of 
tumor aggressiveness, which was consistent with pre-
sent studies [39, 40]. These results indicated that tumor 
stiffness could be used as a potential biomarker to assess 
changes in the tumor microenvironment and tumor 
aggressiveness. The prognostic value of tumor stiff-
ness was confirmed in the current study for predicting 
HCC recurrence after curative resection. Besides, intra-
tumoral and peritumoral stiffness were assessed sepa-
rately in this study, which was different from previous 
studies that integrated intratumoral and peritumoral 
stiffness [9–11]. Peritumoral stiffness was identified as 
an independent predictor of tumor recurrence. Several 
studies have confirmed that cancer-associated fibro-
blasts (CAFs), mainly located at the tumor marginal 
zone, enhance the production and reorganization of the 
ECM and lead to a mechanically stiff microenvironment 
[41]. Higher stiffness could promote tumor cell prolif-
eration and invasion [5, 8]. However, our results did not 
show an independent prognostic value of intratumoral 
stiffness. This may be because that intratumoral stiffness 
could also be influenced by many other factors besides 
the stroma proportion, like the density of cancer cells 
and the presence of necrotic areas [36].

The microenvironment in which HCC develops also 
exerts a major influence on tumor development and 
growth [42]. This study showed that adjacent liver stiff-
ness and distant liver stiffness were correlated with 
capsule status and liver fibrosis stage. Liver fibro-
sis is associated with an increased risk of malignancy 
[43]. Several studies have confirmed the role of liver 
stiffness in predicting HCC recurrence [13–16]. Our 
results showed that higher distant liver stiffness (> 15.7 
kPa) was correlated with shorter RFS (p = 0.030), but 
no significant difference was found in cirrhosis pres-
ence between patients with and without recurrence. 
The inconsistency may be due to different cutoff values 
because liver stiffness ≥11 kPa is considered as cirrho-
sis in SuperSonic Imaging [44]. In this study, the results 
showed that although higher adjacent liver stiffness 
and higher distant liver stiffness were both related to 
a higher probability of recurrence, adjacent liver stiff-
ness was shown to be an independent predictor of HCC 
recurrence. Periphery zones of tumor tissues are repre-
sentative of tumor heterogeneity in that they are rich in 
highly invasive cells, which are susceptible to the for-
mation of MVI and satellite nodules and impact post-
operative recurrence [33]. Evidence also indicated that 
the infiltration of activated hepatic stellate cells (HSC) 
within adjacent liver tissues was closely associated 
with a poor prognosis of HCC after curative resection 
[45]. Activated HSCs may lead to a stiff environment 
and promote tumor cell dissemination [46], which may 

Fig. 5  Forest plot of independent predictors of recurrence-free survival after hepatocellular carcinoma resection
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explain the prognostic value of adjacent liver tissue 
stiffness. The reason that distant liver stiffness did not 
show independent prognostic value may be that most 
patients were treated with antiviral therapy postopera-
tively, which attenuated the effect of distant liver stiff-
ness on recurrence prediction.

A nomogram integrating tumor size, MVI, peritumoral 
stiffness, and adjacent liver stiffness was established with a 
C-index of 0.77 for RFS prediction, showing satisfactory dis-
crimination and calibration performance. The nomogram 
may help stratify the risk of recurrence and improve individ-
ualized treatments and personalized surveillance strategies.

There were some limitations in this study. Firstly, 
there may be heterogeneity in HCC tissue while only the 
maximum section of the lesion was assessed. Secondly, 
the maximum detection depth of 2D-SWE is limited 
[21], but tumor elastography can still be obtained for 
most enrolled lesions through scanning in multiple ori-
entations. Thirdly, quantitative elasticity measurements 
were acquired by a single radiologist, the generalization 

of the findings needs further investigation. Although the 
2D-SWE approach showed high reproducibility [47], 
inter and intraobserver variability may affect both data 
acquisition and interpretation. Fourthly, only patients 
with hepatitis B virus-related HCC were included, so 
the prognostic value of the tumor stiffness and liver 
stiffness in other causes of underlying liver diseases and 
other types of liver cancer needs further study. Fifthly, 
this is a single-center study, and the results should be 
confirmed by further studies at multiple centers with 
larger samples.

Conclusions
In conclusion, stiffness measured by 2D-SWE could be 
a useful imaging biomarker of the tumor microenviron-
ment and tumor invasiveness in HBV-related HCC, with 
higher stiffness indicating more aggressive behavior. 
Peritumoral stiffness and adjacent liver stiffness showed 
important values in predicting tumor recurrence after 
curative resection in HBV-related HCC.

Fig. 6  Performance of the nomogram. a Nomogram for predicting the recurrence-free survival in patients with hepatocellular carcinoma. 
b Receiver operating characteristic curves of the nomogram to predict 0.5-, 1-, and 2-year recurrence-free survival. c–e Calibration plots 
of the nomogram to predict 0.5-, 1-, and 2-year recurrence-free survival
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