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Unveiling the role of Mfsd2a and LPC-DHA in kidney repair
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Chronic kidney disease and its subsequent progres-
sion to kidney failure has become a growing global
health concern, making it one of the leading causes of
disease burden worldwide (1). When the kidneys face
insults such as surgery or viral infections, the restor-
ative capacity of renal epithelial cells, particularly in the
proximal tubules, is put to the test. Acute-on-chronic
kidney disease often leads to the failure of epithelial
dedifferentiation and redifferentiation, resulting in
kidney fibrosis and the eventual need for renal
replacement therapy (Fig. 1) (2). Therefore, gaining a
comprehensive understanding of the repair processes
involved in kidney injury is crucial for maintaining
kidney health.

Recent studies have shed light on the role of meta-
bolic dysregulation in kidney repair. Metabolic pro-
cesses, such as the tricarboxylic acid cycle and lipid
remodeling, have emerged as critical factors in deter-
mining cell fate decisions during injury and repair (3).
Metabolic alterations, including changes in phospho-
lipid composition, have been identified as early hall-
marks of kidney damage associated with conditions like
diabetes (4–6). In this issue of the Journal of Lipid Research,
Loke et al. explored the pivotal role of lipid metabolism
and remodeling in kidney repair following acute kid-
ney injury (AKI).

The study focused on investigating the function of the
Mfsd2a transporter in the kidney. Previously known for
its role in the blood-brain barrier and blood-retinal
barrier, Mfsd2a acts as the primary transporter for
lysophosphatidylcholine (LPC) uptake, with a prefer-
ence for the omega-3 fatty acid DHA (7). Disruption of
Mfsd2a has been linked to abnormal brain development
and neurological disorders (8–10). However, its function
in other tissues, particularly in healthy and disease states,
remained unclear. Loke et al. discovered thatMfsd2a was
exclusively expressed in the S3 segment of the renal
proximal tubule, which is highly susceptible to AKI. By
employing an activity probe called LPC-LightOx, the
researchers confirmed that Mfsd2a facilitated the
transport of blood-derived LPC from the basolateral
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membranes of the S3 segment into the renal epithelium.
To elucidate the role of Mfsd2a in kidney repair, the
researchers exposed both WT and Mfsd2a hap-
loinsufficient (HET) mice to ischemia-reperfusion
injury (IRI) to induce AKI. While both groups initially
experienced similar levels of kidney failure, WT mice
demonstrated prompt recovery of kidney function in
the days following IRI, whereas HET mice displayed
impaired urinary concentration ability and severe renal
injury at day 10 post-IRI. These findings underscored the
critical role of Mfsd2a in kidney repair after AKI. The
investigators then sought to uncover the underlying
mechanism of Mfsd2a′s contribution to kidney repair.
Membrane integrity and composition are vital for
cellular functionality, and cellular differentiation and
proliferation necessitate rapid replenishment of the
membrane lipid pool. Considering the role of Mfsd2a as
a transporter of an essential phospholipid involved in
cellular membranes, the authors hypothesized that
Mfsd2a contributes to phospholipid homeostasis during
the recovery process. Lipidomic analysis revealed alter-
ations in lipid composition in HET mice at day 10 post-
IRI, particularly a reduction in the total DHA pool and
DHA-containing phospholipids. This deficiency in DHA
may explain the impaired kidney repair observed in
Mfsd2a haploinsufficiency. To validate their hypothesis,
the researchers supplementedHETmicewith LPC-DHA
after injury induction, resulting in significant improve-
ments in renal function, histopathological markers of
kidney injury, and reversal of lipidomic changes.

The study by Loke et al. unveils a critical mechanism
whereby phospholipid transport by Mfsd2a into renal
epithelial cells plays a crucial role in brush border re-
covery following AKI. Proper homeostasis of intracel-
lular phospholipids, facilitated by Mfsd2a or LPC-DHA
supplementation, enables the S3 epithelium to restore
its brush border and supports epithelial proliferation.
In addition, the study highlights the metabolic aspects
of kidney repair. The high metabolic demand of the
proximal tubule S3 segment, coupled with the ATP
depletion caused by IRI, necessitates an energy-
J. Lipid Res. (2023) 64(9) 100422 1
chemistry and Molecular Biology.
enses/by/4.0/).

https://doi.org/10.1016/j.jlr.2023.100422

Delta:1_given name
Delta:1_surname
mailto:a.j.rabelink@lumc.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlr.2023.100422&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jlr.2023.100422


Fig. 1. The role of Mfsd2a in proximal tubule repair upon acute-on-chronic kidney disease. The problem: The burden of renal
replacement therapy needed after acute-on-chronic kidney disease is a global problem affecting millions of people. The biology:
Loke et al. identified Mfsd2a as crucial transporter during epithelial repair. Uptake of blood-derived LPC-DHA through Mfsd2a
allows energy-conservative replenishment of the phospholipid pool through the Lands’ cycle. Furthermore, it provides a building
block for cellular membranes and the epithelial brush border. Free fatty acids released in the cycle might aid in fueling the
tricarboxylic acid cycle, restoring the metabolic balance in the injured proximal tubular cells.
conserving cellular repair strategy. Phospholipids not
only rebuild the epithelial brush border but also pro-
vide the building blocks for the proliferation of new
epithelial cells (11). The remodeling of phospholipids
through the Lands' cycle may also fuel the tricarboxylic
acid cycle, contributing to the metabolic regulation of
recovering proximal tubules (Fig. 1).

The newly uncovered role of Mfsd2a and LPC-DHA
in renal recovery holds significant potential for clinical
implications. Considering that acute-on-chronic disease
and subsequent tubular failure are major contributors
to the need for renal replacement therapy, LPC-DHA
supplementation following an acute event, such as
surgery or viral infection, could enhance the intrinsic
restorative capacity of the vulnerable proximal tubule
S3 segment. Moreover, LPC-DHA supplementation
could prove beneficial in kidney transplantation set-
tings. Pretransplantation supplementation of the donor
kidney with LPC-DHA during organ perfusion could
potentially improve the function of the donor organ,
leading to improved transplantation outcomes.

In conclusion, this study provides novel insights into
the crucial role of blood-derived phospholipid uptake
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by the proximal tubule S3 segment in renal recovery
following AKI. The energy-efficient manner of mem-
brane replenishment in the metabolically challenged S3
segment, supporting redifferentiation and prolifera-
tion, offers a potential explanation for the indispens-
able role of Mfsd2a. These findings open new avenues
for therapeutic strategies aimed at improving kidney
repair and ultimately enhancing renal health.
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