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Global crop-specific nitrogen 
fertilization dataset in 1961–2020
Wulahati Adalibieke1,3, Xiaoqing Cui1,3, Hongwei Cai1, Liangzhi You   2 & Feng Zhou   1 ✉

Nitrogen (N) is an important nutrient for crop growth. However, the overuse of N fertilizers has led 
to a series of devastating global environmental issues. Recent studies show that multiple datasets 
have been created for agricultural N fertilizer application with varied temporal or spatial resolutions, 
nevertheless, how to synchronize and use these datasets becomes problematic due to the inconsistent 
temporal coverages, spatial resolutions, and crop-specific allocations. Here we reconstructed a 
comprehensive dataset for crop-specific N fertilization at 5-arc-min resolution (~10 km by 10 km) 
during 1961–2020, including N application rate, types, and placements. The N fertilization data was 
segmented by 21 crop groups, 13 fertilizer types, and 2 fertilization placements. Comparison analysis 
showed that our dataset is aligned with previous estimates. Our spatiotemporal N fertilization dataset 
could be used for the land surface models to quantify the effects of agricultural N fertilization practices 
on food security, climate change, and environmental sustainability.

Background & Summary
Nitrogen (N) is one of the most essential nutrients for crop production. Since the development of the 
Haber-Bosch process, the consumption of synthetic N fertilizers has increased exponentially to meet the food 
demand of growing human population1,2. However, excess N fertilizers are escaping into the environment, via 
a cascade of processes through atmospheric, aquatic, marine and terrestrial pools3,4. For example, agricultural 
N pollutants due to emitting, run-offs and leaching could result in severe air pollution (i.e., fine particle matter 
and aerosols)5,6, global climate change (i.e., ozone depletion in the stratosphere)7,8, eutrophication9 and compro-
mised water quality in surface and groundwater aquatic ecosystems10,11, biodiversity loss12 as well as acidification 
in terrestrial ecosystems13. In order to assess the effect of N fertilization, which was defined as N application 
rate, types (including synthetic N fertilizers, manure and crop residues) and placement, on the environment 
at different scales (especially for a globally large scale), diverse datasets of agricultural N fertilization practices 
segmented by various temporal and spatial resolutions are urgently needed.

N fertilization has been considered as an important input in multiple models, e.g., the Organising Carbon 
and Hydrology In Dynamic Ecosystems model (ORCHIDE-Crop)6 and PKU-NRUNOFF model14 require 
crop-specific N inputs, the Soil & Water Assessment Tool (SWAT)15 and the Magnitude And Seasonality of 
Agricultural Emissions model for NH3 (MASAGE_NH3 models)16 require fertilizer types as input data besides. 
More importantly, the DeNitrification-DeComposition model (DNDC)17,18 and the flux upscaling model for N2O 
emissions19 simultaneously need crop-specific N inputs, fertilizer types, and application placement as input data. 
Generally, the country-level N fertilizer applied to agriculture could be obtained from the Food and Agriculture 
Organization of the United Nations (FAO)20 and the International Fertilizer Association (IFA)21, which have 
been widely used in global and national research. However, detailed geospatial distributions, which are usually 
required in many process-based models, are unavailable from these international statistics. Crop-specific N 
fertilizer application rate at a resolution of 5 arc-min was firstly generated by Mueller et al.22, whereas this study 
only focused on the rates for the year 2000. The related dataset was further expanded to a period of 1961–2013 at 
a relatively lower resolution of 0.5 degree × 0.5 degree and segmented by NH4

+ and NO3
− forming N fertilizers23. 

Moreover, Wang et al.24 extended the temporal period of N application rate data into the year 1961–2014, but 
only into two categories (i.e., upland crops and paddy rice) through aggregating administrative-unit statistic 
data. Meanwhile, a 5-arc-min gridded global dataset pertaining to global manure N production and application 
in cropland during 1860–2015 was reconstructed by Zhang et al.25. Historic anthropogenic N inputs to terrestrial 
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biosphere with 5 arc-min during 1960–2019 were also reconstructed, including annual rates of synthetic N 
fertilizer, manure application, and atmospheric N deposition on cropland, pasture, and rangeland26. It is noted 
that most current research and datasets mainly focus on N fertilization inputs instead of N fertilizer types and 
N fertilization placement. Moreover, those datasets did not show long-term and high-resolution patterns of 
crop-specific N fertilization (rate, type, placement) and were not at uniform spatial resolutions or with consistent 
allocation algorithms, making it impossible to use them together.

To provide input data for the land surface models for assessing the effects of agricultural N fertilization 
practices on food security, climate change and ecosystem health, we developed a new global crop-specific N fer-
tilization dataset. This newly developed N fertilization dataset covers not only more than one single fertilization 
rate but also crop-specific N application rate, N fertilizer types, as well as N application placement at a spatial 
resolution of 5 arc-min in the past six decades. This dataset was developed based on multiple statistical datasets 
(e.g., the FAOSTAT20, the IFASTAT21, and the EUROSTAT27), empirical estimates as well as gridded dataset 
(e.g., gridded harvested area from the EARTHSTAT28, gridded N application for Wang et al.24 and Zhan et al.29 
and gridded climate data from Climatic Research Unit (CRU)30). This dataset also combines previous datasets at 
different spatial and temporal scales to reconstruct the important components of N fertilization (i.e., rate, type 
and placement) by crop types. The uncertainties of crop-specific N application rate were estimated and further 
comparison between our new N fertilization dataset and existing N fertilization datasets were also analyzed. The 
limitations that users should be aware and the future research priorities to build a more accurate and compre-
hensive N fertilization dataset were also discussed in the “Usage Notes”.

Methods
A comprehensive crop-specific N fertilization dataset was reconstructed across the global agricultural soils, 
including the N application applied to twenty-one crops groups with different fertilizer types and application 
methods. The N fertilization was defined as N application of synthetic N fertilizers, crop residues and manure to 
cropland in this study. The N application amount can be quantified as below:

Namount Harea Nrate FerRatio Placement (1)cro f p y g cro y g cro y g f y g cro f p y g, , , , , , , , , , , , , ,= × × ×

where Namountcro,f,p,y,g (kg N) is N application amount of fertilizer type f applied by placement p to crop cro in 
grid g in the year y. Hareacro,y,g (ha) is harvested area of crop cro in grid g in the year y. Nratecro,y,g (kg N ha−1) is N 
application rate (N application amount per harvested area) of crop cro in grid g in the year y. FerRatiof,y,g (%) is 
the percentage of fertilizer f inputs to total N application amount in grid g in the year y. Placementcro,f,p,y,g (%) is 
the percentage of surface placement p (or deep placement) inputs to total inputs of fertilizer f applied to crop cro 
in grid g in the year y. It’s noteworthy that crops were aggregated into 21 crop groups according to Zhan et al.29. 
The detailed methods for generating each individual item were described as below, respectively. The workflow of 
methods is presented in Fig. 1. Main variables used in equations see Table 1. Main data used for developing this 
new crop-specific N fertilization dataset are listed in Table 2.

Crop-specific harvested areas.  The gridded crop-specific harvested area (ha) for the year 1961–
2020 (Hareacro,y,g) was integrated from gridded harvested area in the year 2000 from the EARTHSTAT28 and 
country-level statistics of crop-specific harvested area during the period of 1961–2020 from the FAOSTAT20. The 
historical areas of arable land and permanent crops (here referred to cropland areas), were also included from the 
History Database of the Global Environment (HYDE version 3.2)31 to identify the spatial distributions of crop-
land and to map the statistics of harvested areas onto a grid.

The gridded harvested area from the EARTHSTAT28 is relatively detailed and covers a wide range of crop 
types, which was developed based on agricultural census and survey information of 175 crops from the 22,050 
political units reasonably obtainable for 206 countries during 1997–2003. Thus, we developed crop-specific 
gridded harvested area based on this dataset. First, the harvested area of 136 crops (accounting for 92.9% of 
total harvested area) from the EARTHSTAT28 were integrated into 21 crop groups and administrative units (i.e., 
county/district, a lower level subdivision than state or province) according to Zhan et al.29 and political bound-
aries from the GADM32, respectively. Note that, arable forage crops (such as green maize, alfalfa) or temporary 
and permanent grasslands are not included in this study. Details for crop information see Table 3.

Then, the national harvested area from the FAOSTAT20 was then used to extend the harvested area from 
the EARTHSTAT28 (as a reference map for the distribution of harvested area) in the year 2000 to the period of 
1961–2020. The harvested area can be extended by the following equation:

= ×Harea HareaM
HareaFAO

HareaFAO (2)
cro y i cro i

cro y j

cro j
, , ,2000,

, ,

,2000,

where, Hareacro,y,i is harvested area of crop cro in the county/district i in the year y. HareaMcro,2000,i is harvested 
area in the county/district i around the year 2000 from the EARTHSTAT28. HareaFAOcro,y,j is harvested area of 
crop cro in the country j from the FAOSTAT20. Here, we assumed that the annual changes within each county/
district (i) of country (j) were consistent with the annual changes in that respective country. The harvested area 
of the countries, which experienced political disintegration, was distributed to individual newly-formed coun-
tries using the ratio derived from the harvested area in the first year after disintegration.

Thirdly, the crop-specific harvested area for each county/district during the period of 1961–2020 (Hareacro,y,i) 
was mapped onto a grid by spatially disaggregating it using the dynamic cropland distribution from the 
HYDE3.231. The HYDE3.231 provided distribution and area croplands for a long time series (annual time-step 
after the year 2000 to 2017 and a decadal time-step during 1700–2000). The mapping of the gridded crop-specific 
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harvested area was in proportion to the cropland area of each grid in each county/district, which can be calcu-
lated as below:

=











× =

× =
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Carea
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if cro rice
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(3)

cro y g

cro y i
rice y g

rice y i
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where, Hareacro,y,g is the harvested area of crop cro in grid g. Carearice,y,g and Careaupland,y,g are cropland area of rice 
and upland for grid g from the HYDE3.231, respectively. Carearice,y,i and Careaupland,y,i are total calculated cropland 
area of rice and upland for county/district i from the HYDE3.231. Due to the cropland area from the HYDE3.231 
was available only up to the year 2017 and at decadal time-step before the 1990s, we assumed that the cropland 
area after the year 2017 was the same as that in 2017 and the cropland area before the year 2000 was constant 
in each decade. Lastly, to be comparable with that from the FAOSTAT20, the disaggregated gridded dataset was 
matched by the total crop-specific harvested area of each country from the FAOSTAT20.

Crop-specific N application rate.  The gridded crop-specific N application rate (including synthetic N 
fertilizers (SN), crop residues (CR) and manure (MA)) for the year 1961–2020 (Nratecro,y,g) was derived from the 
gridded N application amount in 1961–2014 developed by Wang et al.24, the country level N consumption for 

Fig. 1  Workflow for developing the crop-specific N application dataset.
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agriculture from the FAOSTAT20 (including SN, CR, and MA), the country-level crop-specific fertilizer consump-
tion from FUBC33 and the N application rate for 21 crop groups from Zhan et al.29.

Due to its high spatial and temporal resolution, the gridded N application amount in 1961–2014 provided by 
Wang et al.24 was used as a reference dataset to develop the crop-specific N application rate. Firstly, the gridded 
N application amount (divided into SN, CR, and MA) from Wang et al.24 was integrated into the GADM admin-
istrative units32 such as county, district or equivalent that is a lower level subdivision than state or province. 
Then, SN, MA, and CR application amount from the FAOSTAT20 spanning the period from 1961–2020 were 
utilized to extend and calibrate the above aggregated N application amount. Since the N application amount 
from the FAOSTAT20 includes both the cropland use and the other agricultural uses (e.g., pasture), we separated 
fertilizer use applied to croplands for each county/district based on the country-scale crop-wise proportion34, by 
assuming the same proportion of cropland use within a certain country. The calculation was described as below:

= × ≤ ≤NamountW NamountW
NamountFAO

NamountFAO
if y2015 2020

(4)
f y i f i

f y j

f j
, , ,2014,

, ,

,2014

Where NamountWf,y,i is N application amount of fertilizer f (SN, MA or CR) for county/district i in the year y 
(from 2015 to 2020). NamountWf,2014,i is N application amount of fertilizer f (SN, MA or CR) developed by Wang 
et al.24 for county/district i in 2014. NamountFAOf,y,j and NamountFAOf,2014,j is application amount of fertilizer f 
(SN, MA or CR) from FAOSTAT20 for country j in the year y and 2014.

Note that, total N application amount from Wang et al.24 was on average 12% lower than the FAOSTAT20 
that removed the pasture synthetic-fertilizer application, due to the reduced amount of SN application. Thus, we 
corrected SN application amount from Wang et al.24 to the FAOSTAT20. CR and MA application amount were 
consistent with Wang et al.24. Then, the total N application amount (Namountf,y,i) of this dataset was obtained 
and the calculation was described as below:

Namount
NamountW if f CR or MA

NamountW
NamountFAO

NamountW
if f SN

(5)

f y i

f y i

f y i
SN y j

f y j

, ,

, ,

, ,
, ,

, ,

=










=

× =

Variables Definition Sources Units

cro Crop groups defined in this study Zhan et al.29 —

cro2 Crop groups defined in FUBC FUBC33 —

f Fertilizer types Developed by authors —

p Placements Developed by authors —

y Year Developed by authors —

g Grid Developed by authors —

i County/district Developed by authors —

j Country Developed by authors —

m Country or region Developed by authors —

Namountcro,f,p,y,g N application amount Developed by authors kg N

Nratecro,y,g Total N application rate Developed by authors kg N ha−1

Hareacro,y,g Harvested area Developed by authors ha

FerRatiof,y,g The percentage of fertilizer f inputs to total N application amount Developed by authors %

Placementcro,f,p,y,g
The percentage of surface placement (or deep placement) inputs to total 
application of fertilizer f Developed by authors %

HareaMcro,2000,i Harvested area around 2000 from the EARTHSTAT EARTHSTAT28. ha

HareaFAOcro,y,j Harvested area from the FAOSTAT FAOSTAT20 ha

Careaupland,y,g Cropland area for upland crops from the HYDE3.2 HYDE3.231 ha

Careapaddy rice,y,g Cropland area for paddy rice from the HYDE3.2 HYDE3.231 ha

NamountFAOf,y,i N application amount from the FAOSTAT FAOSTAT20 kg N

NamountWf,y,i N application amount from Wang et al. Wang et al24. kg N

NrateZcro,f,2000,i N application rate in the year 2000 from Zhan et al. Zhan et al29. kg N ha−1

NconFUBCcro2,SN,y0,j SN fertilizer consumption from FUBC FUBC33 kg N ha−1

FerIFAf,y,m N application amount of fertilizer f from the IFASTAT IFASTAT21 kg N

FerIFAtotal,y,m N application amount of total synthetic fertilizers from the IFASTAT IFASTAT21 kg N

Placementcro,f,deep,y,g The percentage of deep placement N inputs to total N inputs Developed by authors %

Placementcro,f,surface,y,g The percentage of surface placement N inputs to total N inputs Developed by authors %

NoTillcro,y,g Non-tillage ratio Developed by authors %

Table 1.  Main variables used in methods. Note: - means dimensionless.
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Then, since gridded crop-specific N application rate of SN, MA, and CR from Zhan et al.29 were only avail-
able in 2000, we assumed that the N application rate changed at the same ratio for all crops across all the time 
during 1961–2020 according to Zhang et al.35. We used the same calculation as Zhang et al.35 to calculate the N 
application rate of fertilizer f (SN, MA, and CR) applied to crop cro for county/district i in the year y (Nratecro,f,y,i).

= ×
∑ ×

Nrate NrateZ
Namount

NrateZ Harea (6)
cro f y i cro f i

f y i

cro cro f i cro y i
, , , , ,2000,

, ,

, ,2000, , ,

where Nratecro,f,y,i is N application rate of fertilizer f (SN, MA, CR) applied to crop cro for county/district i in the 
year y. NrateZcro,f,2000,i is N application rate of fertilizer f (SN, MA, CR) applied to crop cro for county/district i in the 
year 2000 from Zhan et al.29. Namountf,y,i is N application amount of each county/district obtained from Eq. (5).  
NamountWf,y,i and Hareacro,y,g was obtained above.

Lastly, to minimize the uncertainties of crop-specific N application rate, we calibrated crop-specific N appli-
cation rate after the year 2003 using country-level N synthetic fertilizer consumption reported by the Fertilizer 
Use By Crop (FUBC)33 for the years 2006, 2007, 2010, 2014 and 2018. Thus, the above-derived crop-specific syn-
thetic N application rate (Nratecro,SN,y0,i) multiplied with the crop-specific harvested area (Hareacro,y0,i) was used 
to achieve crop-specific N application amount, and then synthetic N crop-specific amount of each crop group 
belongs to crop group cro2 was summed up by county/district i and corrected with the country-level N synthetic 
fertilizer consumption by crop group cro2 from the FUBC33. The calculation was described below:

Nrate Nrate
NconFUBC

Nrate Harea

if y y
if y y
if y y
if y y

if y y

2003 2006, 0 2006
2007 2008, 0 2007
2009 2012, 0 2010
2013 2016, 0 2014

2017, 0 2018 (7)

cro f y i cro f y i
cro SN y j

cro i cro SN y i cro y i
, , , , , ,

2, , 0,

, , , 0, , 0
= ×

∑ ×











≤ ≤ =
≤ ≤ =
≤ ≤ =
≤ ≤ =
≥ =

where NconFUBCcro2,SN,y0,j is SN fertilizer consumption from FUBC33 to the 11 crop groups in the year 2006, 
2007, 2010, 2014, 2018.

Finally, the county-level crop-specific N application rate (divided into SN, CR, and MA) summed up to 
generate the total N application rate and then was resampled into 5 arc-min resolution assuming that N appli-
cation rate of each grid in a county/district was equal to the N application rate of this county/district, thus the 
crop-specific N application rate in each grid (Nratecro,y,g) was obtained.

N fertilizer types.  The gridded percentage of different N fertilizer type inputs to total N application amount 
for the year 1961–2020 (FerRatiof,y,g) was integrated from country- and continent-scale annual fertilizer consump-
tion surveys provided by the IFASTAT21 and N application amount (Namountf,y,i) developed above. We sorted 
N fertilizers into 13 types, include anhydrous ammonia (AA), ammonium nitrate (AN), ammonium sulphate 

Data name Year Spatial resolution Reference

Harvested area for 175 crops average of 1997–2003 5 min by 5 min EARTHSTAT28

Harvested area for 175 crops 1961–2020 Country level FAOSTAT20

Gridded cropland area 1960–2017 5 min by 5 min HYDE3.231

Nitrogen application rate for 21 crop groups 2000 5 min by 5 min Zhan et al.29

Nitrogen application to cropland 1961–2014 5 min by 5 min Wang et al.24

Nitrogen application amount 2014–2020 Country level FAOSTAT20

Crop-specific nitrogen application amount 2006, 2007, 2010, 2014, 2018 Country or region FUBC33

Fertilizer inputs for different fertilizer types 1961, 1973–2020 Country or region IFASTAT21

National GDP 1961–2020 Country level Word Bank37

Population 1961–2020 Country level FAOSTAT20

Cropland area 1961–2020 Country level FAOSTAT20

No-tillage area of China 1980–2017 Province level CAMI43

No-tillage area by USA 1989–2008 State level CTIC44

No-tillage area for 75 countries 1989–2018 Country level FAOSTAT,EUROSTAT20,27

Harvested area of irrigated crops and rainfed crops 2005,2010 5 min by 5 min SPAM2005,SPAM201045,46

Field size 2015 1 km by 1 km Lesiv et al.47

Income level 1987–2018 Country level Word Bank37

Water erosion 2001,2013 5 min by 5 min Borrelli et al.48

Potential evapotranspiration and precipitation 1961–2020 0.5° by 0.5° CRU30

Table 2.  Main data used for developing this new N fertilization dataset.
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(AS), calcium ammonium nitrate (CAN), nitrogen solutions (NS), other N straight (ONS), Urea, ammonium 
phosphate (AP), N K compounds (NK), N P K compounds (NPK), other NP (ONP), crop residues (CR) and 
manure (MA).

Consumption of each synthetic fertilizer type was available from both the IFASTAT21 and the FAOSTAT20. 
However, about 5.87% and 59.3% of the values from the IFASTAT21 and the FAOSTAT20, respectively, was miss-
ing. Hence, we chose to apply fertilizer consumption data from the IFASTAT due to the lesser missing val-
ues. Consumption of SN fertilizers for 1962–1972 from the IFASTAT is missing for all countries and regions. 
Moreover, the data is also missing from countries that have experienced political disintegration, especially in the 
years following it. As for data from the FAOSTAT20, missing data spread all over the period 1961–2020, espe-
cially for the developing countries. The missing data from the IFASTAT21 was filled by the multiple data imputa-
tion method (e.g., “Amelia”) for time-series cross-section datasets proposed by King et al.36, which were used by 
Nishina et al.23 to fill the missing fertilizer consumption data from the FAOSTAT. Covariates (e.g., the national 
GDP (from the World Bank37), population (from the FAOSTAT20), and cropland area (from the FAOSTAT20)) 
were chosen to apply the “Amelia” algorithm for imputation of the missing values as Nishina et al.23. R package 
“Amelia” was used for statistical imputation and settings, which is ideal in handling national-based time-series 
and cross-sectional data with advanced statistical imputation protocol23. More details see Nishina et al.23.

Then, the calculation for the percentage of each N fertilizer type inputs to total N application amount can be 
sorted into two classifications. For crop residues and manure, the percentage can be directly obtained with the 
ratio of crop residue and manure inputs amount and total N application amount. For the remaining 11 synthetic 
fertilizers, the percentage was calculated through multiplying the consumption proportion of each synthetic 
fertilizer to the total synthetic N fertilizer from the IFASTAT by the proportion of synthetic fertilizer inputs to 
total N application amount obtained above.

The percentage of each fertilizer consumption can be calculated as following equations:

=











=

×
FerRatio

Ninputs

Ninputs
f CR MA

FerIFA

FerIFA
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f belongs to SN

,

(8)

f y i

f y i

total y i

f y m

total y m

SN y i

total y i

, ,

, ,

, ,

, ,

, ,

, ,

, ,

Crop name in this study Crop name in the EARTHSTAT Crop name in the FUBC

Rice rice Rice

Maize maize Maize

Wheat wheat Wheat

Barley barley

Other cereals
Sorghum sorghum

Millet millet

Rye rye

Sugarbeet sugarbeet
Sugar crops

Sugarcane sugarcane

Oil palm oilpalm Oil palm

Sunflower sunflower

Other oil cropsRapeseed rapeseed

Groundnut groundnut

Potato potato

Other cropsSweetpotato sweetpotato

Cassava cassava

Cotton cotton Cotton

Soybean soybean Soybean

Vegetables
artichoke,asparagus,cabbage,carrot,cauliflower,chilleetc,cucumberetc,eggplant,garlic,greenbean,greenbroadbean, 
greencorn,greenonion,greenpea,lettuce,melonetc,mushroom,okra,onion,pumpkinetc, 
spinach,stringbean,tomato,vegetablenes,watermelon

Vegetables and fruits

Fruits
apple,apricot,avocado,banana,berrynes,blueberry,carob,cashewapple,cherry,citrusnes,cranberry,currant, 
date,fig,fruitnes,gooseberry,grape,grapefruitetc,kiwi,lemonlime,mango,orange,papaya,peachetc,pear,persimmon, 
pineapple,plantain,plum,quince,rasberry,sourcherry,stonefruitnes,strawberry,tangetc,tropicalnes

Other crops

abaca,agave,almond,aniseetc,areca,bambara,bean,brazil,broadbean,buckwheat,canaryseed,cashew,castor,cerealnes, 
chestnut,chickpea,chicory,cinnamon,clove,cocoa,coconut,coffee,cowpea,fibrenes,flax,fonio,ginger,gums,hazelnut, 
hemp,hempseed,hop,jute,jutelikefiber,kapokfiber,kapokseed,karite,kolanut,lentil,linseed,lupin,mate,melonseed, 
mixedgrain,mustard,nutmeg,nutnes,oats,oilseednes,olive,pea,pepper,peppermint,pigeonpea,pimento,pistachio, 
poppy,pulsenes,pyrethrum,quinoa,ramie,rootnes,rubber,safflower,sesame,sisal,spicenes,sugarnes,taro,tea,tobacco, 
triticale,tung,vanilla,vetch,walnut,yam,yautia

Other crops

Table 3.  Crop Designations.
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where, FerRatiof,y,i is the percentage of fertilizer f inputs to total N application amount in the county/district i 
in the year y. Namountf,y,i, NamountSN,y,i, Namounttotal,y,i was generated above, which represents N application 
amount of fertilizer f (MA or CR), SN and all fertilizers for county/district i in the year y, respectively. FerIFAf,y,co 
and FerIFAtotal,y,co is the consumption amount of synthetic fertilizer f and total synthetic fertilizer in the country 
or region m in the year y from the IFASTAT21, respectively.

Lastly, the percentages of each fertilizer were resampled into 5 arc-min resolution to obtain the percentages 
of each fertilizer in each grid (FerRatiof,y,g).

N application placement.  The gridded percentage of different N fertilizer types applied with deep 
placement (or surface placement) inputs to total input applied to different crop (Placementcro,f,deep,y,g and 
Placementcro,f,surface,y,g) for the year 1961–2020 was quantified based on fertilizer type, tillage practice, and 
base-topdressing application ratio, as referred to Zhan et al.29. and can be calculated by the following equations.

=










=  
. × =

− =
Placement

f
NoTill f Other fetilizer

NoTill f CR MA

1 AA, AN
0 7
1 , (9)

cro f deep y g cro y g

cro y g

, , , , , ,

, ,

= −Placement Placement1 (10)cro f surface y g cro f deep y g, , , , , , , ,

where, Placementcro,f,deep,y,g and Placementcro,f,surface,y,g is the percentage of fertilizer f applied with deep placement 
and surface placement inputs to total inputs applied to crop cro in grid g in the year y, respectively. NoTillcro,y,g is 
non-tillage ratio for crop cro in grid g in the year y. 0.7 is base-topdressing application ratio from Nishina et al.23.

Anhydrous ammonia and N solutions, commonly injected, were placed deep or totally infiltrated into soils38. 
All manure and crop residues were assumed to be applied before sowing or transplanting, thus the incorporation 
of manure and crop residues was linearly correlated to the tillage fraction39. For the rest synthetic fertilizer, if it 
was applied as base fertilizers, the proportion of incorporation or deep application should be positively related 
to the fraction of non-tillage (zero tillage or direct drilling during planting) in high-income countries. Because 
in developed countries, the non-tillage was mainly achieved through mechanized seeding and fertilization prac-
tices40,41. However, when the synthetic fertilizer was applied during the top-dressing process if applicable, we 
assumed that broadcasting techniques were applied42. It is noteworthy that the gridded non-tillage fraction for 
each crop during the period of 1961–2020 (NoTillcro,y,g) was specially developed, including the obtain of national 
or sub-national non-tillage area and its downscaling to grid and crop.

We firstly calculated the national non-tillage fraction during the period of 1961–2020 with the regression 
model provided by Zhan et al.29, which fitted the relationship between the cropland area per capita of the 
rural population (i.e., a proxy of the spatial variation of labor availability for tillage activity) and country-level 
non-tillage fractions (46 countries from the FAOSTAT20 and EUROSTAT27 databases, as well as China 
(2000−2016)43 and the United States of America (1989−2008)44). National cropland area per capita of rural 
population for prediction can be obtained from the FAOSTAT20. Then the national non-tillage area can be calcu-
lated through multiplying the above-mentioned fraction and the cropland area from the HYDE3.231. Specially, 
data of non-tillage area by province (or state) for China (2000–2016)43 and the USA (1989–2008)44 were publicly 
available and can be used directly; for the rest year, the sub-national non-tillage area was obtained by downscal-
ing the above predicted national non-tillage area.

Then, the national non-tillage area was downscaled to grid and crop following the methods by Porwollik et al.41,  
with the gridded and country-scale datasets (including the harvested area of irrigated crops and rain-fed crops 
from the SPAM2005 and the SPAM201045,46 field size47, income (World Bank37), water erosion48, and aridity 
(calculated by potential evapotranspiration and precipitation from the CRU TS V4.0630)). Firstly, potential 
non-tillage area was allocated based on crop type, field size and local income. The potential non-tillage area was 
assumed that derived from the cropland of 11 rain-fed annual crops (Soybean, Wheat, Maize, Barley, Rapeseed, 
Sunflower, Sorghum, Cotton, Milled, Groundnut, Vegetables) in grid cells reporting dominant large field size in 
low-income countries and all field sizes in high-income countries49–51.

Secondly, a logit model combined four predictors (including crop mix, field size, water erosion, and aridity) 
was developed to determine the probability of non-tillage occurrence per grid cell as well as the spatial distri-
bution of country-level non-tillage area. Crop mix was defined as the ratio of the area sum of 11 non-tillage 
suitable crop types over the sum of total cropland area per grid cell, thus we assumed an increasing probability 
for non-tillage area occurrence in grid cells with an increasing cultivated area share of non-tillage suitable crop 
types. Farm size is highly positively correlated with the share of non-tillage area on arable land, with the coeffi-
cient of determination r2 = 0.66 (p < 0.001, slope = 0.116)41, thus non-tillage was thus assumed highly probable 
for cropland in grid cells with large fields (here serving as a spatial proxy for large farm size and mechaniza-
tion). Besides, non-tillage was considered to be suitable for arable production under arid conditions, due to 
less aeration, more stable pores, and soil aggregates compared to soils managed with conventional tillage50,51. 
Moreover, erosion levels as allocation criteria, non-tillage was regarded as suitable for crop production in areas 
with elevated erosion levels to protect the soil surface50,52–54. The probability of no-tillage in a grid cell (NTAg) 
was derived through the following equation:
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where n represents the input datasets of water erosion, aridity, crop mix (the ratio of sum of harvested area of 
no-tillage suitable crop types over the sum of total harvested area per grid cell), and field size (proxy for farm 
size), kn refers to the slope value, xmidn to the central points of each of the logit curves, and vxn to grid cell values 
of the referring input dataset. Values of kn and xmidn are directly derived from Porwollik et al.41.

Thirdly, the abovementioned projected national or sub-national non-tillage area was downscaled to all grid 
cells suitable for non-tillage in this country based on the gridded probability. According to the non-tillage prob-
ability, the grid cell in this country was sorted in decreasing order, which was further selected as non-tillage until 
the added potential non-tillage area (calculated as grid area multiplied by the probability) reached the projected 
country-level non-tillage area threshold. Lastly, crop-specific non-tillage area per grid (NoTillcro,y,g) was attained 
by disaggregating the non-tillage area of per grid cell according to the proportion of harvested area occupied by 
each crop in this grid.

Uncertainty analysis.  A Monte Carlo simulation method was utilized to estimate the uncertainty for N 
application rate. To generate a proper estimate interval, here we mainly accounted for the uncertainties related 
to the assumption that the crop-specific N application rate changed at the same ratio for all crop types across all 
the time during 1961–2020. Thus, to estimate the uncertainty around the mean changing ratio of N application 
rate by crop and by region, we derived standard deviation, coefficient variations (CV) of each crop group for  
24 regions or countries from 5-year (i.e. 2006, 2007, 2010, 2014, 2018) crop-specific fertilizer use reported by the 
Fertilizer Use By Crop (FUBC)33. Then, we run 1,000 iterations for each crop by randomly varying the annual 
change ratio by coefficient variations with normal distributions, so that the 95% prediction interval as well as 
standard deviation could be constructed. Undoubtedly, if there is a large inter-annual variation in N application 
rate for a particular crop in a region, the uncertainty associated with the estimated N application rate will be 
correspondingly high.

Data Records
The gridded N application data by crops, fertilizer, and placement from 1961 to 2020 and the gridded harvested 
area (1961–2020) are available at National Tibetan Plateau/Third Pole Environment Data Center55. The dataset 
extend from 180°E to 180°W longitude and 90°S to 90°N latitude at a resolution of 5 arc-min for the temporal 
period 1961–2020 in standard WGS84 coordinate system. The dataset is provided in Hierarchical Data Format 
(HDF5) format, which can be read by many tools (i.e., IDL, MATLAB).

The gridded N application data by crops, fertilizer, and placement are stored in the file “N_rate_{‘Crop 
name’}_1961–2020.h5”, while {‘Crop name’} represents each crop group listed in Table 4. The file contains 26 
records named by {‘Fertilizer type name’_‘Placement name’}, while {‘Fertilizer type name’_‘Placement name’} 
represents each fertilizer type with two kinds of fertilization placements listed in Table 4. In addition, to 

Fig. 2  Spatial pattern of crop-specific N application rate (kg N per hectare of harvested area) applied to 
cropland in the 1960s and 2010s.
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calculate the N application amount by crop, the gridded harvested area was summarized in the file “Harvested_
area_1961–2020.h5”, containing 21 crop groups named by {‘Crop name’}. The unit of N application rate was kg 
N per hectare of harvested area and unit of the harvested area was hectare per 5-arc-min grid cell.

Crop-specific N application.  Crop-specific N application in the 1960s (average from 1961 to 1970) and 
2010s (average from 2011 to 2020) were shown in Fig. 2. The average N application rate applied to cropland was 
44.6 kg N ha−1 yr−1 in the 1960s, mainly in Europe and USA. Average N application rate for maize (49.2 kg N ha−1 
yr−1), wheat (61.8 kg N ha−1 yr−1), vegetables and fruits (67.7 kg N ha−1 yr−1) were relatively higher than for other 
crops. In the 2010s, average N application rate increased to 100.9 kg N ha−1 yr−1, and the hotspots also shifted 
from Europe and the USA to China. The N application rate between 1961 and 2020 for rice, vegetables and fruits 
showed the highest growth rate, increasing by 237.6%, 175.6%, and 252.3%, respectively, compared to wheat 
(152.2%), maize (141.3%), other cereals (86.8%), and rest of crops (34.1%).

N fertilizer types.  The spatial pattern of the N application for each fertilizer was illustrated in Fig. 3. In 
the1960s, the N application rate of manure and crop residues was about 26.1 kg N ha−1 yr−1, and the hotspots 

Crop name Fertilizer type name Placement name

Barley, Cassava, Cotton, Fruits, Groundnut, Maize, Millet, Oilpalm, Potato, 
Rapeseed, Rye, Rice, Sorghum, Soybean, Sugarbeet, Sugarcane, Sunflower, 
Sweetpotato, Vegetables, Wheat, Other crops

AA, AN, AS, CAN, NS, ONS, Urea, AP, NK, 
NPK, ONP, CR, MA Surface, Deep

Table 4.  List of data record names in the HDF5 files. Note: AA, AN, AS, CAN, NS, ONS, AP, NK, NPK, ONP, 
CR, MA refers to anhydrous ammonia, ammonium nitrate, ammonium sulphate, calcium ammonium nitrate, 
nitrogen solutions, other N straight, ammonium phosphate, N K compounds, N P K compounds, other NP, crop 
residues and manure, respectively.

Fig. 3  Spatial pattern of N application rate for different fertilizers (kg N per hectare of harvested area) applied to 
cropland. Fertilizers include Urea, nitrate fertilizers (ammonium nitrate (AN) and calcium ammonium nitrate 
(CAN)), compound fertilizers (ammonium phosphate (AP), N K compounds (NK), N P K compounds (NPK), 
other NP (ONP)), AA&NS (anhydrous ammonia (AA) and N solutions (NS)), other synthetic fertilizers (other 
N straight (ONS) and ammonium sulphate (AS)) and MA&CR (manure (MA) and crop residues (CR)).
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were mainly in USA, Europe and south America. Hotspots of synthetic fertilizers varied depending on the ferti-
lizer types. For urea, nitrate fertilizers and compound fertilizers, the hotspots were mainly distributed in Eastern 
Europe, while for other synthetic fertilizers were mainly in Southeastern China and Middle Europe. Anhydrous 
ammonia and N solutions were mainly applied in Middle USA. Both the N application rate and spatial pattern of 
different N-consumed fertilizers changed significantly after five decades, e.g., the contributions of synthetic fer-
tilizers grew from 41.5% to 64.4%. Urea as the most important synthetic-N fertilizers, with an average N applica-
tion rate more than 100 kg N ha−1 yr−1, shared 31.0% of global N fertilizer consumption in 2010s and were mainly 
distributed in China, India and Pakistan. The hotspots of compound fertilizers and manure and crop residues also 
expanded to China, while the hotspots of nitrate fertilizers, other synthetic fertilizers, anhydrous ammonia and 
N solutions didn’t change much.

N application placement.  Crop-specific N application rate by deep placement in the 1960s and 2010s were 
displayed in Fig. 4. The average N application rate applied by deep placement enhanced from 28.0 kg N ha−1 yr−1 
in the 1960s to 41.3 kg N ha−1 yr−1 in the 2010s, while the hotspots were mainly in southern USA, southeast of 

Fig. 4  Spatial pattern of crop-specific N application rate (kg N per hectare of harvested area) applied by deep 
placement in the 1960s and 2010s.

Fig. 5  Uncertainties of global N application rate (kg N ha−1) for 8 crop groups. The grey color area in each panel 
shows the 95% confidence interval of N application rate estimates by Monte Carlo simulations, whereas the 
average value is presented by a black line.
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South America, northwestern Europe and Australia during 1961–2020. N application rate by deep placement for 
most of crops has increased (64.7% for wheat, 64.4% for rice, 68.9% for maize, 46.9% for other cereals, 63.6% for 
vegetables and fruits and 132.9% for oil crops) during 1961–2020.

Fig. 6  Spatial pattern of uncertainties related to N application rate (kg N ha−1) for 8 crop groups in 2010s.

Fig. 7  Relative differences between crop-specific N application rate in this dataset with data from the first to 
fifth FUBC report for the year during 1978–2001. The box plots show the range of relative differences, whereas 
numbers besides the box plots represents sample size of country-year.
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Technical Validation
To check the spatiotemporal consistency and plausibility between the newly developed global crop-specific N 
fertilization dataset and previous datasets, we did a comprehensive comparison analysis, including the uncer-
tainty analysis, direct validation analysis against various available data, etc.

Fig. 8  A comparison of N application rate between data reported by the United States Department of 
Agriculture (USDA) and this dataset.

Fig. 9  A comparison of N application rate between data reported by Cost and Income of Chinese Farm Produce 
(NDRCC) and this dataset.
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Firstly, we utilized Monte Carlo simulations to quantify the uncertainties of crop-specific N application rate 
derived from the assumption, that the N application rate changed at the same ratio for all crops all the time. 

Fig. 10  Comparison of country-level consumption per harvested area (kg N ha−1) of different fertilizer types 
during 1962–1972. Panel (a–c) represent comparison per ha of harvested area of urea, ammonium nitrate and 
ammonium sulphate filled by Amelia approach against official data from the FAOSTAT20, respectively. Panel 
(d) represents comparisons of sum of fertilizer consumption per ha of harvested area filled by Amelia approach 
against total fertilizer consumption from the IFASTAT21. Each point represents the fertilizer consumption of a 
specific country in a particular year.

Fig. 11  Comparison for the percentage of deep placement in China during 1980–2017 between this study and 
Adalibieke et al.42.
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The 95% confidence intervals of crop-specific N application rate by crop, regions, and years can be gained, and 
are shown in Figs. 5, 6. Globally, uncertainties of wheat, rice, maize, sugar crops and vegetables&fruits at 95% 
confidence interval accounted for ±27.9%, ±31.5%, ±24.4%, ±25.1%, ±35.0% of average N application rate 
during 1961–2020, respectively (Fig. 5). Uncertainties of other cereals, oil crops, and rest of crops were larger 
(±42.0%, ±50.8% and ±80.0%), however, the three together only accounting for 34.9% of the total N applica-
tion amount (Fig. 5). In addition, the spatial patterns of uncertainties related to the crop-specific N application 
rate were also generated (Fig. 6). Spatial heterogeneity of uncertainties was striking, regardless of crop types. 
For the vast majority of regions, the standard deviation (SD) of crop-specific N application rate were within 
acceptable limits, but in specific regions and for specific crops, the SD of the N application rate exceeded 20 kg N 
ha−1 yr−1 (Fig. 6). However, it is worth noting that N application rate tended to be higher in these regions and 
crops, such as China, Russia, and Australia for wheat; China and South Asia for rice; and the USA, China, and 
South America for maize. As a result, the coefficient of variation (CV) for these regions is relatively low, usually 
below 20%, despite the high standard deviation. Nevertheless, regions with both high SD and high CV, such as 
vegetables and fruits in USA, Russia and South America; maize in India and Southwest America; sugar crops in 
China, may have relatively large uncertainties, and caution should be exercised when using the N application 
rate of these crop groups in these regions. Despite the large uncertainties in certain regions and crop groups, 
it is important to note that the regions with large uncertainties (>20 kg N ha−1) and large CV (>25%) only 
contributed 8.9% of the total N application amount due to limited crop cultivation in these regions. This means 
that although we made very ambitious assumptions, the result looks reasonable due to the relatively low overall 
uncertainty.

Crop-specific N application rate from 2003 onwards was adjusted to match the crop-specific N fertilizer use 
from the FUBC33 report, which likely reduced uncertainties after 2000. As for the year before 2000, country-level 
fertilizer use data from the first to fifth FUBC report for the years 1978–2001 were extracted to validate the data. 
To determine the differences in the N application rate from this dataset with respect to the FUBC33 report, we 
calculated the country-wise relative difference Dif (%) as equation below:
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Where Nratecro,y,j is N application rate of crop cro in the country j in the year y. Nrate_FUBCcro,y,j is corresponding 
N application rate from FUBC33.

The mean and SD for Dif of 8 crops groups and 9 countries or regions were presented here (Fig. 7). In most 
of the regions except for South Asia, the mean Dif between our estimates and the FUBC report was contained in 
the range of ±50%. Large values of the mean Dif were observed for some crops, such as vegetables and fruits in 
China (Dif = 50.4%), other crops in Canada (Dif = 70.9%), sugar crops in Africa (Dif = 53.0%), rice in Europe 
(Dif = −63.0%). N application rate for South Asia in this study might be underestimated due to most of the 
mean Dif for 8 crop groups lower than 0.

Finally, we evaluated the reasonability of our results on a regional scale, with the historical N application sta-
tistics of USA and China from the United States Department of Agriculture (USDA)56 and the Cost and Income 
of Chinese Farm Produce (NDRCC 2003, 202257,58), respectively. The N application rate for wheat in this study 
was relatively close to the USDA record (Fig. 8). However, for the USA, the N application rate for maize was 
32.8% lower than the USDA record during 1964–2018, whereas those for cotton and soybean were 24.1% and 
35.3% higher during 1964–2000, respectively. For China, our estimates for wheat, rice, maize, and potatoes are 
generally in agreement with the NDRCC record, with differences within the range of ±20% (Fig. 9). The esti-
mated N application rate for vegetables and fruits were close to the records from the NDRCC before the year 
2000, but after that, it was significantly lower (−13.8% and −36.4%). In general, the narrow differences between 
this study and regional statistic reflects that our crop-specific N application rate is relatively reasonable in regions.

In addition, we verified the reliability of the Amelia methods in the imputation of missing data by using 
national N fertilizer use by different types from the FAOSTAT20. Though, there were missing data from the 
FAOSTAT20, we still found 858 records of 69 countries during 1962–1972 overlapped the data filled by the 
Amelia approach. We directly compared the consumption of urea, ammonium nitrate and ammonium sulphate 
filled by Amelia method with those records from the FAOSTAT20. The scatter plots showed that the consump-
tions of these three N fertilizers per harvested area (kg N ha−1) were relatively close to the FAOSTAT20 (Fig. 10). 
However, there are also some estimates that are not accurate, such as urea for New Zealand, ammonium nitrate 
for Germany, Italy and Norway. Although the consumption of different N fertilizer types is missing for a few 
years from the IFASTAT21, the IFASTAT21 provides the total N fertilizer consumption amount for these years. 
Thus, we also calculated the summed-up N fertilizer consumption rate of different N fertilizer types filled by 
the Amelia methods and directly compared it with the IFASTAT21. It was confirmed that the total N fertilizer 
consumption rate filled by Amelia method in this study was very close to that from the IFASTAT21, except for 
Norway and Nepal.

Lastly, although the data about fertilization placement was scarce, the comparison for regional scale  
(i.e., China) demonstrated that the values obtained by our estimation methods were consistent with that obtained 
by Adalibieke et al.42 (Fig. 11). It was noteworthy that the temporal trends about the percentage of N fertilization 
with the deep placement were close between these two studies, except in the year after 2000. Possible explanation 
is that the calculation of fertilization placement related to tillage fraction and fertilizer type in this study ignored 
some specific issues (e.g., the implementation of “Agricultural Cost-saving and Efficiency-increasing Program”, 
which encouraged the implement of deep fertilization machine to enhance fertilizer use efficiency and save 
agricultural cost for field crops), while the survey data can reflect more about the reality.
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Overall, despite the inevitable uncertainties in our dataset, the analysis indicated that our data was aligned 
reasonably well with other existing multiple data sources or estimates provided by previous studies (including 
the FUBC33 report, USDA56, NDRCC57,58, FAOSTAT20 and so on). Needless to say, uncertainties related to this data-
set can be easily reduced in the future as new underlying datasets become available or existing datasets are updated.

Usage Notes
Our dataset provides a gridded estimate of the global crop-specific N application by fertilizer types and place-
ments during the period of 1961–2020. Moreover, N application amount of each crop groups, NH4

+ and NO3
− 

application can also be obtained from this dataset. For example, N application amount could be calculated by 
N application rate multiplied by harvested area. NH4

+ and NO3
− application in synthetic N fertilizer could be 

calculated by N application of each fertilizer multiplied by composition of N types (i.e., NH4
+ or NO3

−).
However, there were several limitations that users should be aware when using this dataset. First, the his-

torical cropland spatial and temporal distribution patterns provided by the HYDE3.231 are inconsistent with 
the one from satellite-derived land use (e.g. China and India59,60) or national census (e.g. USA61) at regional 
scale. Therefore, the downscaling of crop-specific harvested area from cropland area might be biased, so did 
the calculation of the N application amount. Second, no significant interannual difference was assumed to the 
relative proportion of N application rate by each crop. The crop-specific N application rate was determined by 
the spatial patterns of N application amount over the study period and the relative proportion among crops, 
which is against the reality and survey data from FUBC33. We acknowledged the existence of this assumption 
and assessed the uncertainty quantitatively, however, we believe that uncertainty associated with this assumption 
will be reduced as new relevant data available. Third, this study aimed to provide a dataset about N fertiliza-
tion practices by crop, however, we cannot obtain the data for the proportion of different types of N fertilizers 
applied by crop for such a long-term period from the current statistic data. Fourth, due to the lack of mechanical 
sowing and fertilization data, we assumed that fertilizers in non-tillage regions with high-income were deeply 
applied through fertilizer spreaders. While in reality, mechanical sowing and fertilization is more achievable 
than the conservation tillage (i.e., non-tillage), which means that cropland with tillage practice may be equipped 
with fertilizer spreaders and thus the percentages of N fertilization with deep placement are underestimated40.  
In addition, in our study, the non-tillage area was downscaled by crop type and the relationship between field 
size and non-tillage practices adoption, whereas the temporal coverage of field size was only available in the 
year 2015, assuming it constant during 1961–202041. Thus, the non-tillage area in our study could be under-
estimated, since the field size has been increasingly associated with the economic growth and mechanization 
level62. Furthermore, the mechanical fertilization with deep placement in this study was also potentially under-
estimated. Furthermore, based on the analysis of uncertainties, the use of the N application rate for other cere-
als, oil crops, and rest of crops should be cautious, as well as the N application rate before the year 2000, the 
consumption of urea for New Zealand, and ammonium nitrate for Germany, Italy, and Norway. Lastly, although 
not quantified in this paper, we must acknowledge that other uncertainties arise from the use of multiple data 
sources and methodological choices, which can be considered in future studies.

Nevertheless, our study extended the crop-specific N fertilization for a long period of time and also provided 
a comprehensive dataset about N fertilization including N application rate, N fertilizer types and N fertilization 
placement simultaneously at uniform spatiotemporal resolution. In addition, we revealed a uniform approach 
using public and available datasets and methodologies to reconstruct N fertilization dataset over a relative long 
period of time. Such dataset can also be easily further updated when new underlying datasets and the update of 
existing datasets become available in the future.

Future directions of this study could focus on the conducting of finer scale and crop-specific surveys and 
reporting data on agricultural N fertilization practices. For example, the proportions of N fertilizers applied 
with different types varied by crops and geospatial distribution. The current survey data on different types of N 
fertilizer consumption from the IFASTAT21 and FAOSTAT20 are available at country-level and without dividing 
by detailed crop type. In comparison, the IFASTAT21 provided years of country-level N consumption data by 
crop types but not by fertilizer types. Therefore, continuous survey data of crop-specific N fertilizer consump-
tion with different types at sub-national scales are necessary and critical for further improvement of our dataset. 
Moreover, application frequency and application timing are also crucial parts of agricultural N fertilization 
practices, suggesting that including the development of fertilizer application frequency and timing datasets 
could also be beneficial to improve our dataset. Last but not least, we can take advantage of satellite data and use 
machine learning and/or other comprehensive data fusion methods to improve the accuracy and precision of 
agricultural N fertilization practices63.

Code availability
Codes used in MATLAB 2020a and RStudio to deal with the dataset and plot the figures are available at available 
at National Tibetan Plateau/Third Pole Environment Data Center55.
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