Skip to main content
. 2023 Sep 4;9:e1552. doi: 10.7717/peerj-cs.1552

Table 10. Comparison of recent approaches for intrusion detection on the NSL-KDD dataset (training time on whole dataset while testing time on single data sample).

Study Method Performance measures (%) Multi-class No of features Time required (s) Model size
Feature selection Classifier Accuracy Precision Recall F1-score Training time Testing time
Proposed RF-RFE ML ensemble 99.53 99.79 99.78 99.29 13 ~18 0.003 ~242 kb
CNN 95.04 95.13 95.11 95.02 ~390 0.16 ~1,024 kb
RNN 89.3 88.10 89.12 88.19 ~360 0.085 ~225 kb
LSTM 91.21 91.1 91.2 91.23 ~800 0.084 ~1,240 kb
Otair et al. (2022) GWO+PSO KNN + SVM 98.97 X 20 ~1,680 0.15
Roy et al. (2022) RF 98.5 ~454 ~0.0030
Gu & Lu (2021) k-Best RF + XGB + DT 99.9 99.8 99.9 99.9 X 20 ~8.21 0.0055
Pokharel, Pokhrel & Sigdel (2020) CNN AE 85.51 97.62 68.90 X ~1,800 0.054