
PyMC: a modern, and comprehensive
probabilistic programming framework
in Python
Oriol Abril-Pla1, Virgile Andreani2,3, Colin Carroll4, Larry Dong5,6,
Christopher J. Fonnesbeck7, Maxim Kochurov8, Ravin Kumar9,
Junpeng Lao10, Christian C. Luhmann11,12, Osvaldo A. Martin13,
Michael Osthege14, Ricardo Vieira8, Thomas Wiecki8 and
Robert Zinkov15

1 ArviZ-Devs, Barcelona, Spain
2 Biomedical Engineering Department, Boston University, Boston, United States of America
3 Biological Design Center, Boston University, Boston, United States of America
4 Google, Cambridge, MA, United States of America
5 Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
6 Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada
7 Baseball Operations Research and Development, Philadelphia Phillies, Philadelphia,
United States of America

8 PyMC Labs, Berlin, Germany
9 Google, Mountain View, CA, United States of America
10 Google, Zürich, Switzerland
11 Department of Psychology, Stony Brook University, Stony Brook, United States of America
12 Institute for Advanced Computational Science, Stony Brook University, Stony Brook NY,

United States of America
13 IMASL-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
14 Forschungszentrum Jülich GmbH, Jülich, Germany
15 Oxford University, Oxford, United Kingdom

ABSTRACT
PyMC is a probabilistic programming library for Python that provides tools for
constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is
close to the natural syntax statisticians use to describe models. PyMC leverages the
symbolic computation library PyTensor, allowing it to be compiled into a variety of
computational backends, such as C, JAX, and Numba, which in turn offer access to
different computational architectures including CPU, GPU, and TPU. Being a
general modeling framework, PyMC supports a variety of models including
generalized hierarchical linear regression and classification, time series, ordinary
differential equations (ODEs), and non-parametric models such as Gaussian
processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples
spanning a range of common statistical models. Additionally, we discuss the positive
role of PyMC in the development of the open-source ecosystem for probabilistic
programming.

Subjects Data Science, Scientific Computing and Simulation, Programming Languages
Keywords Bayesian statistics, Probabilistic programming, Python, Markov chain Monte Carlo,
Statistical modeling

How to cite this article Abril-Pla O, Andreani V, Carroll C, Dong L, Fonnesbeck CJ, Kochurov M, Kumar R, Lao J, Luhmann CC, Martin
OA, Osthege M, Vieira R, Wiecki T, Zinkov R. 2023. PyMC: a modern, and comprehensive probabilistic programming framework in Python.
PeerJ Comput. Sci. 9:e1516 DOI 10.7717/peerj-cs.1516

Submitted 2 June 2023
Accepted 13 July 2023
Published 1 September 2023

Corresponding authors
Christopher J. Fonnesbeck,
fonnesbeck@gmail.com
Thomas Wiecki,
thomas.wiecki@pymc-labs.com

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.1516

Copyright
2023 Abril-Pla et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1516
mailto:fonnesbeck@�gmail.�com
mailto:thomas.�wiecki@�pymc-labs.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1516
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
Probabilistic programming languages (PPLs) are general-purpose programming languages
or libraries with built-in tools for Bayesian model specification and inference, allowing
practitioners to focus on the creation of models rather than on computational details
(Rainforth, 2017). PPLs have dramatically changed Bayesian modeling, enabling
practitioners to perform analyses of increasing complexity while simultaneously lowering
barriers to entry. Additionally, PPLs facilitate an iterative modeling process that is now
more relevant than ever (Gelman et al., 2020; Martin, Kumar & Lao, 2021).

Since the early 2000s, the PyMC project has provided scientists with an open-source
PPL in Python (Salvatier, Wiecki & Fonnesbeck, 2016). The first release of PyMC version
2.0 in January 2009 introduced a general implementation of the Metropolis-Hastings
sampler (Metropolis et al., 1953; Hastings, 1970), accelerated by probability distributions
implemented in Fortran. In 2016 a major rewrite of PyMC introduced gradient-based
sampling algorithms, notably Hamiltonian Monte Carlo (HMC) and the No-U-Turn-
Sampler (NUTS) algorithm (Hoffman & Gelman, 2014) that dramatically improved the
speed and robustness of model fitting. This was facilitated by leveraging Theano (The
Theano Development Team et al., 2016), a numerical computation library widely used in
deep learning at the time, whose automatic differentiation capabilities enabled these
gradient-based algorithms.

The announcement of the discontinuation of Theano in 2017 prompted the PyMC
project to adopt a new computational backend strategy. After considering other deep
learning libraries, most notably TensorFlow and TensorFlow probability, the Theano
project was forked into the non-affiliated Aesara project (Bastien et al., 2022a), and later
the PyMC team forked Aesara once again into PyTensor (Bastien et al., 2022b). The focus
of PyTensor is no longer to support deep learning, but instead to build, optimize, and
compile symbolic computational graphs to serve the needs of PyMC.

PyMC’s explicit use of a computational graph also serves to distinguish it from systems
like Pyro which implement inference using effect handlers and Stan where the program is
compiled into a log density function in C++ with relatively less introspection of the
program’s AST representation before doing so.

PyMC has played a significant role as an incubator for other libraries, nurturing and
facilitating the development of specialized tools and functionalities. For example, ArviZ
(Kumar et al., 2019) has emerged as a dedicated package for exploratory analysis of
Bayesian models, providing a library-agnostic solution sampling diagnostics, model
criticism, model comparison, and result preparation. Additionally, the handling of
generalized linear models (GLMs) has found a new home in the Bambi library (Capretto
et al., 2022), which has been able to focus on refining and expanding this functionality. For
instance, Bambi also supports models such as splines, Gaussian processes, and
distributional models. PyMC’s collaborative ecosystem has thus enabled the evolution and
diversification of tools, allowing each library to excel in its respective domain while
collectively advancing the field of Bayesian modeling.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 2/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

The remainder of this article will focus primarily on the practical application of PyMC
to building and fitting probabilistic models. We start with an API overview and then
demonstrate the usage of PyMC through examples. We invited interested readers to visit
https://www.pymc.io to learn more about PyMC through its extensive documentation and
additional resources listed there. For those interested in implementation details we suggest
this video https://www.youtube.com/watch?v=0B3xbrGHPx0.

We put special emphasis on how features of PyMC can help perform a modern Bayesian
workflow. Section High-level architecture of PyMC briefly discusses PyMC’s main
modules and the features they provide, and Section PyTensor discusses the most relevant
aspects of PyTensor for PyMC users. Finally, we conclude with Section Discussion
discussing the future of the PyMC package.

The version of PyMC used for this article is 5.5.0 All analyses are supported by extensive
documentation in the form of interactive Jupyter notebooks (Kluyver et al., 2016) available
in a GitHub repository (https://github.com/pymc-devs/paper_v5), enabling readers to re-
run, modify, and otherwise experiment with the models described here on their own
machines. This repository also includes instructions on how to set up an environment with
all the dependencies required to replicate the contents of this article.

API OVERVIEW
Random variables (RVs)—variables whose values are described by a probability
distribution—serve as the building blocks of a PPL. In PyMC, probability distributions are
PyTensor RandomVariable instances that are created from subclasses of the
Distribution class. These subclasses define the specific type of distribution, such as a
normal (Normal) distribution or a binomial distribution (Binomial), and specify the
parameters of the distribution as arguments, such as the mean and standard deviation for a
normal distribution. The suite of probability distributions is organized into seven groups:
continuous, discrete, multivariate, mixture, time series, censored1, simulator, and symbolic
distributions.

In general, users work with PyMC random variables as part of a larger model that
describes how variables are related to each other and to the data. To this end, PyMC’s
Model class is a container for all of the variables and other attributes that define a
probabilistic model. The Model is a context manager that gathers the collection of
interrelated observed and unobserved random variables as they are specified by the user. In
this sense, an RV can be understood as the symbolic expression describing how a variable
in the model is the result of mathematical operations on probability distributions. For
example, an RVmight be the distribution Normal(0, 1), or an expression such as the sum
Normal(0, 1) + Uniform(2, 3).

Each random variable in a model can be either observed or unobserved, depending on
whether it is associated with available data or is latent. An unobserved RV can be specified
in PyMC by a name (string) and zero or more arguments, corresponding to the parameters
of the statistical distribution. For example, a normal prior can be defined in a Model
context like this:

1 This allows to transform regular PyMC
distributions into censored ones.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 3/35

https://www.pymc.io
https://www.youtube.com/watch?v=0B3xbrGHPx0
https://github.com/pymc-devs/paper_v5
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

with pm.Model():

x = pm.Normal("x", mu=0, sigma=1)

Here, the name “x” is the same as the assigned Python variable, but it need not be.
Observed RVs are defined similarly, but with an additional observed keyword

argument to which the data is passed:

with pm.Model():

obs = pm.Normal("x", mu=0, sigma=1, observed=[-1, 0, 0, 1])

In this example, the list passed to the observed argument represents four samples of a
one-dimensional random variable. The observed argument supports lists, NumPy arrays,
Pandas Series, DataFrames, and PyTensor arrays. When used in combination with
variational inference, observed supports minibatching using pm.Minibatch.

To describe a parent-child relationship within a model, random variables can be used as
parameters of other random variables. For example, if we wish to assign a normal prior and
an exponential prior to the mean and standard deviation, respectively, of a normal
distribution:

with pm.Model():

mu = pm.Normal("mu", mu=0, sigma=1)

sigma = pm.Exponential("sigma", 1)

x = pm.Normal("x", mu=mu, sigma=sigma)

Random variables can be transformed and combined with other random variables
algebraically using built-in operators and a suite of functions to yield deterministic nodes
in the model:

with pm.Model():

x = pm.Normal("x", mu=0, sigma=1)

y = pm.Gamma("y", alpha=1, beta=1)

plus_2 = x + 2

summed = x + y

squared = x∗∗2
sined = pm.math.sin(x)

Though these transformations work seamlessly, the resulting values are by default
treated as intermediate and are not stored when model fitting. To store them, the pm.
Deterministic wrapper should be applied, which gives the deterministic node a name
and a value.

with pm.Model():

x = pm.Normal("x", mu=0, sigma=1)

plus_2 = pm.Deterministic("x plus 2", x + 2)

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 4/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Notice the name string passed to any variable need not be the same as the assignment
target.

Models often require batches of RVs that have the same prior probability distribution.
Users may be tempted to copy and paste an RV, or use a for iterator, but this leads to large
and inefficient computation graphs:

with pm.Model():

not recommended:
x = [pm.Normal(f"x_{i}", mu=0, sigma=1) for i inin range

(3)]

We instead recommend building a vector-valued RV, e.g.,:

with pm.Model() as model:

x = pm.Normal("x", mu=0, sigma=1, shape=3) # length-3
array

x is now an array of length 3, representing three independent univariate normal
variables2. Additionally, it is possible to give different parameters to each of these Normal
RVs by passing arrays of the appropriate size to the arguments mu and sigma. Usually,
dimensions in probabilistic programs relate to real-world variables. So instead, an even
better approach is to use the coordinates feature which allows the naming of dimensions:

coords = {"city": ["Santiago", "Mumbai", "Tokyo"]}
with pm.Model(coords=coords) as model:

recommended:
x = pm.Normal("x", mu=0, sigma=1, dims="city")

Here, we parameterize x using dims instead of shape. The Model associates the first
dimension of x with the dimension named “city” in the coords argument, thereby
creating the RV again as length 3 array. This information will also be associated with the
output from model fitting, which simplifies working with the results.

Operations, including indexing, can be applied to vector-valued RVs in the same way
one would operate on a NumPy array. Selection based on the dims and coords is not yet
implemented.

with model:

y = x[0] * x[1] # indexing is supported
x.dot(x.T) # linear algebra is supported
x.sel(city="Mumbai") # not yet supported

For each RV, PyMC automatically provides a sensible distribution-specific default
initial value when starting the MCMC. These are usually means or medians, but can be

2 Not to be confused with a multivariate
normal of size 3, which would be created
with pm.MvNormal.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 5/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

customized via the initval parameter. This is sometimes helpful, for example when
trying to identify problems with a model specification or initialization.

with pm.Model() as model:

x = pm.Normal("x", mu=0, sigma=1)

y = pm.Normal("y", mu=0, sigma=1, initval=-3)

To get initial values for all RVs:
model.initial_point()

{'x': array(0.), 'y': array(-3.)}

A PyMC Model has references to all random variables (RVs) defined within it and
provides access to the model log-probability and its gradients. Consider the following
model:

rng = np.random.default_rng (seed=0)

x = np.linspace(-1, 1)

y = rng.normal(x∗3, 1)

with pm.Model() as model:

a = pm.Normal("a", mu=0, sigma=1)

b = pm.HalfNormal("b", sigma=1)

mu = pm.Deterministic("mu", a + b∗x)
obs = pm.Normal("obs", mu=mu, sigma=1, observed=y)

The Model retains collections of different subsets of variables as properties. To get all
RVs, except for the deterministic ones:

model.basic_RVs

[a ~ Normal(0, 1), b ~ HalfNormal(0, 1), obs ~ Normal(mu, 1)]

To get all unobserved RVs, except for the deterministic ones:

model.free_RVs

[a ~ Normal(0, 1), b ~ HalfNormal(0, 1)]

To get all observed RVs:

model.observed_RVs

[obs ~ Normal(mu, 1)]

The joint log probability of the unobserved and observed variables is the sum of the log
probability of each variable, taking dependencies into account:

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 6/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

logpða;b;obsÞ¼logpðaÞþlogpðbÞþlogpðobsja;bÞ¼

¼�a2

2
�logð2ÞþlogðpÞ

2
logp for a�Normalð0;1Þ

�b2

2
þlogð2Þ�logðpÞ

2
logp for b�HalfNormalð1Þ

þ
X
i

�ðyi�ðaþbxiÞÞ2
2

�logð2ÞþlogðpÞ
2

� �
logp forobsi�Normalðmu;1Þ

PyMC automatically transforms bounded variables into unbounded ones to facilitate
efficient sampling. Transformations are registered to classes from which distributions can
inherit. For example, the HalfNormal distribution inherits from the
PositiveContinuous class which has a logarithm transformation registered to it. Here, a
logarithm transformation can be applied to the half-normal b with Rþ support, creating
the variable b log ¼ logðbÞ which has support in all of R. The transformed log
probability is therefore:

logpða; b log ; obsÞ ¼ logpða; b; obsÞ þ log
dexpðb log Þ

db log

� �
¼ logpða; b; obsÞ þ b log

This log probability computation and transformation are performed automatically by
PyMC and accessible via the model method compile_logp:

logp = model.compile_logp()

logp({"a": 0.5, "b_log___": 1.2})

array(-73.39055683)

The compile_logp function optimizes and compiles the symbolic PyTensor
computation graph into the selected backend (C, Numba or JAX), conditioned on the
observed_RVs. The returned compiled function can be evaluated numerically for
arbitrary values of the free RVs. The optimization and compilation of the computational
graph done by the compile_logpmethod is expensive, but once this is done, the resulting
compiled function can be called efficiently on different inputs of similar types.

Having fully specified a probabilistic model, we can select an appropriate method for
inference. This may be a simple optimization, where we find the maximum a posteriori
estimates for all model parameters:

with model:

fit = pm.find_MAP()

fit['a'], fit['b']

(array(0.12646729), array(3.38501407))

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 7/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Alternatively, we may choose a fully Bayesian approach and use Markov chain Monte
Carlo to fit the model. This returns a trace of sampled values as output, representing the
marginal posterior distribution of all model parameters. The sample function provides the
interface to all of PyMC’s MCMC methods. For example, if we want 1,000 posterior
samples after tuning the sampler for 1,000 iterations, we can call:

with model:

idata = pm.sample(1000, tune=1000)

Auto-assigning NUTS sampler : : :

Initializing NUTS using jitter+adapt_diag : : :

Initializing NUTS using jitter+adapt_diag : : :

Multiprocess sampling (4 chains in 4 jobs)

NUTS: [a, b]

Sampling 4 chains for 1_000 tune and 1_000 draw iterations

(4_000 + 4_000 draws total) took 3 seconds.

idata, returned by pm.sample is an ArviZ InferenceData data object. This is a
specialized data format based on a flexible N-dimensional array package, xarray (Hoyer &
Hamman, 2017). The InferenceData object is designed to handle MCMC output3: it
stores the sampled values, along with other useful, diagnostic output from the sampling
run. This facilitates the use of ArviZ for summarizing the estimated model, both in tabular
and graphical form (see Fig. 1 for an example of a trace plot).

az.plot_trace(idata, var_names=['a', 'b'])
az.summary(idata, var_names=['a', 'b'])

Figure 1 Trace plot for parameters (A and B). On the left, are kernel density estimates (KDE). On the right are the values of these parameters at
each iteration. Full-size DOI: 10.7717/peerj-cs.1516/fig-1

3 For example on how to perform common
operations you can read https://python.
arviz.org/en/stable/getting_started/
WorkingWithInferenceData.html.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 8/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-1
https://python.arviz.org/en/stable/getting_started/WorkingWithInferenceData.html
https://python.arviz.org/en/stable/getting_started/WorkingWithInferenceData.html
https://python.arviz.org/en/stable/getting_started/WorkingWithInferenceData.html
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

HIGH-LEVEL ARCHITECTURE OF PYMC
PyMC includes user-facing and internal features and APIs to support Bayesian modeling,
including a wide variety of distributions and a suite of inference algorithms such as
MCMC, sequential Monte Carlo (SMC) and Variational Inference (VI).

At the highest level, PyMC is organized into a set of quasi-independent but
interoperating modules. This includes core components like models and probability
distributions, inference algorithms such as MCMC step methods and variational
approximations, and advanced modeling components like Gaussian processes and
ordinary differential equations (Fig. 2). The architecture also depends on two other
libraries, PyTensor (see section PyTensor) and ArviZ (Kumar et al., 2019), for
computational backend functionality and exploratory analysis of Bayesian models,
respectively.

Distributions
Because Bayesian statistics involves constructing probabilistic models, PyMC provides
robust implementations of all commonly-used probability distributions as classes in its
distributions module, as well as a large set of more specialized distributions. The
availability of these classes facilitates the construction of probabilistic graphs for forward
sampling and inference. Stochastic random variables in PyMC models have a common set

Figure 2 PyMC architecture diagram highlighting the major modules.
Full-size DOI: 10.7717/peerj-cs.1516/fig-2

Mean SD HDI_3% HDI_97% MCSE_mean MCSE_SD ESS_bulk ESS_tail R_hat
a 0.129 0.139 −0.118 0.404 0.002 0.002 3,816.0 3,118.0 1.0

b 3.385 0.237 2.938 3.815 0.004 0.003 4,211.0 2,654.0 1.0

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 9/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-2
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

of properties as defined by the Distribution base class; these include methods for
calculating log-probabilities, log-cumulative probabilities, and sampling random values.
Distributions are broadly grouped according to whether they are continuous or discrete
and univariate or multivariate, which confers additional properties to them according to
this taxonomy (i.e., shape and data type values). In addition to these user-facing features,
PyMC’s inference algorithms can manipulate distribution objects to improve their
performance; for example, distributions that are bounded in their support are
automatically transformed into real-valued spaces in order to improve sampling efficiency.
For modeling time series, there are more complex multivariate distributions that account
for serial dependence among elements of a sequence of variables, notably the
autoregressive process and random walk processes (both Gaussian and Student-T). Also,
there are wrapper classes that enforce truncation and censoring bounds for arbitrary base
distributions which can be useful, for instance, in the construction of survival models. If a
particular distribution of interest is not included in the distributions module, PyMC
allows users to specify their own distributions.

Model
As introduced in Section API overview, the Model module provides the Model class, which
encapsulates all components of the Bayesian model the user specifies. The user API for a
Model instance is through a context manager, which serves to automatically add variables
to the model graph, according to the associations between variables by the user;
specifically, a random variable passed as an argument to another random variable
establishes a parent-child relationship between them. All interaction with a Model instance
by the user (e.g., model modification, model fitting) is done through the context manager.
While the Model class has a large suite of methods, almost none of them are user-facing
but are instead called by other methods and functions in PyMC in order to set up,
introspect, or manipulate the model.

As a convenience to users, the Model module includes functions for generating
visualizations of the model DAG (see for example Fig. 3), using either GraphViz (Gansner
& North, 2000) or NetworkX (Hagberg, Schult & Swart, 2008).

Logprob
This module contains the logic for operating with RandomVariable objects including:
Converting RandomVariable graphs into joint log-probability graphs, transforming
constrained RandomVariables so their support is on unconstrained spaces,
RandomVariable-aware pretty printing, and LaTeX output.

Step methods
PyMC constructs posterior samplers using a Metropolis-within-Gibbs scheme, where
blocks of parameters are assigned the same MCMC step algorithm. Distributions define
their own default step algorithm, but this may be manually overridden by the user. For
instance, in the coal mining disaster example (see Section Coal mining disasters) the

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 10/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Metropolis step method was assigned to the discrete sp variable and NUTS was assigned to
the rest of the variables, which are continuous.

The default sampler for all continuous distributions is based on the No-U-Turn sampler
(Hoffman & Gelman, 2014)4. In practice, many models use only continuous parameters,
and so will be only using this algorithm, which sees particular attention for performance.
Some changes from the algorithm as originally described include multinomial sampling of
the tree (Betancourt, 2016), and a corrected U-turn check. Other available inference
methods include random-walk Metropolis (including specialized versions for binary and
categorical parameters), a slice sampler (Neal, 2003), and Differential EvolutionMetropolis
sampling (Ter Braak, 2006).

Sampling
In addition to the MCMC step methods described in the previous section, which are useful
to sample from the posterior distribution, PyMC supports sampling from both the prior
predictive and posterior predictive distributions with flexible shapes allowing for in-
sample estimates, as well as sample interpolation or extrapolation. This can be done using
the pm.sample_prior_predictive or pm.sample_posterior_predictive
functions. It is important to remark that PyMC allows using the same model definition to
compute posteriors distributions (backward sampling) or predictive distributions (forward
sampling), without requiring any intervention from the user.

Figure 3 Figure generated with the command pm.model_to_graphviz(mining). Each random
variable is represented by an ellipse which shows the name of the variable and its type. The rectangular
boxes correspond to Deterministic variables, which are deterministic once their inputs are given (they
do not add any randomness themselves). The numbers in the bottom-right corner of the rounded rec-
tangles indicate the shape of the enclosed variable(s) (the number of independent variables that exist
under this name): we see that the 111 years considered are split into two missing years and 109 observed.
Finally, observed variables are colored in gray. Full-size DOI: 10.7717/peerj-cs.1516/fig-3

4 This is the first description of the sampler,
but the implementation in PyMC
includes several improvements that have
been developed since then, for example
on mass matrix tuning.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 11/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-3
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Additionally, PyMC supports samplers from BlackJAX and NumPyro, as shown in
Section JAX-based sampling.

Variational
The variational inference implementation is inspired by Ranganath et al. (2016) and
defined as follows:

sup
f2F

tðEq ðOp;qf ÞðzÞ½ �Þ (1)

PyMC implements O—Operator, p; q—approximations, f—test function t—distance
function family in a class structure; this is a nice abstraction over variational inference
algorithms. One can construct standard Kullback-Leibler (KL) divergence with mean field
approximation using this framework. To show that, let’s set operator Op;q

KL such that

Op;q
KL : f 7!ðz 7! log qðzÞ � log pðzjxÞÞ; 8f 2 F; (2)

In a sense Op;q
KL is constant over all f 2 F, and yields a constant function without

dependency on f . Using a short notation we can write

ðOp;q
KL f ÞðzÞ ¼ log qðzÞ � log pðzjxÞ: (3)

The simplified objective now does not need supf2F anymore, and setting the distance
function to identity tIðxÞ ¼ x we obtain

sup
f2F

tIðEq ðOp;q
KL f ÞðzÞ� �Þ ¼ Eq log qðzÞ � log pðzjxÞ (4)

Setting variational family q to the Mean Field family

qMFðzÞ ¼ N ðzjl; r2Þ (5)

completes the derivation.
Under this framework, PyMC also has Stein Variational Gradient (Liu & Wang, 2016)

and b� KL (Burgess et al., 2018) objectives. Further extensions are made simpler for
researchers and are open for contributions.

ODE
PyMC includes an Ordinary Differential Equations (ODE) module. The API mimics
requires a function fðy; t; hÞwhich takes as arguments an array of states y, a time argument
t, and an array of parameters h. Once a solution to the ODE is found, an array of times at
which to evaluate the solution is used.

It is implemented as an PyTensor Op which allows Hamiltonian Monte Carlo to
differentiate through the ODE solution. The underlying implementation uses Scipy’s ODE
solver which in turn uses the lsoda routine in the ODEPACK library written in
FORTRAN.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 12/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

SMC
Sequential Monte Carlo is a family of Monte Carlo methods. It has wide applications to
Bayesian inference for static models and dynamic models, such as sequential time series
inference and signal processing (Del Moral, Doucet & Jasra, 2006; Ching & Chen, 2007;
Naesseth, Lindsten & Schön, 2019; Chopin & Papaspiliopoulos, 2020). PyMC supports
sampling from static models using a Sequential Monte Carlo method, with many kernels,
including, Metropolis-Hastings, Independent Metropolis-Hastings, Hamiltonian Monte
Carlo. The SMC sampler can be useful for sampling multimodal posteriors, specially when
modes are separated by very low probability regions. Additionally, the Independent
Metropolis-Hastings kernel can be useful for models where the gradients are not available
and for which complexity and/or dimensionality makes Metropolis-Hastings a poor
choice. Moreover, SMC computes the marginal likelihood of a model as a by-product of
sampling. In this module, we also find the code necessary to run Sequential Monte Carlo
for Approximate Bayesian Computation. That is, models where the likelihood is not
available explicitly, but we have a method to simulate synthetic data given a set of
unknown parameters (Sisson, Fan & Tanaka, 2007; Sunn Sunnåker et al., 2013; Martin,
Kumar & Lao, 2021).

Gaussian process
A Gaussian process (GP) can be used as a prior probability distribution over the space of
continuous functions for modeling non-linear processes non-parametrically. PyMC
includes a specialized API to define and fit GP models, specifically using latent and
marginal approximations, and generate predictions for arbitrary inputs. The GP
estimation is fully compatible with the MCMC, ADVI, and MAP methods, allowing users
to flexibly fit models of various computational complexities while balancing computational
estimation time.

Additionally, PyMC includes a number of kernels, including exponentiated quadratic,
Matern, and periodic kernels, while allowing for the flexibility of users to define their own
kernels if need be.

CASE STUDIES
Coal mining disasters
Between 1851 and 1962, a record number of accidents occurred in coal mines located in
the United Kingdom (Jarrett, 1979). It is suspected that the application of certain safety
regulations had the effect of reducing the number of accidents. Therefore, we are interested
in estimating three quantities: the year in which the rate changed (the switch-point), the
rate of accidents prior to regulation, and the rate after the regulation change.

The data is shown in Code Block 1, we have the variable disasters that contains the
number of accidents per year and the variable years containing the range of years for

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 13/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

which we have data. To encode the data, we are using a Pandas Series with np.nan

values for the missing data.

years = np.arange(1851, 1962)

disaster_data = pd.Series([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3,
3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5,
5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, np.nan, 2,
1, 1, 1, 1, 3,
0, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0,
3, 2, 2, 0, 1,
1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1,
0, 0, 0, 1, 1,
0, 2, 3, 3, 1, np.nan, 2, 1, 1,
1, 1, 2, 4, 2,
0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
1, 0, 1])

Code 1. Data for the coal mining disaster example.

How can we build a model for this problem? One approach is to think generatively, that
is, create a story of how data may have been generated. Generative stories can be very
powerful, informal devices that aid model construction and understanding (Blitzstein &
Hwang, 2019).

We can think of our problem as having a moving slider, years to the left of this slider are
assigned an average number of accidents while years to the right are assigned a different
average number of accidents. A key property of Bayesian modeling is that we consider
multiple plausible scenarios that could have generated the data (see Fig. 4).

Next, we need to specify prior probability distributions which quantify the information
we have about plausible parameter values before we have observed any data. For the
“slider”we will use a discrete uniform distribution that assigns equal probability to all years
in a given interval, although other choices are possible. This distribution has two
parameters: the lowest possible value, and the highest one. In our problem, those
correspond to the year 1851 and 1962, respectively. A range wider than this does not make
sense given that we only have data for this particular range, and a narrower range will
imply that we have some external information indicating that not all years between 1851
and 1962 are equally plausible candidates.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 14/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Our observed data consists of counts, i.e., the number of disasters. Commonly, the
Poisson distribution is used for count data. The Poisson distribution is defined using a
single parameter that represents the average rate of events (disasters) in our example. As
we do not know the rate and want to estimate it, we have to set a prior distribution for it.
We do not have much information other than the rate must be positive and “most likely”
have a small value, given that coal mining disasters are not very frequent events. One
option could be to pick the distribution Exponð1Þ, which says that the expected rate is 1 but
is wide enough to allow for lower and higher values.

Using standard statistical notation, we can write the model as:

sp� UðA0;A1Þ
t0� Exponð1Þ
t1� Exponð1Þ
ratet¼ t0; if t, sp;

t1; if t � sp

�

acct� PoissonðratetÞ

(6)

And using PyMC we can write this model as described in Code Block 2.

Figure 4 Prior predictive check for the coal mining model. The top panels (A) show one sample from
the prior predictive distribution, including a visualization of the switching rate, which in this case is
increasing (orange line). The bottom panels (B) show 500 samples from the prior predictive distribution.
These prior predictions are within the realm of possibilities for this model, ignoring the data: this testifies
to well-chosen priors. On the bottom left panel, we can see two vertical white lines (gaps), this corre-
sponds to the missing observations. Full-size DOI: 10.7717/peerj-cs.1516/fig-4

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 15/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-4
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

with pm.Model() as mining:

Prior for the switch-point
sp = pm.DiscreteUniform('sp',

lower=years.min(),
upper=years.max())

Priors for the rate before (t_0) and after (t_1)
t_0 = pm.Exponential('t_0', 1)

t_1 = pm.Exponential('t_1', 1)

We assign the rates according to sp
rate = pm.Deterministic("rate",

pm.math.switch(sp < years, t_0,
t_1))

Likelihood
acc = pm.Poisson('acc', rate, observed=disasters)

Backward and forward sampling
idata = pm.sample()

pm.compute_log_likelihood(idata)

idata.extend(pm.sample_prior_predictive())

idata.extend(pm.sample_posterior_predictive(idata))

Code 2. PyMC model for the coal mining disaster example.

Once defined in PyMC we can get a visual representation of the model as shown in
Fig. 3. We can use this visual representation to check that we do not have a semantic error
in the model and to communicate the model to others.

One remarkable feature of PyMC is that its syntax is very close to the statistical notation,
as we can see by comparing Eq. (6) with Code Block 2. The cases in Eq. (6) are coded using
the pm.math.switch (condition, true, false) function, which uses the first
argument to select either of the next two arguments.

Missing values are handled concisely by passing a numpy.ndarray, pandas.

DataFrame or pandas.Series with NaN values (see Code Block 1) to the observed
argument when creating an observed stochastic random variable. This means that we will
automatically get a posterior predictive distribution over the missing values. The imputed
and observed values are combined into a Deterministic node acc that represents the
original vector specified as an observed random variable.

Prior predictive checks
Specification of the prior distribution is of central importance in Bayesian modeling, but it
is often difficult even for statistical experts (Mikkola et al., 2023). One problem when
choosing priors is that it may be difficult to understand their effect as they propagate down
the model into the data. The choices made in the parameter space may induce something
unexpected in the observable data space (Martin, Kumar & Lao, 2021). Thus, a very

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 16/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

helpful practice is to obtain samples from the prior predictive distribution. These are
samples from the likelihood(s) of the model, but without conditioning on the observed
data. Or, in simpler terms, predictions from the model before seeing the observed data.
PyMC users can do this by calling the pm.sample_prior_predictive function. It is
important to note that users do not need to write any extra code, or change the model as
PyMC is capable of using the same model definition to compute posteriors distributions
(backward sampling) and predictive distributions (forward sampling).

Code Block 3 shows one potential way of performing a prior predictive check. See Fig. 4
for the output of this code.

ax[0,0].plot(years[np.isfinite(disasters)],
idata.prior_predictive["acc_observed"].sel(draw=50,

chain=0),
".")

az.plot_dist(idata.prior_predictive["acc_observed"],
ax=ax[1,1],
rotated=True)

Code 3. Part of the code to generate Fig. 4. Lines related to the style of the plot have been
omitted.

On the top panel, we can see one sample from the prior predictive distribution, for this
sample the mean rate before the year 1880 is around 0.3, and after that around 1.3 (orange
line). From the bottom panel, we can see that the average prior predictive prediction
describes a uniform distribution of accidents across years, this is expected given that we
have defined the same prior for t_0 and t_1. Additionally, just by eyeballing, we can see
that our model favors relatively low values of accidents per year, with around 85 percent of
the mass being assigned to values equal to or lower than 3. A more accurate estimate can be
obtained by counting samples satisfying this property: np.mean(idata.
prior_predictive["acc_observed"] < 3).

Once confident with the model specification, we can estimate the parameters using one
of the multiple inferential methods available in PyMC. If we decide to use Markov Chain
Monte Carlo methods (MCMC), the continuous variables are sampled using an Adaptive
Dynamic Hamiltonian Monte Carlo called NUTS (Hoffman & Gelman, 2014). Solving
models with a discrete or a mix of discrete and continuous variables, like the one in Code
Block 2 is also possible using compound samplers that could be manually specified by the
user or automatically assigned by PyMC. For example, the variable sp in Model 2, being
discrete, will be assigned to the Metropolis sampler, and the rate variables, continuous, to
NUTS. Other samplers, such as Sequential Monte Carlo (SMC), are also suitable for a mix
of discrete and continuous variables.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 17/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Posterior sampling
A common way to visually inspect the posterior is by plotting the marginal distributions
for each parameter, as in Fig. 5. Once we have computed the posterior, we can use it to
answer questions of interest: this can be done by computing numerical quantities,
generating plots, and more often than not by a combination of both.

From Fig. 6 we can see that the switch-point (orange line) is most likely around 1890,
but we still have some uncertainty. The orange band represents the 94% credible interval
and goes from 1885 to 1894. That is, according to the data and model, we think there is a
94% chance that the rate of accidents changed between 1885 and 1894. The black line
represents the posterior mean for the rate of accidents, and the gray band is the 94%
credible interval for that mean. Notice that in our model we specify prior distributions for
two rate values, but we do not get just two point estimates for those rates, we get two
distributions, one with mean �3 and one with mean �1. Even more, from approximately

Figure 5 Trace plot generated with the command az.plot_trace(idata, combined=True), by default this command will read the posterior
group from the idata object and generate, on the right a traceplot and, on the left, a histogram for discrete variables or a kernel density estimate
(KDE), for continuous variables. The combined argument is a flag for combining multiple chains into single histogram or KDE. If False (default),
chains will be plotted separately. Full-size DOI: 10.7717/peerj-cs.1516/fig-5

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 18/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-5
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

1885 to 1894 we get a mix of those two distributions. The uncertainty about when the
transition occurred is reflected in a rather smooth transition of the rates around these
years.

Posterior predictive checks
In one of the previous sections, we saw we can sample from the prior and thus generate
synthetic data representing the predictions from the model before seeing any data. In a
similar fashion, we can also sample from the posterior in order to generate synthetic data
conditioned on the observed data, i.e., predictions. These samples are known as posterior
predictive samples and we can use them to check for auto-consistency. The generated data
and the observed data should look like they were drawn from the same distribution,
otherwise, we may have made a mistake during the model-building process or our model
has some particular limitations. Posterior predictive checks can help us understand those
limitations, and if necessary improve the model (Martin, 2018). There are potentially
unlimited ways of performing posterior predictive checks. Figure 7 shows two different
approaches using ArviZ.

Dirichlet-multinomial distribution
This example demonstrates the use of a Dirichlet compound multinomial distribution to
model categorical count data. Models like this one are important in a variety of areas,
including natural language processing (Madsen, Kauchak & Elkan, 2005), ecology
(Harrison et al., 2019), and Genomics (Holmes, Harris & Quince, 2012; Nowicka &
Robinson, 2016).

The Dirichlet-multinomial can be understood as taking draws from a multinomial
distribution where each sample has a slightly different probability vector, which is itself
drawn from a common Dirichlet distribution. In contrast with the multinomial
distribution, which assumes that all observations arise from a single fixed probability
vector. This enables the Dirichlet-multinomial to accommodate over-dispersed count data.

Figure 6 The black line represents the mean rate of accidents for the different years, and the gray
band represents the 94% HDI. The orange line is the mean of the switchpoint and the band repre-
sents the 94% HDI. Full-size DOI: 10.7717/peerj-cs.1516/fig-6

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 19/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-6
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Here we will discuss a community ecology example. Let’s assume we have observed counts
of k ¼ 5 different tree species in n ¼ 10 different forests.

Our data is arranged in a two-dimensional matrix of integers where each row, indexed
by i 2 ð0.n� 1Þ, is an observation (different forest), and each column j 2 ð0.k� 1Þ is a
category (tree species).

We could write this model as shown in Code Block 4, where we have a multinomial
likelihood counts with a Dirichlet prior p. Furthermore, the prior is parameterized in
terms of two hyper-priors, a Dirichlet distribution for the expected fraction of each
category, frac and a log-normal conc controlling the concentration of the Dirichlet prior
or in terms of the data the level of over-dispersion.

with pm.Model() as model_dm_explicit:

frac = pm.Dirichlet("frac", a=np.ones(k))

conc = pm.LogNormal("conc", mu=1, sigma=1)

p = pm.Dirichlet("p", a=frac ∗ conc)

counts = pm.Multinomial("counts",
n=total_count, p=p,
observed=observed_counts))

Code 4. An explicit Dirichlet-multinomial distribution model.

Figure 7 Posterior predictive checks. On the left panel, the observed data is in black, samples from the
posterior predictive distribution are in blue, and their mean is in orange. This subplot was generated with
az.plot_ppc(idata). On the right panel, the comparison is performed in terms of the LOO-PIT�. The
ideal scenario is a uniform distribution, white line, for a finite dataset like the observed deviations within
the grey band, are to be expected, and the blue line is the observed LOO-PIT. This subplot was generated
with az.plot_loo_pit(idata, "acc"). Both panels show that the model is well-calibrated. On the left,
we can see that there is a good agreement between the observed and predicted data. On the right, we also
see the agreement between observed and predicted data, but in such a way that perfect agreement will be a
uniform distribution (white line). Due to the finite number of observations deviation from uniformity is
expected. Because the blue line is inside the light blue band we can say that such deviations are to be
expected. Note: �Leave-one-out probability integral transform.

Full-size DOI: 10.7717/peerj-cs.1516/fig-7

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 20/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-7
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

The model in Code Block 4 is semantically and syntactically correct. Nevertheless, we
can rewrite the model in an equivalent but slightly different form as shown in Code
Block 5. The first change is that we are using pm.DirichletMultinomial distribution
which takes into account that the Dirichlet distribution is conjugate to the multinomial
and therefore there’s a computationally more efficient way to sample from, i.e. using a
marginalized closed-form. The second modification with respect to Code Block 4 is that we
are going to use labeled coordinates (coords) and dimensions (dims) which provides a
tighter integration of PyMC with ArviZ.

coords = {"tree": trees, "forest": forests}

with pm.Model(coords=coords) as model_dmm:

frac = pm.Dirichlet("frac", a=np.ones(k), dims="tree")
conc = pm.LogNormal("conc", mu=1, sigma=1)

counts = pm.DirichletMultinomial("counts",
n=total_count, a=frac ∗ conc,
observed=observed_counts, dims=("forest", "tree"))

idata_dmm = pm.sample()

Code 5. A marginalized Dirichlet-multinomial model augmented with coordinates and
dimensions.

Working with labeled arrays reduces the cognitive load of working with
multidimensional arrays, reducing the chance of making errors and reducing frustration.
In Code Block 5 by defining the frac Dirichlet parameters using dims="tree" we are
guaranteed to have the dimensions of the prior matching the number of trees in our
dataset. The advantage of using labels also extends to the post-inference processing stage.
For example, idata_dmm.posterior.sel(tree="pine") will return the subset of the
posterior related to pine and idata_dmm.posterior_predictive.counts.sel

(tree="pine") will do the same for the predictive counts of pine.
Additionally, automatic labeling becomes possible. For instance, after sampling from

the model in Code Block 5, calling az.plot_posterior(idata_dmm) generates Fig. 8.
Notice how the frac parameter is meaningfully labeled with the names of the trees. The
alternative would be integer labels with no intrinsic meaning.

JAX-based sampling
The most recent major version of PyMC is built on top of the PyTensor Python package,
which allows the definition, optimization, and efficient evaluation of mathematical
expressions involving multi-dimensional arrays. PyMC models, through PyTensor, can be
compiled to C, Numba and JAX, and in principle, other computational backends could be
added with relatively little effort. This allows for the efficient and fast evaluation of the log-
probability density (see Section PyTensor for details). Still, the samplers accessible by
calling pm.sample() are coded in Python and NumPy. A good approach to improve the
performance of PyMC’s samplers is to write them in PyTensor. This will reduce the
overhead of calling Python code and—more importantly—enable a series of optimizations

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 21/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

due to PyTensor’s ability to manipulate graphs, including the ability to customize the
sampler based on patterns in the model structure. Details of such optimizations are out of
the scope of this article and will be discussed in a future manuscript.

An alternative to PyMC’s PyTensor-based samplers is samplers written in JAX. Using
these samplers, all the operations needed to compute a posterior can be performed under
JAX, reducing the Python overhead during sampling and leveraging all JAX performance
improvements and features like the ability to sample on GPUs or TPUs. Currently, PyMC
offers NUTS JAX samplers viaNumPyro (Phan, Pradhan & Jankowiak, 2019) or BlackJAX
(BlackJax devs, 2022) with the functions pm.sample_numpyro_nuts and pm.

sample_blackjax_nuts, respectively. Significantly, BlackJAX and NumPyro can both be
used because in PyMC the modeling language is decoupled from the inference methods;
BlackJAX and NumPyro only require a log-probability density function written in JAX.
This demonstrates that samplers can be developed independently of PyMC and then be
made available to users of the library.

In the following example, we compare PyMC with its default Python/NumPy NUTS
sampler, PyMC running the BlackJAX NUTS sampler, and PyMC running the NumPyro
sampler. We also include cmdstanpy (Lee et al., 2017), a command line interface to Stan.
The motivation for these comparisons is not to provide an exhaustive benchmark over a
wide range of models and datasets but instead to give an example of the attainable speed-
ups when using PyMC with a JAX-based sampler.

Suppose we are interested in ranking tennis players from 1968 until now5. To do so, we
can use the Bradley-Terry model. The central idea of this model is that each player has a
latent skill h. When players i and j play each other, player i wins with probability
pðiwins j hi; hjÞ ¼ logisticðhi � hjÞ. For example, if player i has a skill value of 1 and player j

has a skill value of −1, then the Bradley-Terry model implies that the player i beats the
player j with probability logisticð2Þ �88.1%.

Figure 8 Kernel density estimates of the predicted counts against the observed counts for each
species. Full-size DOI: 10.7717/peerj-cs.1516/fig-8

5 This model and benchmarks were initi-
ally run by Martin Ingram and can be
found on https://martiningram.github.
io/mcmc-comparison/.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 22/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-8
https://martiningram.github.io/mcmc-comparison/
https://martiningram.github.io/mcmc-comparison/
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

For the priors we set:

r � Nþð1Þ (7)

hi � Nð0; r2Þ (8)

when r ¼ 1, 95% of the players’ skills distribution will fall between −2 and 2, which we
consider quite plausible under this model and data, by setting a prior over r we are also not
ruling out smaller or larger distributions.

with pm.Model() as tennis_model:

sd = pm.HalfNormal("sd", sigma=1.0)

skill_raw = pm.Normal("skill_raw", 0.0, sigma=1.0,

shape=(n_players,)

)

skill = pm.Deterministic("skill", skill_raw * sd)

logit_skill = skill[winner_ids] - skill[loser_ids]

win = pm.Bernoulli("win", logit_p=logit_skill,

observed=np.ones(winner_ids.shape[0])

)

Code 6. A hierarchical, non-centered Bradley-Terry model for ranking tennis players.

We run the tennis_model in Code Block 6 using the NUTS sampler under six
conditions:

� pymc: PyMC with the default sampler

� cmdstanpy: CmdStanPy

� pymc_numpyro_gpu_vectorized: PyMC with NumPyro NUTS sampler on the GPU,
running chains using vmap.

� pymc_numpyro_cpu_parallel: PyMC with NumPyro sampler on the CPU, running
chains using pmap.

� pymc_blackax_gpu_vectorized: PyMC with BlackJAX NUTS sampler on the GPU,
running chains using vmap.

� pymc_blackjax_cpu_parallel: PyMC with BlackJAX NUTS sampler on the CPU,
running chains using pmap.

To see how the runtime changes with the size of the dataset, we choose different start
years for the fits: 2020, 2019, 2015, 2010, 2000, 1990, 1980, and finally 1968. This means
datasets ranging from 3,620 observations to 160,420.

For all conditions, we run 1,000 warm-up steps and 1,000 draws per chain, for a total of
four chains.

Figure 9 shows the effective sample size per second for all the samplers previously
mentioned. The values are an average of four separate runs. CmdStanPy performs better
than PyMC on smaller datasets, but is slower on larger ones. PyMC with either the

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 23/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

BlackJAX or NumPyro backends performs the best on the CPU, shown in yellow and
magenta respectively. These JAX-based samplers have similar performance. On the other
hand, when running on the GPU, the samplers are more efficient on larger datasets.
Among the largest dataset, PyMC with NumPyro and BlackJax on the vectorized GPU
performs the best, while PyMC with its default sampler and CmdStanPy (both on the
CPU) show the worst results.

EXTENSIONS
PyMC is a very flexible tool, and the PyMC community is quite active, the combination of
which enables many specialized packages to be built by others. This provides the benefit of
providing a coherent ecosystem of tools for PyMC users.

We note the following here:

� Bambi: BAyesian Model-Building Interface (BAMBI) in Python (Capretto et al., 2022)
https://bambinos.github.io/bambi/.

� beat: Bayesian Earthquake Analysis Tool (Vasyura-Bathke et al., 2020) https://github.
com/hvasbath/beat.

� calibr8: A toolbox for constructing detailed observation models to be used as likelihoods
in PyMC (Helleckes et al., 2022; Osthege, Helleckes & Siska, 2022) https://calibr8.
readthedocs.io.

� CausalPy: A package focusing on causal inference in quasi-experimental settings https://
github.com/pymc-labs/CausalPy.

� Exoplanet: a toolkit for modeling of transit and/or radial velocity observations of
exoplanets and other astronomical time series (Foreman-Mackey et al., 2021) https://
github.com/exoplanet-dev/exoplanet.

� pyei: Ecological inference, with an emphasis on racially polarized voting (Knudson,
Schoenbach & Becker, 2021) https://github.com/mggg/ecological-inference.

Figure 9 Effective sample size per second (ESS/s) for the tennis_model for different samplers
(average over four independent runs). Full-size DOI: 10.7717/peerj-cs.1516/fig-9

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 24/35

https://bambinos.github.io/bambi/
https://github.com/hvasbath/beat
https://github.com/hvasbath/beat
https://calibr8.readthedocs.io
https://calibr8.readthedocs.io
https://github.com/pymc-labs/CausalPy
https://github.com/pymc-labs/CausalPy
https://github.com/exoplanet-dev/exoplanet
https://github.com/exoplanet-dev/exoplanet
https://github.com/mggg/ecological-inference
http://dx.doi.org/10.7717/peerj-cs.1516/fig-9
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

� pymc-bart: Bayesian additive regression trees (BART) for probabilistic programming
(Quiroga et al., 2022) https://www.pymc.io/projects/bart.

� SunODE: Fast ODE solver, much faster than the one that comes with PyMC (Seyboldt
et al., 2022) https://github.com/pymc-devs/sunode.

Besides the main PyMC package, the PyMC developers also maintain a PyMC-
experimental package, a collection of features extending the core functionality of PyMC in
diverse directions. PyMC-experimental is intended to host unusual probability
distributions, advanced model fitting algorithms, innovative yet not fully tested methods,
or any code that may be inappropriate to include in the PyMC repository, but may want to
be made available to users. This package is ideal for researchers and developers wanting to
contribute new research as features to PyMC.

At the time of writing, PyMC-experimental includes

� A method to aggregate large datasets in order to speed up inference,

� A method to approximate a posterior to a multivariate normal for use as a prior of a
subsequent analysis

� Three efficient reduced-rank methods for Gaussian processes: the Karhunen-Loeve
expansion, deterministic training conditionals (DTC) (Quinonero-Candela &
Rasmussen, 2005), and the Hilbert space GPs (Solin & Särkkä, 2020), and

� The Pathfinder variational inference algorithm (Zhang et al., 2022).

PYTENSOR
PyTensor is a pure-Python library that allows one to define, optimize, and efficiently
evaluate mathematical expressions involving multi-dimensional arrays, including
automatic differentiation. It is used as the computational backend of the PyMC library and
was developed from its predecessors Theano (The Theano Development Team et al., 2016)
and Aesara (Bastien et al., 2022a). At its core, PyTensor implements an extensible
computational graph framework that is accompanied by graph rewriting optimizations
and linkers to various compilable backends. At the time of writing, PyTensor graphs can be
readily linked to backends including C (Kernighan & Ritchie, 1988), JAX (Bradbury et al.,
2018), and Numba (Lam, Pitrou & Seibert, 2015), yielding compiled functions that are
much faster to evaluate than pure Python implementations of the computational graph. It
combines aspects of a computer algebra system (CAS) with aspects of an optimizing
compiler. This combination of CAS with optimizing compilation is particularly useful for
tasks in which complicated mathematical expressions are evaluated repeatedly, and
evaluation speed is critical, as is the case in MCMC applications. PyTensor does not only
provide a powerful computation backend for PyMC, but also decouples PyMC from the
underlying compilation backends, making it easier to use new compilers without
disrupting the existing PyMC code-base.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 25/35

https://www.pymc.io/projects/bart
https://github.com/pymc-devs/sunode
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Tensors
Now we will discuss some core concepts of PyTensor and how they relate to PyMC using a
few simple code examples. For a more detailed description of PyTensor please refer to the
official documentation (https://PyTensor.readthedocs.io/en/latest/).

To begin, in lines 1 and 2 of Code Block 7 we define two PyTensor tensors, the first one
being a scalar (0 dimension) and the second being a vector (1 dimension). On line 3, a new
tensor z is created by adding x and y, and then taking the natural logarithm. Then, on line
4 we add a name to the newly created tensor, as this can be useful to easily reference tensors
when working with many of them.

It is important to note that contrary to other objects like Python integers, floats or
NumPy arrays, the operations described in Code Block 7 do not immediately lead to
numerical values. Instead, they are just a symbolic specification of the operations we want
to compute. This example literally just defines the abstract expression, take the logarithm of
the sum of x and y. To actually perform computations, we first need to define a function,
and then call it with the proper input as shown in lines 6 and 7.

x = pt.scalar(name="x")
y = pt.vector(name="y")
z = pt.log(x + y)
z.name = "log(x + y)"

f = pytensor.function(inputs=[x, y], outputs=z)
f(x=0, y=[1, np.e])
>>> array([0., 1.])

Code 7.Definition and call of a PyTensor function. Notice that the tensors x, y, and z have
been previously defined. When debugging it may be useful to avoid defining a function and
instead perform a direct evaluation of the tensor, like z.eval(x: 0, y:[1, np.e]).

This separation of the abstract definitions of mathematical expressions and the actual
computation of those expressions is central to PyTensor and hence PyMC. When defining
a PyMC model, we are just defining a PyTensor computational graph that we will later use
to obtain quantities like prior predictive samples, posterior samples, log-probabilities, etc.
This separation is useful as PyTensor can automatically optimize the mathematical
operations inside a graph. For example, if we define w = pt.exp(pt.log(x + y)),
PyTensor will first simplify the graph to w = x + y and then perform the computation.
Other optimizations include constant propagation, replacing numerically unstable
operations with numerically stable versions, avoiding computing the same quantity more
than once, and efficient sparse matrix multiplication.

Random variables
We now show how to manually generate samples from PyMC distribution and evaluate
their log-probability. On line 1 of Code Block 8 we define a Normal distribution with mean

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 26/35

https://PyTensor.readthedocs.io/en/latest/
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

0 and standard deviation 1. On line 2 we take 1,000 draws from that distribution, using the
pm.draw(.) function. Finally, on line 3 we use the pm.logp(.) function to compute the
log-probability of the samples generated in the previous step. We use the eval() method
to obtain the actual values, instead of a symbolic representation. Figure 10 shows the
results.

x = pm.Normal.dist(mu=0, sigma=1)

x_draws = pm.draw(x, draws=1_000)

x_logp = pm.logp(rv=x, value=[x_draws]).eval()

Code 8. In line 1 a PyMC distribution is used to specify a symbolic random variable from a
corresponding to a Normal distribution. The pm.draw(.) call in line 2 invokes PyTensor
graph compilation while accounting for automatic updating of random number
generators, and returns an array with 1,000 draws of variable x. Using pm.logp(.), the
log-probability densities of x for each element in x_draws are derived symbolically, and
then evaluated by the call to the .eval() method.

While the example from Code Block 8 may seem trivial, it is important to note that the
variable x which is passed to pm.draw(.) or pm.logp(.) can be the result of a symbolic
computation involving multiple random variables and other tensors. A simple example is
given in Code Block 9 where the random variable b depends on another random variable a,
and the variable x is a tensor variable that merely depends on other variables, some of
which represent random variables. To a much larger extent, this is how computational
graphs of PyMC models are handled behind the scenes, and how users can access
properties such as the log-probability densities of probabilistic graphs built with PyTensor.

Figure 10 Top panel kernel density estimate of the sample generated in Code Block 8, bottom panel
scatter plot of the x values and their log probability. Full-size DOI: 10.7717/peerj-cs.1516/fig-10

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 27/35

http://dx.doi.org/10.7717/peerj-cs.1516/fig-10
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

a = pm.Uniform.dist()

b = pm.Normal.dist(mu=a, sigma=1)

x = b + pt.as_tensor([2, 3, 4])

x_draws = pm.draw(x, draws=1_000)

x_logp = pm.logp(rv=x, value=[x_draws]).eval()

Code 9. Random variables such as the ones defined in lines 1 and 2 behave like tensor
variables and can be used as such in standard operations such as addition (line 3). The
sampling and derivation of log-probabilities (lines 4 and 5) can operate on any graph that
involves random variables.

DISCUSSION
PyMC has been the leading probabilistic programming language in Python for years. Its
intuitive syntax that balances simplicity with flexibility has been key to this success. The
contributor community is varied, composed of users, technical writers, developers, and
even visual designers for artifacts such as logos. This diversity of contributors has aided in
many ways to the improvement of the library and its adoption by a large audience. As
PyMC has grown, its functionality has spun off into more specialized and feature-rich
packages for the Bayesian community. For instance, sampling diagnostics, model
comparison, and visualizations had been forked into ArviZ which supports PyMC but
many other PPLs as well. Similarly, the definition of complex generalized linear
hierarchical models using a formula notation similar to those found in R has now been
delegated to Bambi.

In this way, the PyMC contributor environment has been incredibly beneficial for the
computational Bayesian community. This is evidenced by the numerous sister packages
that PyMC has seeded, each with a more focused developmental process. This makes it
easier to maintain the software, add new features, and for the users to find specialized
packages to fit their needs while continuing to grow an ever larger and interconnected
community.

In this manuscript, we have highlighted some of the most relevant features of the
current state of PyMC development and mention some changes to come in the near future.
We trust that the technical innovations, strong community, and interoperability with the
Scientific Python ecosystem herald a bright future for PyMC.

CONTRIBUTING TO PYMC
As a community-driven project, we are always excited to collaborate with new
contributors. For those interested in working on PyMC, we invite them to read our
contributing guidelines (https://www.pymc.io/projects/docs/en/latest/contributing/index.
html). As part of our quality control process, contributions are submitted as a pull request
(PR) that is subject to review and revision prior to being merged into the appropriate
project repository; most PRs need approval from at least 1 core developer. Major
innovations and changes to the API are subject to collective agreement from the core

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 28/35

https://www.pymc.io/projects/docs/en/latest/contributing/index.html
https://www.pymc.io/projects/docs/en/latest/contributing/index.html
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

contributors; see https://www.pymc.io/projects/docs/en/latest/contributing/ for how
exactly we delineate responsibilities and decision-making power for each community role.

There are several ways to contribute to PyMC, and not all of them require familiarity
with the code base. Notably, help with maintaining and improving documentation and the
contribution of new case studies (https://github.com/pymc-devs/pymc-examples) are
always welcome. Porting existing code from Bayesian books that are written using other
PPLs is also encouraged (https://github.com/pymc-devs/pymc-resources). We also
welcome talks and tutorials involving PyMC and related packages (https://pymcon.com/).
We encourage anyone looking to get started to get in touch with the development team via
Discourse (https://discourse.pymc.io/).

SOFTWARE USED IN THIS ARTICLE
Libraries explicitly used in the code examples: ArviZ (Kumar et al., 2019; Martin et al.,
2022), Graphviz (Gansner & North, 2000), Jupyter (Kluyver et al., 2016), Matplotlib
(Hunter, 2007; Caswell et al., 2022), NumPy (Harris et al., 2020), Pandas (McKinney, 2010;
Pandas Development Team, 2022), PyTensor (Bastien et al., 2022b), SciPy (Virtanen et al.,
2020; Gommers et al., 2022), xarray (Hoyer & Hamman, 2017; Hoyer et al., 2022). And
PyMC itself, version 5.0.1 (Wiecki et al., 2022).

APPENDIX
PyMC is available from the Python Package Index at https://pypi.org/project/pymc/.
Alternatively, it can be installed using conda, which is the recommended way of installing
PyMC. The project is hosted and developed at https://github.com/pymc-devs/pymc. The
package documentation, including installation instructions and many examples of how to
use PyMC to conduct different statistical analysis, can be found at https://docs.pymc.io.

ACKNOWLEDGEMENTS
We thank Google Summer of Code (GSoC), a global program that offers student
developers stipends to write code for open-source projects. We also want to thank all the
students that participated in the GSoC and contributed to PyMC. We thank Martin
Ingram who is the original author of the model in Section JAX-based sampling, the
original model and benchmark can be found at https://martiningram.github.io/mcmc-
comparison/ and Kevin Murphy for his helpful comments on an earlier version of this
manuscript. We want to thank Adrian Seyboldt for his significant contributions to PyMC.
Finally, PyMC would not be the same without the work of hundreds of volunteers
reporting issues, fixing bugs, and contributing features to the project, to whom we are also
indebted.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
NumFOCUS, a nonprofit 501(c)(3) public charity, provides operational and financial
support to PyMC. PyMC Labs, a Bayesian consulting company, provides funding for the

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 29/35

https://www.pymc.io/projects/docs/en/latest/contributing/
https://github.com/pymc-devs/pymc-examples
https://github.com/pymc-devs/pymc-resources
https://pymcon.com/
https://discourse.pymc.io/
https://pypi.org/project/pymc/
https://github.com/pymc-devs/pymc
https://docs.pymc.io
https://martiningram.github.io/mcmc-comparison/
https://martiningram.github.io/mcmc-comparison/
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

the development of PyMC. This research was supported by National Agency of Scientific
and Technological promotion ANPCyT, Grant PICT-02212 (O.A.M.) And National
Scientific and Technical Research Council CONICET, Grant PIP-0087 (O.A.M). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
NumFOCUS.
PyMC Labs.
National Agency of Scientific and Technological Promotion ANPCyT: PICT-02212.
National Scientific and Technical Research Council CONICET: PIP-0087.

Competing Interests
The authors declare that they have no competing interests.

Colin Carroll, Ravin Kumar and Junpeng Lao are employed by Google Inc., Christopher
J. Fonnesbeck is employed by Baseball Operations Research and Development, Maxim
Kochurov, Ricardo Vieira and Thomas Wiecki are employed by PyMC Labs and Michael
Osthege is employed by Forschungszentrum Jülich GmbH.

Author Contributions
� Oriol Abril-Pla conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Virgile Andreani conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Colin Carroll conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Larry Dong conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Christopher J Fonnesbeck conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

� Maxim Kochurov conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Ravin Kumar conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 30/35

http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

� Junpeng Lao conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Christian C Luhmann conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

� Osvaldo A Martin conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Michael Osthege conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Ricardo Vieira conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Thomas Wiecki conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Robert Zinkov conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code files are available at GitHub and Zenodo:
https://github.com/pymc-devs/paper_v5.
Osvaldo A Martin, Ravin Kumar, Oriol Abril-Pla, & Thomas Wiecki. (2023). pymc-

devs/paper_v5: submission 1 (submission_1). Zenodo. https://doi.org/10.5281/zenodo.
8121048.

REFERENCES
Bastien F, Lamblin P, Abergeron, Willard BT, Goodfellow I, Pascanu R, Carriepl, Breuleux O,

Notoraptor, Warde-Farley D, Xue R, Bergstra J, Harlouci Affan M, Sundararaman R, Askari
R, Maqianlie, Panneerselvam S, Belopolsky A, Turian J, Ballasn, van Tulder G, Lefrancois S,
Vieira R, Almahairi A, Hengjean, Bouchard N, Khaotik, Gulcehre C, Lowin J. 2022a. aesara-
devs/aesara: rel-2.8.9. Available at https://aesara.readthedocs.io/en/latest/.

Bastien F, Lamblin P, Abergeron, Willard BT, Goodfellow I, Pascanu R, Carriepl, Breuleux O,
Notoraptor, Warde-Farley D, Xue R, Bergstra J, Harlouci, Affan M, Sundararaman R,
Askari R, Maqianlie, Panneerselvam S, Belopolsky A, Turian J, Ballasn, van Tulder G, Vieira
R, Lefrancois S, Almahairi A, Hengjean, Bouchard N, Khaotik Gulcehre C, Lowin J. 2022b.
pymc-devs/pytensor: rel-2.8.12. Available at https://pytensor.readthedocs.io.

Betancourt M. 2016. Identifying the optimal integration time in Hamiltonian Monte Carlo. ArXiv
preprint. DOI 10.48550/arXiv.1601.00225.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 31/35

https://github.com/pymc-devs/paper_v5
https://doi.org/10.5281/zenodo.8121048
https://doi.org/10.5281/zenodo.8121048
https://aesara.readthedocs.io/en/latest/
https://pytensor.readthedocs.io
http://dx.doi.org/10.48550/arXiv.1601.00225
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

BlackJax devs. 2022. A sampling library designed for ease of use, speed, and modularity. Available
at https://blackjax-devs.github.io/blackjax/.

Blitzstein J, Hwang J. 2019. Introduction to probability. Second Edition. Chapman & Hall/CRC
Texts in Statistical Science. Boca Raton: CRC Press.

Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, Necula G, Paszke A,
VanderPlas J, Wanderman-Milne S, Zhang Q. 2018. JAX: composable transformations of
Python+NumPy programs. Available at https://jax.readthedocs.io/en/latest/.

Burgess CP, Higgins I, Pal A, Matthey L, Watters N, Desjardins G, Lerchner A. 2018.
Understanding disentangling in β-VAE. ArXiv preprint DOI 10.48550/arXiv.1804.03599.

Capretto T, Piho C, Kumar R, Westfall J, Yarkoni T, Martin OA. 2022. Bambi: a simple interface
for fitting Bayesian linear models in Python. Journal of Statistical Software 103(15):1–29
DOI 10.18637/jss.v103.i15.

Caswell TA, Lee A, Droettboom M, de Andrade ES, Hoffmann T, Klymak J, Hunter J, Firing E,
Stansby D, Varoquaux N, Nielsen JH, Root B, May R, Elson P, Seppänen JK, Dale D, Lee J-J,
Gustafsson O, McDougall D, Hannah, Straw A, Hobson P, Lucas G, Gohlke C, Vincent AF,
Yu TS, Ma E, Silvester S, Moad C, Kniazev N. 2022. matplotlib/matplotlib: REL: v3.6.2.
Available at https://matplotlib.org/.

Ching J, Chen Y-C. 2007. Transitional Markov chain Monte Carlo method for Bayesian model
updating, model class selection, and model averaging. Journal of Engineering Mechanics
133(7):816–832 DOI 10.1061/(ASCE)0733-9399(2007)133:7(816).

Chopin N, Papaspiliopoulos O. 2020. An introduction to sequential Monte Carlo. Springer series in
statistics. Cham: Springer International Publishing.

Del Moral P, Doucet A, Jasra A. 2006. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society Series B: Statistical Methodology 68(3):411–436
DOI 10.1111/j.1467-9868.2006.00553.x.

Foreman-Mackey D, Luger R, Agol E, Barclay T, Bouma LG, Brandt TD, Czekala I, David TJ,
Dong J, Gilbert EA, Gordon TA, Hedges C, Hey DR, Morris BM, Price-Whelan AM, Savel
AB. 2021. exoplanet: gradient-based probabilistic inference for exoplanet data & other
astronomical time series. Available at https://docs.exoplanet.codes/en/latest/.

Gansner ER, North SC. 2000. An open graph visualization system and its applications to software
engineering. Software: Practice and Experience 30(11):1203–1233
DOI 10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N.

Gelman A, Vehtari A, Simpson D, Margossian CC, Carpenter B, Yao Y, Kennedy L, Gabry J,
Bürkner P-C, Modrák M. 2020. Bayesian workflow. ArXiv preprint
DOI 10.48550/arXiv.2011.01808.

Gommers R, Virtanen P, Burovski E, Weckesser W, Haberland M, Oliphant TE, Cournapeau
D, Reddy T, Alexbrc, Nelson A, Peterson P, Wilson J, Endolith, Mayorov N, Polat I, Roy P,
van der Walt S, Brett M, Laxalde D, Larson E, Millman J, Sakai A, Lars Peterbell P, van
Mulbregt P, Carey C, Eric Jones, Kern R, Kai, McKibben N. 2022. scipy/scipy: Scipy 1.9.3.
Available at https://scipy.org/.

Hagberg AA, Schult DA, Swart PJ. 2008. Exploring network structure, dynamics, and function
using networkX. In: Varoquaux G, Vaught T, Millman J, eds. Proceedings of the 7th Python in
Science Conference. Pasadena, CA, USA: Los Alamos National Laboratory, 11–15.

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E,
Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane
A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 32/35

https://blackjax-devs.github.io/blackjax/
https://jax.readthedocs.io/en/latest/
http://dx.doi.org/10.48550/arXiv.1804.03599
http://dx.doi.org/10.18637/jss.v103.i15
https://matplotlib.org/
http://dx.doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816)
http://dx.doi.org/10.1111/j.1467-9868.2006.00553.x
https://docs.exoplanet.codes/en/latest/
http://dx.doi.org/10.1002/1097-024X(200009)30:11%3C1203::AID-SPE338%3E3.0.CO;2-N
http://dx.doi.org/10.48550/arXiv.2011.01808
https://scipy.org/
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

W, Abbasi H, Gohlke C, Oliphant TE. 2020. Array programming with NumPy. Nature
585(7825):357–362 DOI 10.1038/s41586-020-2649-2.

Harrison JG, Calder WJ, Shastry V, Buerkle CA. 2019. Dirichlet-multinomial modelling
outperforms alternatives for analysis of microbiome and other ecological count data. BioRxiv
DOI 10.1101/711317.

Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika 57:97–109 DOI 10.2307/2334940.

Helleckes LM, Osthege M, Wiechert W, von Lieres E, Oldiges M. 2022. Bayesian and calibration,
process modeling and uncertainty quantification in biotechnology. PLOS Computational Biology
18(3):1–46 DOI 10.1371/journal.pcbi.1009223.

Hoffman MD, Gelman A. 2014. The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research 15(1):1593–1623
DOI 10.5555/2627435.2638586.

Holmes I, Harris K, Quince C. 2012. Dirichlet multinomial mixtures: generative models for
microbial metagenomics. PLOS ONE 7(2):1–15 DOI 10.1371/journal.pone.0030126.

Hoyer S, Hamman J. 2017. Xarray: N-D labeled arrays and datasets in Python. Journal of Open
Research Software 5(1):e148 DOI 10.5334/jors.148.

Hoyer S, Roos M, Joseph H, Magin J, Cherian D, Fitzgerald C, Hauser M, Fujii K, Maussion F,
Imperiale G, Clark S, Kleeman A, Nicholas T, Kluyver T, Westling J, Munroe J, Amici A,
Barghini A, Banihirwe A, Bell R, Hatfield-Dodds Z, Abernathey R, Bovy B, Omotani J,
Mühlbauer K, Roszko MK, Wolfram PJ. 2022. xarray. Available at https://docs.xarray.dev/en/
stable/.

Hunter JD. 2007. Matplotlib: a 2D graphics environment. Computing in Science & Engineering
9(3):90–95 DOI 10.1109/MCSE.2007.55.

Jarrett RG. 1979. A note on the intervals between coal-mining disasters. Biometrika 66(1):191–193
DOI 10.1093/biomet/66.1.191.

Kernighan BW, Ritchie DM. 1988. The C programming language. London: Pearson.

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J,
Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C. 2016. Jupyter notebooks—a
publishing format for reproducible computational workflows. In: Loizides F, Schmidt B, eds.
Positioning and Power in Academic Publishing: Players, Agents and Agendas. Amsterdam: IOS
Press, 87–90.

Knudson KC, Schoenbach G, Becker A. 2021. PyEI: a Python package for ecological inference.
Journal of Open Source Software 6(64):3397 DOI 10.21105/joss.03397.

Kumar R, Carroll C, Hartikainen A, Martin OA. 2019. ArviZ a unified library for exploratory
analysis of Bayesian models in Python. Journal of Open Source Software 4(33):1143
DOI 10.21105/joss.01143.

Lam SK, Pitrou A, Seibert S. 2015.Numba: a LLVM-based python JIT compiler. In: Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC. New York: ACM, 1–6.

Lee D, Buildbot S, Seantalts, Carpenter B, Morris M, Kucukelbir A, Betancourt M, Tran D,
Brubaker M, Bales B, Bgoodri, Vehtari A, wds15, maverickg, evelynmitchell, weberse2, Li P.
2017. stan-dev/cmdstan: v2.17.1. Available at https://mc-stan.org/cmdstanpy/.

Liu Q, Wang D. 2016. Stein variational gradient descent: a general purpose Bayesian inference
algorithm. ArXiv preprint DOI 10.48550/arXiv.1608.04471.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 33/35

http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1101/711317
http://dx.doi.org/10.2307/2334940
http://dx.doi.org/10.1371/journal.pcbi.1009223
http://dx.doi.org/10.5555/2627435.2638586
http://dx.doi.org/10.1371/journal.pone.0030126
http://dx.doi.org/10.5334/jors.148
https://docs.xarray.dev/en/stable/
https://docs.xarray.dev/en/stable/
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/biomet/66.1.191
http://dx.doi.org/10.21105/joss.03397
http://dx.doi.org/10.21105/joss.01143
https://mc-stan.org/cmdstanpy/
http://dx.doi.org/10.48550/arXiv.1608.04471
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Madsen RE, Kauchak D, Elkan C. 2005. Modeling word burstiness using the Dirichlet
distribution. In: Proceedings of the 22nd International Conference on Machine learning, ICML
’05. New York, NY, USA: Association for Computing Machinery, 545–552.

Martin O. 2018. Bayesian analysis with Python: introduction to statistical modeling and
probabilistic programming using PyMC3 and ArviZ. Second Edition. Birmingham: Packt
Publishing.

Martin OA, Hartikainen A, Abril-Pla O, Carroll C, Kumar R, Naeem R, Arroyuelo A, Gautam
P, Rpgoldman, Banerjea A, Pasricha N, Sanjay R, Gruevski P, Rochford A, Axen S,
Mahweshwari U, Phan D, Kazantsev VV, Arunava, Shekhar M, Zinkov R, Andorra A,
Carrera E, Munoz H, Gorelli ME, Osthege M, Kumar A, Beauchamp K, Kunanuntakij T,
Capretto T. 2022. ArviZ. Available at https://python.arviz.org/en/stable/.

Martin OA, Kumar R, Lao J. 2021. Bayesian modeling and computation in Python. First Edition.
Boca Raton: Chapman and Hall/CRC.

McKinney W. 2010. Data structures for statistical computing in Python. In: van der Walt S,
Millman J, eds. Proceedings of the 9th Python in Science Conference, Austin: SciPy, 56–61.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics 21:1087–1092
DOI 10.1063/1.1699114.

Mikkola P, Martin OA, Chandramouli S, Hartmann M, Pla OA, Thomas O, Pesonen H,
Corander J, Vehtari A, Kaski S, Bürkner P-C, Klami A. 2023. Prior knowledge elicitation: the
past, present, and future. Bayesian Analysis 1(1):1–33 DOI 10.1214/23-BA1381.

Naesseth CA, Lindsten F, Schön TB. 2019. Elements of sequential Monte Carlo. ArXiv preprint
DOI 10.48550/arXiv.1903.04797.

Neal RM. 2003. Slice sampling. The Annals of Statistics 31(3):705–767
DOI 10.1214/aos/1056562461.

Nowicka M, Robinson M. 2016. DRIMSeq: a Dirichlet-multinomial framework for multivariate
count outcomes in genomics [version 2; peer review: 2 approved]. F1000 Research 5:1356
DOI 10.12688/f1000research.8900.2.

Osthege M, Helleckes L, Siska M. 2022. JuBiotech/calibr8:v7.0.0. Available at https://calibr8.
readthedocs.io/en/latest/.

Pandas Development Team. 2022. pandas-dev/pandas: pandas. Available at https://pandas.
pydata.org/.

Phan D, Pradhan N, Jankowiak M. 2019. Composable effects for flexible and accelerated
probabilistic programming in NumPyro. ArXiv preprint DOI 10.48550/arXiv.1912.11554.

Quinonero-Candela J, Rasmussen CE. 2005. A unifying view of sparse approximate Gaussian
process regression. The Journal of Machine Learning Research 6:1939–1959
DOI 10.5555/1046920.1194909.

Quiroga M, Garay PG, Alonso JM, Loyola JM, Martin OA. 2022. Bayesian additive regression
trees for probabilistic programming. ArXiv preprint. DOI 10.48550/arXiv.2206.03619.

Rainforth TWG. 2017. Automating inference, learning, and design using probabilistic
programming. PhD Thesis, University of Oxford.

Ranganath R, Altosaar J, Tran D, Blei DM. 2016. Operator variational inference. ArXiv preprint.
DOI 10.48550/arXiv.1610.09033.

Salvatier J, Wiecki TV, Fonnesbeck C. 2016. Probabilistic programming in Python using PyMC3.
PeerJ Computer Science 2(2):e55 DOI 10.7717/peerj-cs.55.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 34/35

https://python.arviz.org/en/stable/
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1214/23-BA1381
http://dx.doi.org/10.48550/arXiv.1903.04797
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.12688/f1000research.8900.2
https://calibr8.readthedocs.io/en/latest/
https://calibr8.readthedocs.io/en/latest/
https://pandas.pydata.org/
https://pandas.pydata.org/
http://dx.doi.org/10.48550/arXiv.1912.11554
http://dx.doi.org/10.5555/1046920.1194909
http://dx.doi.org/10.48550/arXiv.2206.03619
http://dx.doi.org/10.48550/arXiv.1610.09033
http://dx.doi.org/10.7717/peerj-cs.55
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

Seyboldt A, Osthege M, Störiko A, Widmer L, Porter JR. 2022. pymc-devs/sunode: v0.4.0.
Available at https://sunode.readthedocs.io/en/latest/index.html.

Sisson SA, Fan Y, Tanaka MM. 2007. Sequential Monte Carlo without likelihoods. Proceedings of
the National Academy of Sciences of the United States of America 104(6):1760–1765
DOI 10.1073/pnas.0607208104.

Solin A, Särkkä S. 2020. Hilbert space methods for reduced-rank Gaussian process regression.
Statistics and Computing 30(2):419–446 DOI 10.1007/s11222-019-09886-w.

Sunn Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, Dessimoz C. 2013.
Approximate Bayesian computation. PLOS Computational Biology 9(1):e1002803
DOI 10.1371/journal.pcbi.1002803.

Ter Braak CJ. 2006. A Markov chain Monte Carlo version of the genetic algorithm differential
evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing
16(3):239–249 DOI 10.1007/s11222-006-8769-1.

The Theano Development Team, Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau
D, Ballas N, Bastien F, Bayer J, Belikov A, Belopolsky A, Bengio Y, Bergeron A, Bergstra J,
Bisson V, Snyder JB, Bouchard N, Boulanger-Lewandowski N, Bouthillier X, de Brébisson
A, Breuleux O, Carrier P-L, Cho K, Chorowski J, Christiano P, Cooijmans T, Côté M-A, Côté
M, Courville A, Dauphin YN, Delalleau O, Demouth J, Desjardins G, Dieleman S, Dinh L,
Ducoffe M, Dumoulin V, Kahou SE, Erhan D, Fan Z, Firat O, Germain M, Glorot X,
Goodfellow I, GrahamM, Gulcehre C, Hamel P, Harlouchet I, Heng J-P, Hidasi B, Honari S,
Jain A, Jean S, Jia K, Korobov M, Kulkarni V, Lamb A, Lamblin P, Larsen E, Laurent C, Lee
S, Lefrancois S, Lemieux S, Léonard N, Lin Z, Livezey JA, Lorenz C, Lowin J, Ma Q,
Manzagol P-A, Mastropietro O, McGibbon RT, Memisevic R, van Merriënboer B, Michalski
V, Mirza M, Orlandi A, Pal C, Pascanu R, Pezeshki M, Raffel C, Renshaw D, Rocklin M,
Romero A, Roth M, Sadowski P, Salvatier J, Savard F, Schlüter J, Schulman J, Schwartz G,
Serban IV, Serdyuk D, Shabanian S, Simon É, Spieckermann S, Subramanyam SR,
Sygnowski J, Tanguay J, van Tulder G, Turian J, Urban S, Vincent P, Visin F, de Vries H,
Warde-Farley D, Webb DJ, Willson M, Xu K, Xue L, Yao L, Zhang S, Zhang Y. 2016. Theano:
a Python framework for fast computation of mathematical expressions. ArXiv preprint
DOI 10.48550/arXiv.1605.02688.

Vasyura-Bathke H, Dettmer J, Steinberg A, Heimann S, Isken MP, Zielke O, Mai PM, Sudhaus
H, Jónsson S. 2020. The Bayesian earthquake analysis tool. Seismological Research Letters
91(2A):1003–1018 DOI 10.1785/0220190075.

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E,
Peterson P, Weckesser W, Bright J, van der Walt SJ, Wilson J, Millman KJ, Mayorov N,
Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat İ, Feng Y, Moore EW, VanderPlas J,
Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM,
Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 1.0 Contributors. 2020. SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nature Methods 17(3):261–272
DOI 10.1038/s41592-019-0686-2.

Wiecki T, Salvatier J, Vieira R, Kochurov M, Patil A, Willard BT, Osthege M, Engels B, Carroll
C, Martin OA, Seyboldt A, Rochford A, Paz L, Rpgoldman, Meyer K, Coyle P, Gorelli ME,
Kumar R, Lao J, Abril-Pla O, Andreani V, Yoshioka T, Ho G, Kluyver T, Beauchamp K,
Andorra A, Pananos D, Spaak E, Edwards B, Ma E. 2022. pymc-devs/pymc: v5.0.1. Available
at https://www.pymc.io/welcome.html.

Zhang L, Carpenter B, Gelman A, Vehtari A. 2022. Pathfinder: parallel Quasi-Newton variational
inference. Journal of Machine Learning Research 23(306):1–49.

Abril-Pla et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1516 35/35

https://sunode.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1073/pnas.0607208104
http://dx.doi.org/10.1007/s11222-019-09886-w
http://dx.doi.org/10.1371/journal.pcbi.1002803
http://dx.doi.org/10.1007/s11222-006-8769-1
http://dx.doi.org/10.48550/arXiv.1605.02688
http://dx.doi.org/10.1785/0220190075
http://dx.doi.org/10.1038/s41592-019-0686-2
https://www.pymc.io/welcome.html
http://dx.doi.org/10.7717/peerj-cs.1516
https://peerj.com/computer-science/

	PyMC: a modern, and comprehensive probabilistic programming framework in Python
	Introduction
	Api overview
	High-level architecture of pymc
	Case studies
	Extensions
	Pytensor
	Discussion
	Contributing to pymc
	Software used in this article
	Appendix
	flink11
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

